
GESJ: Computer Science and Telecommunications 2014|No.3(43)
ISSN 1512-1232

 20

The Automatic Synthesis of Haskell Functions

Natela Archvadze1, Otari Ioseliani2, Lia Shetsiruli3, Merab Pkhovelishvili4,

 1 Department of Computer Sciences, Ivane Javakhishvili Tbilisi State University,
13 University str., 0186 Tbilisi, Georgia

2 Georgian-American University, 8 Merab Aleksidze str., 0160 Tbilisi, Georgia
3 Batumi Shota Rustaveli State University, 35 Ninoshvili str, 6010 Batumi, Georgia

4 Niko Muskhelishvili Institute of Computational Mathematics,
8 akuri str., 0171 Tbilisi, Georgia

Abstract

According to the growing difficultness and reliability as well as rising
effectiveness of the development requirements for applied programs, problems of
automation of program synthesis process is the main concern of research. This problem
is interesting for research in area of artificial intelligence and software engineering as
well.

The analysis of the results of automated synthesis system research of programs
using template Forms of Haskell functions is being conducted already. The system is
designed for synthesis of correct and executable programs, recursive functions, which
are represented in the tail recursion and recursion on the top of the list and parameter
with accumulators.

The advantage of program synthesis consist from that at the same time with
building the program it’s approving the accordance of the program for given
specification, that’s why it’s not required to perform verification of synthesized
program in future.

Keywords: functional languages, recursive functions, the templates of the functions

1. Introduction
One of the main reasons of appearance the direction of program synthesis, is the growing

requirements for reliability of software. Because it’s not requiring verification process for the
programs created with synthesizer, such programs must be forever “correct” (without errors) as
syntactically and semantically as well.

After sixties, the problem of program synthesis represents the interests for research as in
Artificial Intelligence and Software Engineering as well. The most influential researches are related
to the programs created on Lisp. The appearance of program synthesis was caused because of
necessity of exempting programmers from routine works of creation simple and elementary
programs.

Besides it was using for initial education of users in functional programming (especially
LISP), at first such kind of educator gives a short information about language components and
verifies solutions of some problems and after gives user an opportunity to assign x and y and as a
result it delivers f function. The synthesizer relieves programmer during creation large programs on
LISP from many small auxiliary functions. The synthesizer of the program, builds this functions
automatically, programmer indicates only x and y.

GESJ: Computer Science and Telecommunications 2014|No.3(43)
ISSN 1512-1232

 21

2. Overview
For the present moment, were composed certain set of approaches for program developing

process automation by synthesis [1, 2, 3]:
• Deductive synthesis (logical Output) – Program is retrieved from the proving of
theorems;
• Inductive Synthesis (The synthesis of programs by examples) – retrieving of
Program from examples by summarizing methods, identifying sequences, progressions etc.
• Transformational synthesis (Transformation) – step-by-step transformation of
specifications, specified on high-level programming language into low-level programming
language code.

From the listed directions the most developed is deductive synthesis. For using this approach
it’s necessary to indicate particular statement of problems, this method isn’t performing research of
the relations between statements. According from this, the functional flexibility of the systems
which are built using deductive synthesis is limited by the known spectrum of problem statements.

 Modelling of data domains aren’t performing in area of transformational synthesis it’s
performing the direct translation of one of descriptions into another.

In case of wide diversities of problem statements, the inductive synthesis doesn’t restrict as
the possibilities of system adaptation in embedding processes and possibilities of their future
modernizations as well. This merit of inductive synthesis is the serious advantage of it in compare
with other listed methods. At present time, there is a short list of solutions in area of inductive
synthesis, for example the method of multipoint expressions, which gives an opportunity to perform
the synthesis of the programs in rather narrow class. The fact is that there is one actual problem of
development of subject domains using inductive synthesis of solutions depending on several
examples, whereby composition of known algorithms with objective of using obtained components
is performing decomposition in the process of next synthesis.

3. Our approach
The problem of synthesis which is one of the most difficult programs in area of programming

can be represented as the development of automatic program generation by the computer for which
foresaid problem wasn’t solved and for which the computer has no solution.

We are representing generalization of synthesize problem in several directions, specifically
the function is not only mathematics, it can represent the area of computer games, image processing
etc. From the other side during development of computer equipment it became very important the
problems as of processing lists structures and processing the problems of environment
transformation as well. The environment means a file with content of sound data, image data etc.
Therefore at task of examples, it’s possible together with functions set up files, phrases, drawings or
figures.

In earlier researches of LISP program synthesis [4,5] it was impossible to determine the
dynamic structures, it’s not determined the operation of list creation automatically, which required a
lot of examples. The generation mechanism in Haskell gives an opportunity to generalize the
example and that became the reason of possibility of simplification of examples.

The problem can be generalized for the functional programming languages the program can
be transformed itself. This means that for examples will be taken programs and not lists. For
example we have program named reverse, which returns a list: reverse [[1,2],[3,4,5] =
[[3,4,5],[1,2]], it’s necessary to perform a synthesis for a kind of function which returns sub-list as
well, For example, reverse_all [[1,2], [5,4,3],[9,8]=[[8,9], [3,4,5],[2,1]]

3.1. Function isn’t only mathematics
The function shows one multiplicity in another. y=f(x) for f function in x point must

correspond single value which is defined as y. This description isn’t only for definitions the syntax

GESJ: Computer Science and Telecommunications 2014|No.3(43)
ISSN 1512-1232

 22

of function don’t confuse it with the semantics of function in functional programming languages.
The functions can be different and they are using for different areas like: computer games, the
problems of word processing, image processing compiler construction. Functional programming
emphasizes a function that produces results which are depending only on their inputs and not on the
program state – i.e. pure mathematical functions.

Let’s consider examples from different areas:
- Mathematical functions: Double: N->N (the calculations of the factorial, square, sums etc.)
- The area of computer games: during realization of some computer games (For example tic

tac toe). The function of the next step must be formulated like: It must be taken the condition of the
board on input and must be generated a new condition on output: NextMove: BoardState->
BoardState. How this arguments are represented this is another matter. It’s possible to perform the
representation using lists, matrix, functions, which returns cross or zero putted on intersection of
coordinates.

- Word processing, for example: translator from English to another language. The function of
translation is the function which takes the text on output and puts the same but translated text:
Translate:text->text.

- Image processing, for example the function of image processing takes image on input and
puts the same image. For example: function which makes color picture black and white,
ToBlackWrite: image->image. Function of image mirroring: Mirror: image->image, it’s been
described function which is performing some pixel transformation, for example color changing; it
will accept another function which will reflect pixel to pixel: Transform: (pixel->pixel) x image-
>image.

- Problem of compiler construction: compiler is the function which accepts the source code of
program and returns some byte-code: Compile: sourceCode->byteCode.

The compiler will be constructed as composition of lexical set, transformation, and
optimization: Compile = Parse ○ Transform ○ Optimize. (○ – is the signifier of program
composition). Each of them is a function with own input and output data.

3.2 The definition of program class
We are using the utility synthesis which means that specific approach in special cases. It’s

being considered the structural synthesis, which gives an opportunity of synthesizing the limited
class of programs in a short subject area. Specifically it was determined a class of problems which
contains lists and the problems of transformation of list structures. These types are determined
syntactically oriented to construction method of Tony Hoare [6], particularly the list A of type can
be defined as:

 List(A) = NIL + (Ax List(A));
prefix = constructor List(A);
head, tail = selectors List(A);
isNil, isNonNil = predicates List(A);
nil,nonNil = parts List(A).
This definition of List (A) type in point of fact is the inductive set of some complex values

which are created on based type A – atom.
Like a list structure, the syntactically-oriented constructions have following appearance:

ListStructure(A) = A + List(ListStructure(A);
prefix = constructor List Structure (A);
head, tail = selectors ListStructure(A);
is Atom, isN on Atom = predicates ListStructure(A);

GESJ: Computer Science and Telecommunications 2014|No.3(43)
ISSN 1512-1232

 23

atom,поп Atom = parts ListStructure(A).
During synthesis, the examples will be determined by lists and list structures.
Such kind of formal definitions gives an opportunity to develop a template function for

processing lists (type List (A)) and list structures (List structures (A)), it can be used as specific
functions for processing data, based on general template function.

Each function for processing value List (A) of type must contain at least two clauses, patterns.
First is processing NIL, the second is processing nonNIL, for this two parts of List(A) type in
Haskell usually corresponds following samples: [] and (x:xs).

Functions, which are processing list structure (A) data, must contain at least following
clauses:

fl [] = ...
f1 а = if (isAtom a) then ...
 else f2 a
f2 (x:xs) = if (isAtom x) then ...
 else ...
3.3. The templates for representation of language functions
For developing lists and list structures is being used several templates [7, 8] during synthesis

will be concretized the recursive functions which are parts of foresaid templates.
The template of recursive functions which gets one list as argument – a list [9, 10].

1. Form: tail recursion;

f un[] = g1 []
f un(x : xs) = g2 (g3 x) (g4 (fun (g5 xs)))

2. Form: the recursion comes on the head of the list;

fun [] = g1 []
 fun (x : xs) = g2 (f un(g3 x)) (g4 (g5 xs))
The functions g1, g2, g3, g4 and g5 are depending on the goals of developers.
g1–function for processing empty list;
g2–function for combining the results of processing the head and the rest of not empty list;
g3–function of processing the head of not empty list;
g4–function for processing the result of recursive call for the rest of not empty list;
g5–function for pre-processing the rest of not empty list.

3. Form: for the functions with additional argument (accumulator).

fun n =fun’ n a
 - - a call of function, the parameters n and a have a specific values.
fun’ n a= g1 a
fun’ (x : xs) = g2 (g3 x)(g4 (fun’ (g5 xs) g6 a))

Where: g1, g5 – functions have the same values as in top and g6 – is the function which is

being processed by accumulator.
3.4. Creation of language functions collections

GESJ: Computer Science and Telecommunications 2014|No.3(43)
ISSN 1512-1232

 24

It was defined the functions from which must be formed the synthesis of the program. These
functions are part of the Haskell language module Prelude.

It was defined the specific type of the data “Funtype”, which describes the functions
according to the numbers arguments and type.

This is necessary during synthesis process when must be chosen function which argument’s
type corresponds the type of example and the target list, the result corresponds the type of elements.

During definition of type is considered that the functions are curried, polymorphic of types
and have restriction for the type. The type of function is determining by the arrow and round
brackets, the list is being determined by the [] square brackets.

data Funtype = Fun1 String String Listp Atom | Fun2 String Char Bool | Fun3 String String
Atop Atom Atom deriving (Eq,Show)

The type “Funtype” is the descendant of standard Haskell Eq, Show types. We had
represented only the part of definition, by only 3 constructors.

For example, first Fun1 constructor determines (combines) such a functions which can
transform any type of list in Atom: [a] ->a. In the definition of constructor for first type string,
corresponds the name of function and the second type string, determines the restriction. Functions
head, last, product, sum, and maximum, minimum correspond Fun1 – constructor. For example the
functions head and sum can be represented as:

Fun1 head “ ” [a] a
Fun1 sum “Num a” [a] a
The constructor Fun2 describes the functions which are influencing on symbols and as the

result returns us logical values, these functions are: isAlpha, isDigit, isLower, isSpace, isUpper. For
example the function isDigit can be represented as Fun2 is Digit “” Char Bool.

The constructor Fun2 describes the functions with arguments, like “max”, “min”, and “div”,
“mod”. For example the function div can be represented like: Fun3 div “Integral a” a a a.

3.5. Inductive conclusion for inductive synthesis
 It’s known that the inductive inference is the inference from given data, which determines

their general rule. For determining the general rule of inductive conclusion must be specified a set
of the rules, the object of conclusion is an output object. The methods of representation of rules, the
possibility of show the examples, output method, and the wrong output criterion.

As the example of f – function can be used a sequence of (x, f(x)) couples with input and
output values. For the “Turing” machine determining of (x, f(x)) input and output couples for f –
function, corresponds input x and output f(x) – values during program automatic synthesis and it’s
getting from calculation of x and y. According to this, the automatic synthesis of the program can be
considered as the inductive output of function.

3.6. The example of inductive synthesis
If the initial argument is the following list [A, B, C, D] the result will be [[A],[B],[C],[D]],

this can be written [A,B,C,D] --> [[A],[B],[C],[D]] for the both of sides is list structures. Let’s
review the problem of output of “?”

(A B C D) --> ?
At first, the system gives us two examples, it must be calculated the difference as for the left

side of example and for the right side as well.

For example: [A, B] --> [[A], [B]] and [A, B, C, D] --> [[A], [B], [C], [D]].
It appears that the difference between arguments depends on the number of elements (length –

function, in first case returns 2 and in a second case returns 4). We have similar quantity for the
result lengths, according from this it can be made a conclusion, that a number of members in result

GESJ: Computer Science and Telecommunications 2014|No.3(43)
ISSN 1512-1232

 25

is the same as it’s in argument. That’s why it will be checked first “Form” and will be tried to
determine g1, g2, g3 and g4, g5 functions for determining g1 function is being generated the query
for the example which determines the result when is the empty list.

 Fun [] - ->
Result: [] conclusion g1 x =x;
For determining g2 and g3 functions, is being used the heuristic, and will be performed the

comparing between the argument an initial member of the result.

head [A, B]=A
head [[A], [B]]=[A]
According to this A – is being compared with [A] and after it will being calculated the

difference between them, which means that must be found the function which will correspond A to
B. For this reason in the set of functions of language is choosing the pattern which will correspond a
list to Atom. Such kind of function is cons (:), cons x [] =x: []. Conclusion – g3 x=x: [] because x
– argument in not changing g2 x =x will be true. For determining g4 and g5 functions we are using
given in the example processing of tiles of the lists.

tail [A, B]=[B]
tail [[A], [B]]=[[B]]
According to the fact that the number of members is not changing (length [B] =length [B]

=1) is being created a conclusion that the recursion is performing for tile of the list. This means that
g4 and g5 functions are identical: g4 x = x; g5 x = x; the conclusion of this process is the recursive
definition:

fun [] = []
fun(x:xs) = (x:[]): fun xs
After this must be examined the correctness of synthesized function this will be performed by

the call on fun function by a different number of arguments. At first will be checked fun [], fun[a],
fun [a, b] and according to this will be created a conclusion that the synthesized function fun is true.

Besides the function cons (:) it is possible for other functions to be the function of set of
language which are satisfying the conditions. According to this all of the functions are considered as
the alternative of cons (:) function. It’s being used the heuristic in compliance which is being
considered a couple of functions (the combination of two functions) after the combination of
following three functions etc. for that moment it is necessary that the type of output of first function
be the type of the second function argument and be compliant with given examples.

3.7. From examples to Algorithms
During execution of the system is being distributed the three main steps: selection of the

templates, construction of the function, examining of the constructed function.
During selection of template is being performed according to a number of arguments of the

function which must be constructed. If there are a several templates it will be performed checking
of each of them.

The functions which are represented in template will be constructed using several heuristics.
During choosing functions will be used all the functions. The conclusion is that it can be several
alternatives of synthesized function.

At the third stage is being checked the synthesized alternative functions on the examples.
During this process is being performing calculation of the real values of functions.

GESJ: Computer Science and Telecommunications 2014|No.3(43)
ISSN 1512-1232

 26

4. Conclusions
The program synthesis algorithms for construction of recursive functions have been discussed

already. The synthesis is being performed using different recursive templates. These templates are
using as for program synthesis and for verification as well [11, 12, 13].

We are representing generalization of synthesize problem in several directions, specifically
the function is not only mathematics, it can represent the area of computer games, image processing
etc. From the other side during development of computer equipment it became very important the
problems as of processing lists structures and processing the problems of environment
transformation as well. The environment means a file with content of sound data, image data etc.
Therefore at task of examples, it’s possible together with functions set up files, phrases, drawings or
figures.

References
1. Drozhdin V.V., Zhukov M.V. –The deductive synthesis of functional and imperative programs//

Izvestia Penz.gos. pedagog. univ. 2009, N.13 (17). Pp.89-94.
2. Sh.Barman, R.Bodic, S.Jain,Y.pu, S.Srivastava, N.Turg. Parallel Programming with Inductive

Syntesis.University of California, Bercley.
3. Monaxov O.Evolucionnii cintez na ocnove shablonov(ru). Novosibirsk, 2006.
4. N.Archvadze, M.Pkhovelishvili, L.Shetsiruli. The complexity of program synthesis from

examples. Proceedings of the Eleventh International Conference Pattern Recognition and
Informaton Processing (PRIP’2011). ISNB 978-985-448-772-7. pp. 275-279.

5. Archvadze N.N., Pkhovelishvili M.G., Shetsiruli L.D. Several issues of programs synthesis.
Proceedings of the International Conference on System Analysis and Information Technologies.
ISSN 2075-4086. pp. 403. http://sait.kpi.ua/books/sait2011.ebook.pdf/view 2011.

6. Dushkin R.B.Functionalnoe programirovanie na Haskell (ru). 2007.
7. N. Archvadze,M. Pkhovelishvili, L. Shetsiruli, M. Nizharadze. Program Recursive Forms and

Programming Automatization for Functional Languages. WSEAS TRANSACTIONS on
COMPUTERS. Volume 8, pp. 1256-1265, ISSN: 1109-2750

8. N.Archvadze, M.Pkhovelishvili, L.Shetsiruli . Automatically building the "basic recursive" part
of the data structures programs descriptions. Proceedings of the System Analysis and
Information Technologies 14-th International Conference SAIT 2012. р.323.

9. Graham Hutton. Programming in Haskell. Cambridge, 2007.
10. N.Archvadze, M.Pkhovelishvili, L.Shetsiruli. Construction of the Generalized Recursive Forms

for Functional Languages and their Application Verification of. Electronic Scientific Journal:
“Computer Sciences and Telecommunications”. No. 3(26), pp. 133-141. ISSN 1512-1232.
2010.

11. N. Archvadze. M. Nizharadze. Typical Template Verification for List Editing In Haskell
Language. Proceedings of the International Conference Management systems and modern
information technologies. pp 170–172. ISSN 1512-3979.

12. N.Archvadze, M.Pkhovelishvili. PRESENTATION OF THE GEORGIAN LANGUAGE
DICTIONARY WITH FUNCTIONAL PROGRAMMING LANGUAGES, AND SEARCH BY
THE METHOD "WAVE". Electronic Scientific Journal: “Computer Sciences and
Telecommunications”. ISSN 1512-1232. 2012|No.2 (34)[2012.06.30], pp. 59-70.

13. N.Archvadze, M.Pkhovelishvili. POSSIBILITY OF FUNCTIONAL PROGRAMS
VERIFICATION THROUGH APPLICATION OF MODEL CHECKING. Electronic Scientific
Journal: “Computer Sciences and Telecommunications”. ISSN 1512-1232. 2013|No.4 (40)
[2013.12.31]. pp. 51-58.

Article received: 2014-09-05

http://sait.kpi.ua/books/sait2011.ebook.pdf/view

	1. Introduction
	2. Overview
	3. Our approach
	4. Conclusions
	References

