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 Abstract. We obtain analytical results on the representation of the one-loop five-point 
on-shell amplitudes as a pertubative series up to )( 2εO  in the dimensional 
regularization parameter ε . These results are relevant for the next-to-next-to-leading-
order (NNLO) quark-parton model description of the hadroproduction of heavy quarks. 
These one-loop matrix elements can also be used as input in the determination of the 
corresponding NNLO cross sections for heavy flavor photoproduction, and in photon-
photon reactions.  
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I.  Introduction 
 
It has been already 25 years since the next-to-leading-order (NLO) corrections to the 

hadroproduction of heavy flavors were first presented in the seminal work [1]. These results were 
confirmed yet in another seminal work [2]. However, in all the NLO calculations there remains, 
among others, the problem that the renormalization and factorization scale dependences render the 
theoretical predictions to have much larger uncertanties than today’s standards require. This calls 
for a next-to-next-to-leading-order (NNLO) calculation of heavy-quark production in hadronic 
collisions. In fact, the scale dependence of the theoretical prediction is expected to be considerably 
reduced when NNLO partonic amplitudes are folded with the available NNLO parton distributions. 

 
 

Fig. 1: Exemplary gluon fusion diagrams for the NNLO calculation of heavy-hadron production. 
 

There are four classes of contributions that need to be calculated for the NNLO corrections 
to the hadronic production of heavy-quark pairs. In Fig. 1 we show one generic diagram each for 
the four classes of contributions that need to be calculated for the NNLO corrections to the gluon-
initiated hadroproduction of heavy flavors. The first class involves the pure two-loop contribution 
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[1(a)], which has to be folded with the leading-order (LO) Born term. The second class of diagrams 
[1(b)] consists of the so-called one-loop squared contributions arising from the product of one-loop 
virtual matrix elements. Further, there are the one-loop gluon emission contributions [1(c)] that are 
folded with the one-gluon emission graphs. This is the topic of the present paper. Finally, there are 
the squared two-gluon emission contributions [1(d)] that are purely of tree type. The corresponding 
graphs for the quark-initiated processes are not displayed. 

Bits and pieces of the NNLO calculation for hadroproduction of heavy flavors have been 
calculated in the recent years. In this context we would like to mention the two-loop calculation of 
the heavy-quark vertex form factor [3] that can be used as one of the many building blocks in the 
first class of processes. There is also a numerical approach applied to the calculation of the pure 
two-loop diagrams [4]. An analytic calculation of a subclass of the two-loop contributions to 

QQqq →  was published [5]. The authors of Ref. [6] have calculated the NLO corrections to 
+tt jet production with contributions from the third class of diagrams. However, this result needs 

further subtraction terms in order to allow for an integration over the full phase space. 
Regarding the second class of contributions, all the necessary master scalar integrals needed 

in this calculation have been assembled in Ref. [7], with the results expressed in terms of so-called 
L -functions, which can be written as one-dimensional integral representations involving products 
of log and dilog functions. Alternatively, in [8] the results for these scalar integrals are rewritten as 
a multitude of multiple polylogarithms of maximal weight and depth 4. The divergent and finite 
terms of the one-loop  amplitudes for QQqq →  and QQgg →  were given in Ref. [9]. The 
remaining )(εO  and )( 2εO  amplitudes have been written down in Ref. [10]. All these results were 
presented in a closed analytic form. The NNLO one-loop squared amplitudes for the quark-initiated 
process were presented in Ref. [11]. The calculation of the NNLO one-loop squared matrix 
elements for the process QQgg →  was done in [12], as well as in [13]. In Refs. [11, 12, 13] results 
for scalar master integrals of [7, 8] were used exclusively. The calculation is carried out in 
dimensional regularization [14] with space-time dimension ε24= −n . We mention that a closed-
form, one-loop squared results for heavy-quark production in the fusion of real photons are 
presented in Ref. [15]. 

All the available results were collected and correspondingly combined in a semi-numerical 
calculation of the fully inclusive total cross section for top-quark production in Refs. [16, 17]. 

In our presentation, we shall make use of our notation for the coefficient functions of the 
relevant scalar one-loop master integrals calculated up to )( 2εO  in Refs. [7, 8]. Taking the  complex 
scalar three-point function iC  as an example, we define successive coefficient functions )( j

iC  for 
the Laurent series expansion of iC . One has  

 )},(11){(= 3(2)2(1)(0)1)(2)(
2

2 εεε
εεε O+++++ −−
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We use this notation for both the real and imaginary parts of iC , i.e. for ieCR  and imCI . Similar 
expansions hold for the arbitrary scalar one-, two-, three-, four- and five-point functions 

iiii DCBA ,,, , and iE . 
The aim of this work is to calculate the amplitudes that contribute to the 5-point graphs on 

the left-hand side of Fig. 1(c). 
This paper is organized as follows. Section II contains an outline of our general approach, 

discusses renormalization procedures and normalization. Section III considers the single 
bremsstrahlung subprocesses that contribute to the hadroproduction of heavy flavours at NNLO as 
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shown in Fig. 1(c), as well as the relevant scalar integrals. In Sec. IV one finds a discussion of the 
calculation of the NNLO matrix elements for the gluon fusion subprocess. Our results are 
summarized in Sec. V. 
 

 
 
Fig. 2: The t -, u -, and s -channel LO graphs contributing to the gluon (curly lines) fusion amplitude. The 
thick solid lines correspond to the heavy quarks. 

 
 

II.   NOTATION  
  
At the LO heavy-flavor hadroproduction proceeds through two partonic subprocesses: gluon 

fusion and light-quark-antiquark annihilation. The first subprocess is the most challenging one in 
QCD from a technical point of view. It has three production topologies already at the Born level 
(see Fig. 2). The second subprocess, where there is only one topology at the Born level, is depicted 
in Fig. 3. The one-gluon emission graphs that are to be folded with the one-loop 32 →  diagrams of 
class [1(c)] can be obtained from the graphs of Figs. 2 and 3 by insertion of an additional gluon 
external leg to every vertex, propagator and external line. The remaining tree 32 →  graphs arising 
at this )( 3

sαO  level of a QCD perturbation theory are due to a gluon-(light)quark annihilation (see 
Fig. 4) subprocess. 

Irrespective of the partons involved, the general kinematics is, of course, the same in all  
these subprocesses. In general, we have 

 
 ),()()()()( 54321 pfpQpQpfpf ++→+  (3) 

where f  stands for a light parton. The momentum flow directions correspond to the physical  
 

 
Fig. 3: The lowest order Feynman diagram representing light quark-antiquark annihilation. Normal solid 
lines represent the light quarks. 
 
configuration, e.g. 1p  and 2p  are ingoing whereas 43, pp  and 5p  are outgoing. With m  being the 
heavy-quark mass, we define 
 

 ,)(,)( 22
31

22
21 mppmTtpps −−≡−≡+≡  

 22
32

2 )( mppmUu −−≡−≡  (4) 
and   

 .=)( 22
321

2
22 utsmpppmSs ++−−+≡−≡  (5) 

Also   
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We also introduce the overall factor 
 
 ( ) ,)(= 224 mCgs εC  (6) 

 
where sg  is the renormalized strong-coupling constant and )( 2mCε  is defined in Eq. (2). 

 

 
 

Fig. 4: The lowest order Feynman diagram representing light (anti)quark-gluon collision. 
 

Our renormalization procedure is carried out in a mixed renormalization scheme. When 
dealing with massless quarks, we work in the modified minimal-subtraction ( SM ) scheme, while 
heavy quarks are renormalized in the on-shell scheme defined by the following conditions for the 
renormalized external heavy-quark self-energy graphs: 

 0.=|)(0,=|)( == mprmpr p
p

p
// /Σ

/∂
∂

/Σ  (7) 

In the on-shell scheme, the first condition in Eq. (7) ensures that the heavy-quark mass is the pole 
mass. For completeness, we list the set of one-loop renormalization constants used in this paper. 
One has 
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with )/32(11=0 lC nN −β  being the first coefficient of the QCD beta function, ln  the number of 
light quarks, 4/3=FC , and 3=CN  the number of colors. The arbitrary mass scale µ  is the scale at 
which the renormalization is carried out. The above renormalization constants renormalize the 



GESJ: Physics 2015 | No.1(13) 
ISSN 1512-1461 

 

14 

following quantities: 1Z  for the three-gluon vertex, mZ  for the heavy-quark mass, 2Z  for the heavy-

quark wave function, FZ1  for the )( gQQ  vertex, fZ1  for the )( gqq  vertex, 3Z  for the gluon wave 
function and gZ  for the strong-coupling constant sα . For the massless quarks, there is no mass and 
wave function renormalization.  

In order to fix our normalization, we write down the differential cross section for QQgg →  
in terms of the squared amplitudes 2|| M . One has 

 

 ,||1
)4(1

)P(
2
1= 2

22
2

QQgg
A

QQgg M
d

Sd
s

d →→ −ε
σ  (9) 

 
where the n –dimensional two–body phase space is given by 
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We explicitly exhibit the flux factor 11

21 )(2=)(4 −− spp , and the spin 22 )2(2=2)( −− −− εn  and color 
2−

Ad  averaging factors for the initial gluons. Here 8=1= 2 −CA Nd  is the dimension of the adjoint 
representation of the color group SU( CN ). 

 
 
III   Partonic subprocesses and master integrals 
 
There are three topologically different partonic subprocesses that contribute to the hadron-

hadron reaction at NNLO in perturbative QCD: 
 
                                           gQQgg +→+                                                       (11) 
                                           gQQqq +→+                                                       (12) 
                                qQQqg +→+                                                                (13) 

  
In the present article we study the production of heavy quark pairs in the gluon fusion 

subprocess (11). This is the most complicated subprocess as it contains graphs of many 
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Fig. 5: The 5-point one-loop graphs contributing to the gluon fusion amplitude. 
                                                                      
different topologies and hence allows the determination of the complete set of the master 

scalar integrals needed for the reduction of the 5-point integrals for the other two topologies as well. 
In Fig. 5 we display the gluon fusion diagrams which contain the pentagon loops that 

produce the 5-point scalar integrals to be calculated. The one-loop five-point functions are defined 
by 
 

=),,,,,,,,( 543214321 mmmmmqqqqE  (14) 
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The Feynman graphs to be calculated are shown in Fig. 5. The scalar 5-point integrals for the 
graphs k1-k4 are: 
 

 );,,,,0,,,,( 5124k1 mmmmppppE −−  (15) 
 );,,,,0,,,,( 1254k2 mmmmppppE −−  (16) 
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 );,,,,0,,,,( 1524k3 mmmmppppE −−  (17) 
 ,0);,,,0,,,,( 3124k4 mmmppppE −−  (18) 

 
There are only two independent scalar 5-point integrals out of the four above - k3E  and k4E . The 
first two are obtained as follows: 
 

 ).(=  ),(= 52k3k251k3k1 ppEEppEE −↔−↔  (19) 
 
Scalar integrals for the graphs k5-k8 can be obtained from the ones for k1-k4 above by the 
replacement 0↔m : 
 

 ,0,0,0,0);,,,,( 5124k5 mppppE −−  (20) 
 ,0,0,0,0);,,,,( 1254k6 mppppE −−  (21) 
 ,0,0,0,0);,,,,( 1524k7 mppppE −−  (22) 
 );,0,0,0,,,,,( 3124k8 mmppppE −−  (23) 

 
Here there are also two independent scalar integrals k7E  and k8E . The other two are obtained as 
 

 ).(=  ),(= 52k7k651k7k5 ppEEppEE −↔−↔  (24) 
 
For the integrals corresponding to the diagrams k9-k12 one gets: 
 

 );,,0,0,0,,,,(=,0,0),,0,,,,( 2351k95324k9 mmppppEmmppppE −−−  (25) 
 );,,,0,0,,,,(=,0),,,0,,,,( 5231k103254k10 mmmppppEmmmppppE −−−  (26) 
 );,,,0,0,,,,(=,0),,,0,,,,( 2531k113524k11 mmmppppEmmmppppE −−−  (27) 
 ,0),,,0,0,,,,(=,0,0),,0,,,,( 4231k121324k12 mmppppEmmppppE −−−−  (28) 

 
where we have the relations 
 

 ).(=  ),(= 52k10k1151k9k12 ppEEppEE −↔−↔  (29) 
 
For the graphs k13-k16 one has to calculate the following scalar integrals: 
 

 );,,0,0,0,,,,(=,0,0),,0,,,,( 1452k135413k13 mmppppEmmppppE −−−  (30) 
 );,,,0,0,,,,(=,0),,,0,,,,( 5142k144153k14 mmmppppEmmmppppE −−−  (31) 
 );,,,0,0,,,,(=,0),,,0,,,,( 1542k154513k15 mmmppppEmmmppppE −−−  (32) 
 ,0),,,0,0,,,,(=,0,0),,0,,,,( 3142k162413k16 mmppppEmmppppE −−−−  (33) 

 
With 
 

 ).(=  ),(= 52k13k1651k14k15 ppEEppEE −↔−↔  (34) 
 
However, there are only two basic integrals out of the eight five-point functions relevant to the 
pentagon graphs k9-k16. These are k9E  and k10E , and we have relations 
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 ).,(=  ),,(= 1234k10k141234k9k13 ppppEEppppEE ↔↔↔↔  (35) 
 

Except for the t -channel pentagons depicted in Fig. 5, there are also the corresponding u -
channel diagrams that can be obtained from the ones in Fig. 5 by 21 pp ↔  interchange. 

  
Fig. 6: The 5-point one-loop graphs contributing to the light quark-antiquark annihilation amplitude. 

    
The Feynman diagrams for the subprocess (12) that generate 5-point functions are shown in 

Fig. 6. It is easy to see that these four graphs have exactly the same topology as the diagrams k5-k8 
in Fig. 5. Therefore, for these scalar 5-point functions one has: 
 

 .=,=,=,= k8m4k7m3k6m2k5m1 EEEEEEEE  (36) 

 
 

Fig. 7: The 5-point one-loop graphs contributing to the gluon-light quark amplitude. 
 

The eight relevant graphs for the subprocess (13) can be seen in Fig. 7. All four scalar 5-
point integrals corresponding to these Feynman diagrams can be related to only one graph k5 of 
Fig. 3 as follows: 
 

 ),,,(= 155221k5l1 ppppppEE −→−→→   
 ),,(= 1551k5l2 ppppEE −→−→                                                                       (37) 
 ),(= 43l1l3 ppEE ↔  
 ).(= 43l2l4 ppEE ↔  

 
 
IV.   Results  
 
At LO for QQgg → , we shall use a representation which differs from the one given in 

Refs. [9, 10]. First note that there are only two independent color structures for this subprocess. The 
s -channel matrix element is a sum of two parts, each of which is proportional to one of the two 
independent color structures. We combine terms with the same color structures of the three (e.g. s , 
t , and u ) production channels. Finally, we remove the heavy-antiquark momentum 4p  using 
energy-momentum conservation and use on-shell conditions for the gluons ( 0=11 ε⋅p  and 

0)=22 ε⋅p  and the heavy quark ( mupu 333 =/ ). We then obtain the two color-linked LO matrix 
elements 
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uO
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 with   
 .2222=ˆ

13211 tgpsptptpspMs µνµνµννµνµ γγγγγ /−−−+/  (39) 
 
It can be verified that the function M̂  is ut ↔  symmetric, and consequently the color-linked Born 
amplitudes tOM ,L  and uOM ,L  turn into one another under ut ↔ . 

We can then square the full Born matrix element uOtO MM ,L,L +  and do the spin and color 
sums to obtain the LO amplitude,   

 ,|ˆ|
2

=|| 2
2

2
L BMN

tu
sCdM CF

A
O ≡








−  (40) 

where we have factored out a color-reduced Born term 2|ˆ| M , which reads 
 

                        .ˆ})2(1448{=|ˆ| 2
2

42

2

22
2 B

s
tu

tu
m

s
m

s
utM ≡+−−−+

+ εε                           (41) 

 
The expression in Eq. (40) for the LO amplitude agrees with the well-known result in n  

dimensions (see e.g. Ref. [2]). Note that, by using the prescription of Ref. [18], we were able to 
avoid the introduction of ghost contributions which would otherwise arise from the square of the 
right-most three-gluon coupling amplitude in Fig. 2. In our case the prescription of Ref. [18] 
consists in the use of on-shell conditions for external gluons, i.e. 0=11 ε⋅p  and 0=22 ε⋅p , and the 
exclusion of the heavy-antiquark momentum via 3214 = pppp −+ . When squaring amplitudes, we 
sum over the two helicities of the gluons using the Feynman gauge, i.e. we use 

 
 .=)()(

1=

µννµ

λ

λελε g−∑
±

 (42) 

 
The use of the framework set up in Ref. [18] has the advantage in the non-Abelian case that one can 
omit ghost contributions when squaring the amplitudes. Using the above on-shell conditions already 
at the amplitude level means that one takes full advantage of the gauge invariance of the problem 
when squaring the amplitudes. Thus, in general, the results for the different channels will not be 
identical to the ones which would be obtained using ’t Hooft-Feynman gauge throughout. 

Due to the analysis done in the Section III it appears that we only need to obtain the required 
decomposition of the six independent 5-point scalar integrals in terms of a lower rank of basic 
universal set of scalar integrals. These scalar integrals to be determined are k3E , k4E , k7E , k8E , 

k9E , and k10E . All the other 5-point integrals needed for the hadroproduction of heavy quark pairs 
can be obtained via the use of the corresponding algebraic relations and/or relevant crossing. We 
have done the required decomposition of the above mentioned six master integrals in terms of the 
minimum number of on-shell and off-shell 1-, 2-, 3, and 4-point scalar integrals. We further folded 
the one-loop 32 →  amplitudes of the graphs of the topology depicted on the left-hand side of Fig. 
1(c) with the relevant 32 →  tree amplitudes to obtain the squared matrix elements for the gluon 
fusion subprocess. The results are too long to be presented in the paper. In general, speaking of the 

32 →  subprocesses, there are five independent scalar products fully describing its kinematics. 
However, we choose to express our matrix elements as combinations of scalar products of five 
partonic momenta 51 pp − . This is useful for two reasons. First, depending on the physical 
observable to be calculated, different parameterizations will be needed for the momenta. Second, 
when integrating over the three body phase space, partial fractioning needs to be performed; Having 
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all the five momenta explicitly present in the expressions is useful in avoiding appearance of many 
terms with spurious poles and thus useful in identifying true mass singularities. Computations in 
this work were done with the help of the REDUCE Computer Algebra System [19]. 
 
 

V.   Conclusions 
 

We have calculated analytically all the master scalar 5-point integrals which contribute to 
the one-loop squared matrix elements for heavy-quark pair production in the hadronic collisions. 
We have further squared the one-loop 32 →  amplitudes of the graphs of the topology depicted on 
the left-hand side of Fig. 1(c) with the matching 32 →  leading order tree partonic subprocesses to 
obtain the corresponding matrix elements contributing to various physical observables in the 
hadroproduction of heavy quarks at NNLO. Our results form part of the NNLO description of 
heavy-quark pair production relevant for the NNLO analysis of ongoing experiments at the LHC. 
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