ВЕТВЯЩИЕСЯ РЕШЕНИЯ НЕЛИНЕЙНЫХ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ II- ГО ПОРЯДКА В ФИЗИКЕ, ЧАСТЬ-4

Курдгелаидзе Д. Ф., Курдгелаидзе Д.Д.

Грузинский Технический Университет, Институт Вычислительной Математики им.Мусхелишвили. Адрес: ул. Костава 75, почтовое отделение 01

ВОЗМОЖНОСТИ ЭКСПЕРИМЕНТАЛЬНОЙ ПРОВЕРКИ ТЕОРИИ ФАЗОВОГО ПЕРЕХОДА ВТОРОГО РОДА ЧЕРЕЗ КАТАСТРОФЫ В СЛУЧАЕ НЕОДНОРОДНОЙ СРЕДЫ

Аннотация.

Указывается экспериментальная возможность проверки теории предсказания фазового перехода второго рода через катастрофы в случае неоднородной среды. В частности, в случае неоднородной системы отличить фазовый переход второго рода с η=(α₀ /2β₀)≠0 от фазового перехода второго рода с η=0. Для решения этой экспериментальной задачи предлагается три варианта эксперимента. Рассмотрен также фазовый переход второго рода нового типа в трехмерной, двухмерной и одномерной неоднородных системах.

§1. Как уже было сказано, в случае неоднородной системы существуют два типа фазового перехода второго рода, соответствующие двум типам катастрофы в такой системе. В первом случае длина периода периодического решения соответствующего уравнения постоянна и совпадает с длиной кристаллической решетки системы, во втором случае длина периодического решения не является постоянной. В первом случае в точке катастрофы ($k_1^2 \rightarrow 1$) параметр порядка η =0, во втором случае η =($\alpha_0/2\beta_0$)≠0. В первом случае в точке катастрофы фазовый переход второго рода имеет место в изолированных точках и в их окрестностях, во втором случае фазового перехода η =0, является аналогом фазового перехода второго рода Л.Д.Ландау в случае однородной системы. Переход второго типа, когда в точке фазового перехода η =($\alpha_0/2\beta_0$)≠0, является новым типом фазового перехода второго рода. Фазовый переход этого типа происходит во всей системе одновременно.

Таким образом, одна из основных задач эксперимента состоит в том, чтобы в случае неоднородной системы отличить фазовый переход второго рода с $\eta = (\alpha_0 / 2\beta_0) \neq 0$ от фазового перехода второго рода с $\eta = 0$. Для решения этой экспериментальной задачи предлагается три варианта эксперимента.

1. Метод вытеснения магнитного поля из сверхпроводника.

В этом случае измеряется напряженность магнитного поля у поверхности сверхпроводника H_s как функция температуры сверхпроводника на всем интервале изменения температуры 0<Т. Согласно предлагаемой теории имеется три возможных варианта результатов измерения

А) В случае фазового перехода второго рода с $\eta = (\alpha_0 / 2\beta_0) \neq 0$ в точке $T=T^*$ имеет место фазовый переход второго рода, при этом фазовый переход имеет место во всей системе одновременно. Соответственно, из сверхпроводника полностью вытесняется магнитное поле, и $H_s(T^*)$ принимает максимальное значение $H_s(T^*)=H_m$. При дальнейшем уменьшении температуры сверхпроводника напряженность $H_m(T^*)$ остается постоянной.

В) В случае фазового перехода второго рода с η=0 (переход типа перехода Л.Д. Ландау) в точке фазового перехода T=TL напряженность магнитного поля H_s(T<TL) скачком увеличится и примет значение H_s(TL). Ввиду того, что фазовый переход при этом имел место только в определенной части объема проводника, то при дальнейшем уменьшении температуры сверхпроводника, по мере «вымирания» электронов проводимости, H_s(TL) будет монотонно увеличиваться до значения H_m.

С) Смешанный вариант. В этом случае имеем дело со случаем В), однако, после фазового перехода в точке $T=T_L$, когда H_s (T) достигает значения $H_s(T_L)$, при дальнейшем уменьшении температуры сверхпроводника процесс вытеснения магнитного поля из сверхпроводника развивается по другому сценарию. При уменьшении температуры сверхпроводника некоторое время $H_s(T_L)$ будет увеличиваться монотонно, но при достижении температуры $T=T^*$ во всем оставшемся пространстве, свободном от фазового перехода 2-го рода типа перехода Л.Д.Ландау одновременно происходит фазовый переход нового типа, и магнитное поле у поверхности скачком принимает значение H_m .

2. Метод термоэлектрического эффекта в случае сверхпроводника

Согласно В. Л. Гинзбургу^[1], если на концы изолированного сверхпроводника, находящегося в сверхпроводящем состоянии, приложить разность температур Т₁ и T₂<T_L, то внутри сверхпроводника будет циркулировать ток. При этом будут существовать как сверхпроводящий ток J_s, так и нормальный ток J_n, при соотношении между ними J_n= -J_s. На концах сверхпроводника в результате взаимного перехода J_n⇔J_s будет выделяться (поглощаться) тепло, пропорциональное ширине энергетической щели и плотности сверхпроводящих электронов.

Вышесказанное правомерно только в случае перехода с η=0 (переход типа перехода Л.Д.Ландау), так как в сверхпроводящем состоянии находится только часть сверхпроводника. В этом случае в сверхпроводнике одновременно могут существовать как сверхпроводящий, так и нормальный ток (но в разных областях проводника). Тогда, как уже было сказано, на концах сверхпроводника проявится т.н. термоэлектрический эффект. Указанный эффект может быть зафиксирован в виде изменения температур Т₁ и Т₂ на концах сверхпроводника.

Однако, в случае фазового перехода второго рода с η=(α₀/2β₀)≠0, сверхпроводник полностью находится в сверхпроводящем состоянии, и в нем может существовать только сверхпроводящий ток.

4

Следовательно, указанная выше циркуляция токов в сверхпроводнике не имеет места, и термоэлектрические эффекты не могут проявиться.

3. Метод измерения коэффициента электронной теплопроводности в сверхпроводнике.

Как известно, коэффициент теплопроводности в проводнике складывается из двух частей^[2]

$$\Sigma(T) = \Sigma_{ph}(T) + \Sigma_{el}(T), \qquad (79)$$

где первый член дает коэффициент теплопроводности, связанный с колебанием кристаллической решетки (перенос тепла фотонами); вторая часть характеризует перенос тепла электронами проводимости. При изменении (уменьшении) температуры коэффициент $\Sigma_{\rm ph}$ имеет сложное поведение. Однако нас интересует только коэффициент электронной теплопроводности

$$\Sigma_{\rm el} (T) = \Sigma(T) - \Sigma_{\rm ph}(T) \tag{80}$$

и, соответственно, исследуем его поведение в переходной области, т.е. в области изменения температуры $T_0 \le T \le T^*$, где T_0 -температура, соответствующая моменту зарождения куперовских пар (бозе-газа куперовских пар), T^* - температура наступления катастрофы. Обозначим через $n_0 = n(T_0)$ плотность электронов проводимости в проводнике в момент возникновения куперовских пар и через n(T)- плотность электронов проводимости в переходной области $T_0 \le T \le T^*$. Плотность куперовских пар в этой области равна $\eta(T)$. Коэффициент теплопроводности одного электрона обозначим через χ_e , и коэффициент теплопроводности одной куперовской пары (бозона) через χ_b Кроме того, учтем, что в переходной области $T_0 \le T \le T^*$ имеет место равенство:

$$n_0 = n(T) + 2\eta(T), \quad n(T) = n_0 - 2\eta(T), \quad \eta(T_0) = 0$$
 (81)

где n(T)= no -2η(T), η(To)=0

В результате для переходной области T₀≤T≤T* можно написать

$$\Sigma_{el} (T) = \chi_{el} n(T) + \chi_b \eta(T) = \chi_{el} (n_0 - 2\eta(T)) + \chi_b \eta(T) =$$

= $\chi_{el} n_0 + (-2\chi_{el} + \chi_b) \eta(T) = \Sigma_{el} (T_0) - (2\chi_{el} - \chi_b) \eta(T)$ (82)

Таким образом, получаем

$$\Sigma(T) - \Sigma_{\text{ph}}(T) = \Sigma_{\text{el}}(T) = \Sigma_{\text{el}}(T_0) - (2\chi_{\text{el}-}\chi_b)\eta(T)$$
(83)

В первом приближении можно принять, что χ_{el} и χ_b - постоянные величины и не зависят от температуры. В этом случае для величины изменения коэффициента электронной теплопроводности $\Phi_{_{ЭЛКТ}}(T)$ в переходной области $T_0 \le T \le T^*$ можно написать

где

$$\Phi_{\text{элкт}}(T) = A\eta(T), \qquad (84)$$

$$\Phi_{\text{элкт}}(T) = \Sigma(T) - [\Sigma_{\text{ph}}(T) + \Sigma_{\text{el}}(T_0)], \qquad (85)$$

 $A=(-2\chi_{el}+\chi_b)=const$

<u>4</u>. Ширина переходной области

Ширина переходной области определяется интервалом изменения определяющего параметра k_1^2 , т.е. интервалом $0 \le k_1^2 \le 1$, или, переходя согласно (75) к температурному интервалу, - $T_0 \le T \le T^*$. Критическая температура T^* четко выделена и ее можно зафиксировать прямым измерением, однако точка начала возникновения бозе-газа куперовских пар T_0 может быть зафиксирована только косвенным измерением соответствующего параметра. Таким параметром может быть параметр порядка $\eta(T)$, измерение которого, как было показано выше, согласно (84)-(85), можно свести к измерению электронной теплопроводности в переходной области - $\Phi_{\rm элкт}(T)$. Эксперименты по прямому измерению $\Phi_{\rm элкт}(T)$ в переходной области нам неизвестны. Определенные представления о поведении электронной теплопроводности в окрестности точки фазового перехода 2-го рода дают экспериментальные кривые из работы [9], приведенные на рисунках

8и9.

Электронная теплопроводность свинца в сверхпроводящем состоянии [2]

Теплопроводность сплава Pb+10 ат. %Bi [2]

Обращает на себя внимание сходство этих кривых с кривыми, приведенными на рисунках 5 и 6 данной работы, чего в определенном смысле и следовало ожидать согласно (84)-(85).

§2 . Параметры теории в случае фазового перехода второго рода нового типа

П1. Параметры фазового перехода второго рода нового типа в трехмерной неоднородной системе.

Выше был проведен математический анализ нелинейного уравнения и его решение в случае неоднородной системы (среды) в рамках общей теории фазового перехода второго рода Л.Д. Ландау и макроскопической теории сверхпроводимости В Л. Гинзбурга и Л.Д. Ландау. Если теперь ограничиться рассмотрением фазового перехода второго рода только нового типа и наряду с математическим анализом вопроса дополнительно привлечь еще ряд физических соображений, то можно получить определенные конкретные результаты. Для этого введем в качестве нового параметра ширину энергетической щели для куперовской пары - $\Delta(T^*)$ плотность электронов И проводимости в точке То, т.е. в точке где начинается возникновение куперовских пар no=n(To). Так как параметр порядка $\eta(T^*)$ в случае фазового перехода второго рода нового типа в точке Т* равняется максимальной плотности куперовских пар, то можно написать

$$\eta(T^*) = n_0/2, \quad F_n = \Delta(T^*) \eta(T^*)$$
(86)

Сравнивая (86) с (35) находим

$$\alpha^* = 2\Delta(T^*), \ (\alpha^* / \beta^*) = n_0, \ \beta^* = \Delta(T^*) / \eta(T^*)$$
(87)

Если (87) дополнить уравнением (7) и учесть (43), то получаем

$$\alpha^* = (\hbar \, \omega^*)^2 / m_0 \,\,, \tag{88}$$

 $\Delta(T^*)=(\hbar \omega^*)^2/2m_0$ где $\omega^*=2\pi/L_0^0$

Введем временную частоту

 $\omega^* t = \omega^* u \tag{89}$

где u- величина размерности скорости. Тогда можно написать

$$\Delta(\mathbf{T}^*) = \hbar \, \boldsymbol{\omega}^*_{\mathbf{t}} \tag{90}$$

Если учесть, что $\omega^* = 2\pi/L_0^0$, то (90) можно записать в виде

$$\Delta(T^*) = (h/L_0) u \tag{91}$$

Представив $\Delta(T^*)$ в виде

$$\Delta(T^*) = k_b T^* , \qquad (92)$$

где k_b - постоянная Больцмана, для критической температуры фазового перехода 2-го рода нового типа, через катастрофы, для Т* находим выражение

$$T^* = (h/k_b)(u/L_0^0)$$
(93)

Из (88) с учетом (89) и (90) получаем

$$\Delta(T^*) = 2m_0 u^2 = 4[m_0 u^2/2]$$
(94)

Из (94) можно определить то

$$m_0 = m_e / \gamma_1 = (h/L_0^0) (1/2u)$$

$$\gamma_1 = 2u(L_0^0/h) m_e$$
(95)

Введем теперь два естественных предположения

1). и -представляет собой скорость звука в системе.

 $L_{0^{0-}}$ представляет собой длину кристаллической решетки системы.

При этом в случае трехмерной решетки имеем

$$1/L_0^0 = 1/d^* = (1/d_a^2 + 1/d_b^2 + 1/d_c^2)^{1/2}$$
(96)

Поскольку в системе нет другой физической величины с размерностью скорости кроме скорости звука, то сопоставление скорости **u** со скоростью звука можно считать практически однозначным. Аналогично, исходя из выражения $\omega^* = 2\pi/L_0^0$ отождествление L_0^0 с d* можно так же сделать практически однозначным. Однако, при этом, в рассматриваемом нами случае (21), остается неясным физическое содержание длины периода решения

$$L=[(2 K)/\omega]==(K/\pi)L_{0}^{0}$$

для которого в точке катастрофы (фазового перехода 2- рода нового типа) имеем

$$L^{*}/(L_{0}^{0}) = \{-\ln [(1-k_{1}^{2})/16]\},$$
(44)

Как известно, в теории сверхпроводимости вводится еще один параметр размерности длины - длина когерентности электронов, входящих в состав куперовской пары - δ_{κ} . В случае высокотемпературной сверхпроводимости $\delta_{\kappa} < d_{a}$ где d_{a} - меньшая длина кристаллической решетки сверхпроводника. Учитывая, что фазовый переход 2-го рода через катастрофы происходит во всем сверхпроводнике одновременно и, то, что переход рассматривается как конденсация во всей системе куперовских пар, приходится предположить, что в системе куперовских пар, в определенном объеме, существует когерентность самих куперовских пар по какому-то признаку. Эта когерентность электронов, входящих в состав отличается от когерентности куперовской пары с длиной когерентности δ_к<d_a. Длину этой новой когерентности в системе куперовских пар обозначим через L и отождествим с длиной периода решения, рассматриваемого в (21). При T> T* длина когерентности куперовских пар конечна. Однако, при T \rightarrow T* она стремится к бесконечности ($L \rightarrow \infty$) и охватывает весь сверхпроводник (как уже было данной работе рассматривается сверхпроводник как сказано, в бесконечная периодическая система). При этом одновременно во всей системе наступает катастрофа (фазовый переход 2-го рода через катастрофы).

Если ввести обозначения

$$u=u_0 10^5 \, \text{см/сек}, \quad d^*=\delta^* 10^{-8} \, \text{см},$$
 (97)

то при h=6.6259*10⁻²⁷ эрг/сек,. kb=1,380*10⁻¹⁶ эрг/К0 , me=0,9109 *10⁻²⁷ гр.

из (93), (95) и (96) находим

$$T^{*} = 480 (u_{0}/\delta^{*}) K^{0}$$
(98)
m_{0}=3.3^{*}10^{-24}/(u_{0}\delta^{*}) = [3.66^{*}10^{3}/(u_{0}\delta^{*})] m_{e}
 $\gamma_{1} = 2.8^{*}10^{-4} (u_{0}\delta^{*})$

Для высокотемпературных сверхпроводников типичными являются значения **(см. таблицу 1)**

$$\delta_a=5., \ \delta_b=10, \ \delta_c=30, \ \delta^*\approx\delta_a$$
, (99)

Если в качестве скорости звука в высокотемпературных сверхпроводниках брать скорости звука в стекле, т.е. u₀=5, то получаем

$$T^{*}= 480 \text{ K}^{0}$$
(100)
$$m_{0} = 132^{*}10^{-27} \text{rp}$$
$$\gamma_{1}= 2.8 10^{-2}$$

Как видим, полученное значение Т* не согласуется с экспериментом.

П2. Параметры фазового перехода второго рода нового типа в двухмерной неоднородной подсистеме трехмерной системы

Фазовый переход второго рода нового типа может происходить как в трехмерной неоднородной системе, как это было рассмотрено выше, так и в двухмерной или в одномерной неоднородной подсистеме

трехмерной системы. Все зависит от структуры вектора неоднородности γ с компонентами (γ_a , γ_b , γ_c). Если $\gamma_a=\gamma_b=\gamma_c=\gamma$, то неоднородный член в выражении свободной энергии имеет симметрию 0_3 , и решение будет зависеть от трехмерной фазы $\sigma_3=\omega_a x_a+\omega_b x_b+\omega_c x_c$.

Если $\gamma_a = \gamma_b > 0$, $\gamma_c = -\gamma_{0c}$, то неоднородный член в выражении свободной энергии имеет симметрию 0_2 , и решение будет зависеть от двухмерной фазы $\sigma_2 = \sigma_{ab} = \omega_a x_a + \omega_b x_b$. Координату x_c в этом случае можно отделить от остальных координат методом разделения переменных в решении

$$\psi(\mathbf{x}_{a}, \mathbf{x}_{b}, \mathbf{x}_{c}) = \exp(i\Omega_{c}\mathbf{x}_{c})\xi(\sigma_{ab})$$
(101)

В результате получаем двухмерное нелинейное уравнение в плоскости (a0b). При этом, все изменения в полученных ранее выражениях в случае трехмерной задачи сводятся к тому, что

$$\begin{array}{l} \alpha \to \alpha' = \alpha + (\gamma_{0c} / 2m_{e}) (\hbar \Omega_{c})^{2} = \alpha + (\gamma_{0c} / 2m_{e}) (h/d_{c})^{2} \\ d^{*-1} \to d_{ab}^{*-1} = (d_{a}^{-2} + d_{b}^{-2})^{1/2}, \\ d_{ab}^{*} \approx d_{a}, \end{array}$$

$$(102)$$

Кроме того, и_а=и_b=и. В результате получаем

$$T_{ab}^{*} \approx 480 \text{ K}^{0}$$
(103)
$$m_{0a} = 132^{*}10^{-27} \text{rp}$$
$$\gamma_{a} = 2.8^{*}10^{-2}$$

В случае, когда

 $\alpha = 0, \alpha' = (\gamma_{0c} / 2m_e) (h/d_c)^2$

согласно (88) возникает связь между үос и үа=үь в виде

$$\begin{array}{l} (\gamma_{a}/m_{e}) \ (h/\ d_{a})^{2} = (\gamma_{0c}\ /2m_{e}) \ (h/d_{c}\)^{2} \\ \gamma_{0c} = 2\gamma_{a} (d_{c}/d_{a})^{2} \end{array}$$
(104)

Аналогично получаем и в плоскости (a0c), когда $\gamma_a=\gamma_c>0$, $\gamma_b=-\gamma_{0b}$ $u_a=u_c=u$. При этом $d_{ac}^*\approx d_a$, и находим

$$T_{ac}^* \approx 480 K^0, \gamma_a \approx 2.8^{*} 10^{-2}, m_{0a} = 132^{*} 10^{-27} rp,$$
 (105)

Если α =0, то дополнительно имеем соотношение $\gamma_{0b}=2\gamma_a(d_b/d_a)^2$ В случае плоскости (b0c), когда $\gamma_b=\gamma_c>0$, $\gamma_a=-\gamma_{0a}$, $u_b=u_c=u$, имеем $d_{bc}^*\approx d_b$, и получаем

$$T_{bc}^* \approx 240 \text{ K}^0$$
, $m_{0b} = 64 * 10^{-27} \text{ rp}$, $\gamma_{b} = 5.6^* 10^{-2}$ (106)

В случае $\alpha=0$ дополнительно имеем соотношение $\gamma_{0a}=2\gamma_b(d_a/d_b)^2$. Как видим, полученные значения $T_{ab}^*=T_{ac}^*\mu T_{bc}^*$ также не согласуются с экспериментом.

ПЗ. Параметры фазового перехода второго рода нового типа в одномерной неоднородной подсистеме трехмерной системы

Когда вектор неоднородности у имеет структуру вида

$$\gamma_{c} > 0, \gamma_{a} = -\gamma_{0a}, \gamma_{0a} > 0, \gamma_{b} = -\gamma_{0b}, \gamma_{0b} > 0, u_{c} = u.$$

$$(107)$$

координаты x_a, x_b, можно методом разделения переменных отделить в решении от x_c в виде

$$\psi(\mathbf{x}_{a}, \mathbf{x}_{b}, \mathbf{x}_{c}) = \exp[i(\Omega_{a} \mathbf{x}_{a} + \Omega_{b} \mathbf{x}_{b})]\xi(\sigma_{c}), \ \sigma_{c} = \omega(k_{1}^{2}) \mathbf{x}_{c}$$
(108)

где σc =ω(k1²) хc

В результате получаем одномерное нелинейное уравнение вдоль оси (Oc). При этом все изменения в полученных ранее выражениях в случае трехмерной задачи сводятся к тому, что

 $\begin{array}{l} \alpha \rightarrow \alpha' = \alpha + (1 \ / 2m_e) [\gamma_{0a} (\hbar \Omega_a)^2 + \gamma_{0b} (\hbar \Omega_a)^2] \\ d^* = d_c, \end{array}$

Кроме того, u_c =u, и получаем

ISSN 1512-1461

$$T_{c}^{*}=(h/k_{b})(u/d_{c}), \qquad (109)$$

$$m_{0c}=(m_{e}/\gamma_{c})=h/2u \ d_{c}^{*}$$

$$\gamma_{0c}=u(2 \ m_{e} \ /h)d_{c},$$

или в виде

$$T^{*}= 480 (u_{0}/\delta_{c}^{*})K^{0}$$
(110)
m_{0}=3.3^{*}10^{-24}/(u_{0}\delta^{*}) = [3.66^{*}10^{3}/(u_{0}\delta^{*})] m_{e}
 $\gamma = 2.8 *10^{-4} (u_{0}\delta^{*}),$

где T_c^* критическая температура фазового перехода второго рода вдоль направления оси (0с).

В случае α=0 согласно (88) имеем дополнительное соотношение

 $[\gamma_{0a}/d_{a^2} + \gamma_{0b}/d_{b^2}] = 2\gamma_c/d_{c^2}$

При бс=30, ио=5 (скорость звука в стекле), находим

$$T_{c}^{*} = 80K^{0}$$
(111)

$$m_{0c} = (m_{e}/\gamma_{c}) = 22^{*}10^{-27} \text{rp.}$$

$$\gamma_{0c} = 4.2^{*}10^{-2}$$

Полученное значение T_c* является типичным для критической температуры высокотемпературных сверхпроводников полученных на основе Bi-Sr-Ca-Cu-O, детальное сравнение с экспериментом приведено в **таблице 1**.

Аналогично можно определить T * в случае перехода вдоль осей (0a)- T_a *или вдоль (0b)-T_b *, однако в первом случае d*=d_a, во втором

d*=dь и получаем соответственно Т_а *=480К⁰ и Т_ь *=240 К⁰,т.е. значения критической температуры фазового перехода не согласующиеся с экспериментом

Из полученного результата следует, что в случае высокотемпературных сверхпроводников, полученных на основе Bi-Sr-Ca-Cu-O, фазовый переход второго рода нового типа (через катастрофы) происходит только вдоль большой кристаллической оси (в приведенных обозначениях - вдоль оси (0с) - d_c).

Это обстоятельство накладывает определенное требование и на процесс выращивания соответствующего кристалла.

Выражение (108), при наличии экспериментального значения Т* можно использовать для определения скорости звука в данном направлении кристалла при температуре Т*

$$u_{0c}^* = (T^*/480)\delta$$
 (112)

Из таблицы 1 следует что d_а≈5,4А⁰, и она почти постоянная для данного типа сверхпроводников. При этом d_b< d_c меняется в большом интервале, но несмотря на это, как экспериментальные, так и теоретические значения критической температуры фазового перехода второго рода - T^{*} лежат в основном в интервале 75К⁰≤T^{*}≤93K⁰ и

определяются значением d_c≈30A⁰. Определенной разброс значений Т* (например, в случае N1.2.3), повидимому, обусловлен отклонением реального значения скорости звука в этих сверхпроводниках от u(для стекла) =5.10⁵ см/сек.

Таблица №1

Параметры элементарной ячейки и значения T* кристаллов, полученных в системе Bi-Sr-Ca-Cu-O [3],(Таблица XII.), где добавлен столбец $T^*_{\rm reop}$ вычисленный согласно $T^*_{\rm reop}$ =(h/к₆)(u/d) по (93)

№	[4]	Состав	da	dь	dc	$T^*_{_{ m экспер}}$	T^*_{reop}
		v= v(для стекла)=5.10⁵см/сек					
1	4	Bi4,0 Sr3,91 Ca1,51Cu3,80O15,97	5.40	5.40	30.60	90	78.38
2	5	Bi Sr(Ca0,35 Sr0,25 Bi0,40)2 Cu2 Oyv	5.42	5.44	30.78	93	77.93
3	8	Bi2,0(Bi0,2 Sr1,8 Ca1,0)Cu2O8	5.43	5.43	30.63	92	78.31
4	1	Bi4(Bi0,33Sr3,22Ca2,16)Cu4Oy	5.399	5.393	30.73	78-84-	78.05
5	10	$Bi_2 Sr_{3-x} Ca_x Cu_2 O_8$	5.399	5.414	30.90		77.62
6	12	Bi2,21(Sr0,68 Ca0,32)2,85Cu2Oz	5.410	-	30.87	80	77.70
7	13	Bi2,09 (Sr0,56 Ca0,44)3,06 Cu2 Oz	5.403	-	30.74	83	78.03
8	14	(Bi0,85Pb0,15(Sr0,70 Ca0,30)2,09 Cu2 Oz	5.411	-	30.76	86	77.98
9	15	Bi₂ Sr₂Ca Cu₂O₂ (до отжига)	5.446	5.463	30.819	75	77.83
		(после отжига)	5.417	5.419	30.746	86	
10	16	Bi2 Sr2Ca Cu2O8 (до отжига)	5,413	5,421	30,81	90	
		(после отжига)	5,408	5,413	30,81	77	77,85
11	17	$Bi_{2,01}Sr_{1,89}Ca_{0,77}Y_{0,25}Cu_{2,07}O_{8_{^+\!\delta}}$	5,406	5,409	30,83	<77	77,80
12	18	Bi2,06 Sr2,15 Ca0,77 Y0,71 Cu2,08 O $_{8+\delta}$	5,432	5,467	30,23	_	79,34
13	19	Bi2,01 Sr1,78 La0,30 Ca0,82 Cu2,10 O $_{8+\delta}$	5,416	5,425	30,71	_	78,10
14	20	Bi1,99 Sr1,70 Lao,43 Cao,78 Cu2,10 O $_{8+\delta}$	5,435	5,440	30,55	_	78,51
15	2	${\operatorname{Bi}}_{4,4}\operatorname{Sr}_{4,2}\operatorname{Ca}{}_{1,4}\operatorname{Cu}_2\operatorname{O}_y$	5,403	3,395	24,50	80	97,90
16	3	Bi4,4Sr4 Ca2 Cu4 Oy	5,403	3,395	30,70	80	78,13
17	6	Bi4 Sr0,5 Ca 2 Cu2 Ox	5,42	27,18	30,67	79	78,21
18	9	Bi2 Sr2 Ca Cu2 O8	5,421	24,45	30,67	83	77,70
19	11	Pb0,6 Bi3 Sr2 Ca Cu3 Ox	5,375	12,202	30,55	82	78,51
20	7	Bi4(Bi0,42 Sr3,20Ca0,42)Cu2Oy	5,382	5,376	24,384	-	98,37

Литература

- 1. В.Л.Гинзбург, УФН, (1991), **161** (4) 1–11.
- 2. Б. Т. Гейликман "Исследования по физике низких температур", Москва, Атомиздат, стр. 30 1979.
- 3. Демьянец Л. Н , УФН, (1991), 161 (2) 213–213.

Article received on: 2015-03-02