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Abstract

In work mathematical modeling of nonlinear process of assimilation taking into
account demographic factor is offered. In considered model taking into account
demographic factor natural decrease in the population of the assimilating states and a
natural increase of the population which has undergone bilateral assimilation is
supposed. At some ratios between coefficients of natural change of the population of the
assimilating states, and also assimilation coefficients, for nonlinear system of three
differential equations are received the two first integral. Cases of two powerful states
assimilating the population of small state formation (autonomy), with different number
of the population, both with identical and with various economic and technological
capabilities are considered. It is shown that in the first case the problem is actually
reduced to nonlinear system of two differential equations describing the classical model
"predator - the victim", thus, naturally a role of the victim plays the population which
has undergone assimilation, and a predator role the population of one of the
assimilating states. The population of the second assimilating state in the first case
changes in proportion (the coefficient of proportionality is equal to the relation of the
population of assimilators in an initial time point) to the population of the first
assimilator. In the second case the problem is actually reduced to nonlinear system of
two differential equations describing type model "a predator — the victim", with the
closed integrated curves on the phase plane. In both cases there is no full assimilation
of the population to less widespread language. Intervals of change of number of the
population of all three objects of model are found. The considered mathematical
models which in some approach can model real situations, with the real assimilating
countries and the state formations (an autonomy or formation with the unrecognized
status), undergone to bilateral assimilation, show that for them the only possibility to
avoid from assimilation is the natural demographic increase in population and hope
for natural decrease in the population of the assimilating states.

Keywords. Nonlinear process; bilateral assimilation; demographic factor; first
integrals; intervals of change of number of the population.

Introduction

Mathematical modeling and computing experiment in the last decades gained all-round
recognition in science as the new methodology which is roughly developing and widely introduced
not only in natural science and technological spheres, but also in economy, sociology, political
science and other public disciplines [1 - 3].

In [4 - 6] the mathematical model of political rivalry devoted to the description of fight
occurring in imperious elite competing (but not necessarily antagonistic) political forces, for
example, power branches is considered. It is supposed that each of the sides has ideas of "number"
of the power which this side would like to have itself, and about "number" of the power which she
would like to have for the partner.

Works [7 - 11] are devoted to creation of mathematical model of such social process what
administrative (state) management is. The last can be carried out as at macro-level (for example,
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the state) and at micro-level (for example, an educational or research institution, industrial or
financial facility, etc.).

In work [ 12] computer research of a trajectory of development of three ethnos living in one
territory is conducted.

In work [ 13] we consider the nonlinear mathematical model of bilateral assimilation without
demographic factor. It was shown that the most part of the population talking in the third language
is assimilated by that widespread language which speaks bigger number of people (linear
assimilation). Also it was shown that in case of zero demographic factor of all three subjects, the
population with less widespread language completely assimilates the states with two various
widespread languages, and the result of assimilation (redistribution of the assimilated population) is
connected with initial quantities, technological and economic capabilities of the assimilating states.

In the real work we consider mathematical modeling of nonlinear process of assimilation
taking into account demographic factor. In model three objects are considered:

1. The population and government institutions with widespread first language, influencing by
means of state and administrative resources on the population of the third state for the purpose of
their assimilation;

2.The population and government institutions with widespread second language, influencing
by means of state and administrative resources on the population of the third state for the purpose of
their assimilation;

3. Population of the third state which is exposed to bilateral assimilation from two powerful
states or the coalitions.

1. System of the equations and initial conditions

For the description of dynamics of the population of three associations (the state, to the
coalition of the states with the same state language), speaking different languages on prevalence and
opportunities of the respective states, we offer the following nonlinear mathematical model:

ax(®) _ Bx(®) +a, x(t)z(t)
dt
—dﬁt) = A, y(®) +a, y()2(1)
dzit) = B2(t) - a, x()2(t) — &, y (D) (1)
(1.1)
X(0) = Xy, ¥(0) = y,,2(0) = z,, (1.2)

X(t) —number of people at present time t, talking in the first widespread language;

y(t) —number of people at present time t, talking in the second widespread language;

Z(t) —number of people at present time t, talking in the language which is exposed from two
widespread languages of assimilation;

a,,a,— respectively coefficients of distribution (assimilation) of the first and second languages
(assimilating impact on the people talking on third, not widespread language);

B, B, By - respectively coefficients of natural change (increase, reduction or constancy)
populations of the people talking in the first, second and third languages.
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2. Case of the states with identical assimilating opportunities and coefficients of natural
change of the population and various initial number of the population.

We will assume that coefficients of natural change of the population of the assimilating states
in (1.1) are negative, and the population which has undergone bilateral assimilation — is positive
(quite real situation).

Thus, it is supposed that the following inequalities take place

B, <0, pB,<0, p;,>0. (2.1)

We will assume that equalities are right:
LI S 2.2)

B, a,

In case of (2.2) from the first and second equations (1.1) it is easy to receive the first integral
of system (1.1)

X
X(O) =%y (1) . (23)
Yo
We will consider two special cases:

1. 6=1 2. 6=2

In the first case (0 =1) we have two powerful states with identical assimilating opportunities
and coefficients of natural change of the population (at the initial moment probably with different
number of the population), and in the second case (0 = 2 ) — with various assimilating opportunities
and coefficients of natural change of the population.

In a case 6 =1 entering designation

y—o =7. (2.4)

From (1.1), (1.2), (2.1) — (2.4) we will receive Cauchy's problem for nonlinear system of
two differential equations

B0 _ gy + a0z
(2.5)
_dzi” = B,2(t) — (a,y + ) y(DZ(t)
yO0) =y,  2(0)=2,
As in (2.5) have inequality places
p,>0, ay+a,>0, B,<0, a,>0 (2.6)

we received system of the Lotka - Volterra equations for the classical “predator- victim” model.
Thus, naturally the role of the victim plays the population which has undergone assimilation,
and a predator role the population of one of the assimilating states.
The population of the second assimilating state agrees (2.3), (2.4) changes in proportion (the
coefficient of proportionality is equal to the relation of the population of assimilating sides in an
initial time-point) to the population of the first assimilating state.

X(®) =) . (2.7)
From (2.5) it is possible to receive the second first integral of system of the equations (1.1)
z
a(2-2,)+ (@7 +a)(y=y)) = (~A)In—+ f,In L 28
Z, Yo - )
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As it is known (2.8) at various initial data y,, z, represent family of the closed integrated

curves round some point M [_ ’. , Py }, located in the first quadrant the Ozy plane of

aZ aly + a2

variables z(t), y(t).
Thus, at t > 0 function

Z(t) < [me’ max]7
0<z,,,2,, aredefined from the transcendental equation
s s
a,(z2-2,)+ (a7 +« - ln—+ In——2——
2 ( o)+ (ay 2)(a1y+a2 Yo)=(=5,) Bs (@7 +a,)Y (2.9)
We will enter designation
* ﬂ}. - ﬂZ
=——=—>0, =
Y Sayra a, (2.10)
A = @7 + )y =Y = fyIn -
0
As ratios are fair
A(yO)EC(O,oo), A(y) =0, y}l_r};){ A(Y,) =, y}l_l;{}w A(Y,) =— (2.11)
dA :(a17+a2)(y*_yo) dzA:_(aﬂ/"'az)y* <0
dy, Yo dy,’ Yo
dA A, ay+a
_(y):()’ 2( )=_(17/—*2)<O
dy, dy, y
that is right an inequality
A(Y,) <0, y, (0,0), 2.12)
max A(Y,) = A(y) =0
Then (2.9), according to (2.10) will correspond in the following look
z
0(2(2—20)+A:(—ﬂ2)ln2— . (2.13)

0
We will enter designation

F(2)=a,(z-2,)+ A—(—ﬁz)lnzi | 2.14)

0
It is easy to show that for f(z) function are fair

f(2)eC(0,»), f(z,)=A<0, 21131 f(z)=+0, lim f(2)=+o 2.15)
a{z ) (—ﬂz)}
fr(zy=—~t—% J
z
1.e. for the equation
f(2)=0 (2.16)

at A=0 - has two decisions z=2,=2,,,,Z=2,,,and ina case A<0 - has two decisions
Z= Zmin,2 < ZO’ Z= Zmax,Z > ZO'

The first decision doesn't make physical sense as performance is necessary
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2, <2,

Thus, we will finally receive
A=0 0<z,=12
A<0 0<z
Similarly, at t > 0 function

y(t) € [ymin > ymax ]’

0 < ¥,ins Yinax are defined from the transcendental equation

<Z

min, 1

max,l 2 (2 17)
<z,<1

min,2 max,2

" z’
(2" —2p) +(ay + ) (Y —Y,) = (=1,) an_ + lnl (2.18)
0 0
We will enter designation

. z'
B(z))=a,(z _Zo)_(_ﬂz)lnz_o (2.19)
As ratios are fair

B(z,)€C(0.0).  B(z)=0,  lim B(z)=—, lim B(z,)=—0 (2.20)
dB _ a,(z-7) dz?=—“2§*<o
dz, Z, dz, Z,
2
B .
By—o, LBay--L<o
dz, dz,
that is right an inequality
B(2,)<0, 2, €(0,0), 2.21)
max B(z,)=B(z")=0
Then (2.18), according to (2.19) will correspond in the following look
(a7 +a)(y—Y)+B=pFInY (2.22)
Yo - ’
We will enter designation
9(Y) = (e +a)(y —y,)+B—filn L
Yo (2.23)
It is easy to show that for 9(y) function are fair
g(y)EC(0,00), g(y,)=B<0, yhjg g(y) =+, ylEEo g(y)=+o0 (2.24)
d_g — (a17 + az)(y _ y*)
dy y
Thus equation
9(y)=0 (2.25)
at B =0 - has two decisions Y=Y, =Y.\, ¥ = Y. -and in a case B < 0- has two decisions
Y=Ymin2 < Yoo Y= Yimax2 > Yo-
Thus, we will finally receive
B=0 0< yO = ymin,] < ymax,l (226)
B < 0 O < ymin,2 < yO < ymax,2
Then for x(t) function according to (3.7) will take place
B=0 0< XO = Xmin,l < Xmax,l (2 27)
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B<0 0 < Xpina < Xo < Xpax2
Thus, ratios are naturally right
Xmin,i = 7ymin,i ] Xmax,i = yymax,i 1= 1’2 (228)

3. Case of the states with various assimilating opportunities and coefficients of natural
change of the population.

In a case =2 entering designation
S Y (3.1)
78 ' '
From (1.1), (1.2), (2.1) = (2.3), (2.10), (3.1) we will receive Cauchy's problem for nonlinear
system of two differential equations

dﬁ?l=ﬂﬂ0)+mﬂaﬂﬂ>=ai“0—Zﬂﬂ”

(3.2)
d 2
Zl(tt) - (ﬂ3 — o, Py _azy)z(t) =—0 p(y - yl)(y_ yz)z(t)

yO) =y,  2(0)=2,

_—0{2+V0£22+40(1pﬂ3 >0 _—0(2—\10!22+40£1pﬂ3<0

Y= 2a.p ’ Y. = 2a,p (3.3)
According to (3.3)

where

y-y,>0 vVt e[0,0),
therefore
dy(t) . dz(t) _
sgnT = sgn[Z(t) -z ], sgn? = —sgn[y(t) - y1] (3.4)
From (3.2) it is possible to receive the second first integral of system of the equations (1.1)
z _ y ap, -, 2
a,(2-2,)— (—ﬂz)lnz—o =p, ny—o_T(y —Yo)— (YY) ) (3.5)

Ratio (3.51 at various initial data represent family of the closed integrated curves round some

point M [Z Vi , located in the first quadrant the Ozy plane of variables z (t), y (t).

Thus, at t > 0 function
Z(t) € [Zmin H Zmax ]’
0<z_ .,z aredefined from the transcendental equation

min? “max

a,(2-2))—(=f,) lnz_zo = p; ln;/_:) _%p(ylz —¥o) =, (Y, = Yp) (3.6)
We will enter designation
A=A I B0 2y oy, - yy)

v | 2 (3.7)

Then (2.6), according to (2.7) will correspond in the following look
o, (2-2,)+ A = (—ﬂz)lné (38

As ratios are fair

A(Y)€C(0,0)  A(y)=0,  lim A(y,)=—, lim A(y,)=—= (3.9)
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dA1 :_a1p(y0_y1)(y0_yz) d2A1 :_ﬂ3+alpyg <0
dy, Yo dy,’ Yo'
d d? +a,py;
R =0 Alyy=-BraPh
dy, dy, Yi
that is right an inequality
A(Y) <0, ¥, €(0,00), (3.10)
Jmax A(Yo) =A%) =0
We will enter designation
z
fl(Z)Eaz(Z_Zo)"‘Ai_(_ﬁz)lnz_ (3.11)

0
It is easy to show that for f (z) function are fair

f(2)eC(0,0), f(z,)=A <0, lim f,(2) =+o0, Jim f, (2) = +o0 (3.12)
df, _a, [z — z*]
dz z
The equation (3.8) taking into account (3.11) will correspond in a look
f(z)=0 (3.13)
at A =0 - has two decisions z=27;, ,=2,, Z=2_,;,and ina case A <0- has two decisions
Z= Zmin,4 < ZO’ Z= Zmax,4 > ZO'
Thus, we will finally receive
A‘l = O 0 < ZO = Zmin,3 < Zmax,3 (314)
A| < O O < Zmin,4 < ZO < Zmax,4
Similarly, at t > 0 function
y(t) € [ymin > ymax ]’
0< Y. You are defined from the transcendental equation
. ' y ap
a,(2 _ZO)_(_ﬂz)an_O:ﬂ3ln_0_lT(y2_yg)_az(y_yO) ' (3.15)
Then (3.15), according to (2.19) will correspond in the following look
a
?p(yz—y§)+a2(y—y0)+B:ﬂ3lnlo (3.16)
We will enter designation
a,p y
gl(y)ElT(yz_yg)"'az(y_YO)"'B_ﬂ3ln_0 (3.17)
It is easy to show that for function 9:(¥) are fair
6,(y)€C(0,2).  g,(y,)=B=<0,  lim g,(y)=+, lim g,(y) =+ (3.18)
dgl — o, p(y_ yl)(y — yz)
dy y
Thus equation
9,(y)=0 (3.19)
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at B =0 - has two decisions Y=Y, =Y, .. 5, ¥ = Y,..s-and in a case B <0 - has two decisions

Y= Yins < Yoo Y= Ymaxs > Yo-
Thus, we will finally receive
B=0 0<Yo = Yinins < Yimax3 : (3.20)
B<0 0 < Yinina < Yo < Yinaxs

Then for x(t) function according to (2.3), (3.1) will take place

B=0 0<Xy=Xpns <X

'min,3 'max,3 (3 2 1 )
B<0 0 < Xping < Xo < Xpaxa
Thus, ratios are naturally right
Xmin,i = pyiin,i’ Xmax,i = pyiax,i’ I = 3’4 (322)

In both cases 2, 3 there is no full assimilation of the population to less widespread language.
Intervals of change of number of the population of all three objects of model are found.

Conclusion

In considered model taking into account demographic factor natural decrease in the
population of the assimilating states and a natural increase of the population which has undergone
bilateral assimilation is supposed. At some ratios between coefficients of natural change of the
population of the assimilating states, and also assimilation coefficients, for nonlinear system of
three differential equations are received the two first integral. Cases of two powerful states
assimilating the population of small state formation (autonomy), with different number of the
population, both with identical and with various economic and technological capabilities are
considered. It is shown that in the first case the problem is actually reduced to nonlinear system of
two differential equations describing the classical model "predator - the victim", thus, naturally a
role of the victim plays the population which has undergone assimilation, and a predator role the
population of one of the assimilating states. The population of the second assimilating state in the
first case changes in proportion (the coefficient of proportionality is equal to the relation of the
population of assimilators in an initial time point) to the population of the first assimilator. In the
second case the problem is actually reduced to nonlinear system of two differential equations
describing type model "a predator — the victim", with the closed integrated curves on the phase
plane. In both cases there is no full assimilation of the population to less widespread language.
Intervals of change of number of the population of all three objects of model are found.

The considered mathematical models which in some approach can model real situations, with
the real assimilating countries and the state formations (an autonomy or formation with the
unrecognized status), undergone to bilateral assimilation, show that for them the only possibility to
avoid from assimilation is the natural demographic increase in population and hope for natural
decrease in the population of the assimilating states.
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