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Abstract 
During the last decade text mining has become a widely used discipline utilizing 

statistical and machine learning methods. Text mining refers to the process of parsing a 
selection or corpus of text in order to identify certain aspects, such as the most 
frequently occurring word or phrase. The package named tm is available for text 
mining applications in R. tm package provides many important functions which are very 
efficiently handle the text mining. Here we try to append a method to this package for 
text correction & that helps us to create error free term-document matrix.  
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1. INTRODUCTION 

Text mining encompasses a vast field of theoretical approaches and methods with one thing in 
common: text as input information. This allows various definitions, ranging from an extension of 
classical data mining to texts to more sophisticated formulations like the use of large online text 
collections to discover new facts and trends about the world itself" [1]. In general, text mining is an 
interdisciplinary field of activity amongst data mining, linguistics, computational statistics, and 
computer science. Standard techniques are text classification, text clustering, ontology and 
taxonomy creation, document summarization and latent corpus analysis. In addition a lot of 
techniques from related fields like information retrieval are commonly used. 

Classical applications in text mining [2] come from the data mining community, like 
document clustering [3][4][5] and document classification [6]. For both the idea is to transform the 
text into a structured format based on term frequencies and subsequently apply standard data mining 
techniques. Typical applications in document clustering include grouping news articles or 
information service documents [7], whereas text categorization methods are used in, e.g., e-mail 
filters and automatic labeling of documents in business libraries [8]. Especially in the context of 
clustering, specific distance measures [9][10], like the Cosine, play an important role. With the 
advent of the World Wide Web, support for information retrieval tasks (carried out by, e.g., search 
engines and web robots) has quickly becomes an issue. Here, a possibly unstructured user query is 
first transformed into a structured format, which is then matched against texts coming from a data 
base. To build the latter, again, the challenge is to normalize unstructured input data to fulfill the 
repositories' requirements on information quality and structure, which often involves grammatical 
parsing. 

During the last years, more innovative text mining methods have been used for analyses in 
various fields, e.g., in linguistic stylometry [11][12][13], where the probability that a specific author 
wrote a specific text is calculated by analyzing the author's writing style, or in search engines for 
learning rankings of documents from search engine logs of user behavior [14]. Latest developments 
in document exchange have brought up valuable concepts for automatic handling of texts.  

The semantic web [15] propagates standardized formats for document exchange to enable 
agents to perform semantic operations on them. This is implemented by providing metadata and by 
annotating the text with tags. One key format is RDF [16] where efforts to handle this format have 
already been made in R [17] with the Bio-conductor project [18]. This development offers great 
edibility in document exchange. But with the growing popularity of XML based formats (e.g., 
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RDF/XML as a common representation for RDF) tools need to be able to handle XML documents 
and metadata. The benefit of text mining comes with the large amount of valuable information 
latent in texts which is not available in classical structured data formats for various reasons: text has 
always been the default way of storing information for hundreds of years, and mainly time, personal 
and cost contraints prohibit us from bringing texts into well structured formats (like data frames or 
tables). 

Statistical contexts for text mining applications in research and business intelligence include 
latent semantic analysis techniques in bioinformatics [19], the usage of statistical methods for 
automatically investigating jurisdictions [20], plagiarism detection in universities and publishing 
houses, computer assisted cross-language information retrieval [21] or adaptive spam filters 
learning via statistical inference. 

Further common scenarios are help desk inquiries [22], measuring customer preferences by 
analyzing qualitative interviews [23], automatic grading [24], fraud detection by investigating 
notification of claims, or parsing social network sites for specific patterns such as ideas for new 
products. Nowadays almost every major statistical computing product offers text mining 
capabilities, and many well-known data mining products provide solutions for text mining tasks. 

 
2. THE tm PACKAGE 

The tm package offers group of functionalities for managing text documents, abstracts the process 
of document manipulation and eases the usage of heterogeneous text formats in R. The package has 
integrated database backend support to minimize memory demands. An advanced meta data 
management is implemented for collections of text documents to alleviate the usage of large and 
with meta data enriched document sets. With the package ships native support for handling the 
Reuters 21578 data set, Gmane RSS feeds, e-mails, and several classic file formats (e.g. plain text, 
CSV text, or PDFs). The data structures and algorithms can be extended to fit custom demands, 
since the package is designed in a modular way to enable easy integration of new file formats, 
readers, transformations and filter operations. tm provides easy access to preprocessing and 
manipulation mechanisms such as whitespace removal, stemming, or conversion between file 
formats. Further generic filter architecture is available in order to filter documents for certain 
criteria, or perform full text search. The package supports the import of document collections to 
term-document matrices, and string kernels can be easily constructed from text documents. The 
following are the basic operations available in tm package [25]. 

 
2.1. DATA IMPORT 
Corpus represents collection of text documents that is main structure for managing documents 

in tm package. A corpus offers an abstract concept, and there can exist several implementations in 
parallel. The default implementation is the so-called VCorpus (short for Volatile Corpus) which 
realizes semantics as known from most R objects: corpora are R objects held fully in memory. We 
denote this as volatile since once the R object is destroyed, the whole corpus is lost.  

Such a volatile corpus can be created by using constructor VCorpus(x, readerControl). 
Another implementation is the PCorpus which stands for Permanent Corpus, i.e., the documents are 
physically stored outside of R (e.g., in a database), corresponding R objects are basically only 
pointers to external structures, and changes to the underlying corpus are reflected to all R objects 
associated with it. Compared to the volatile corpus the corpus encapsulated by a permanent corpus 
object is not destroyed if the corresponding R object is released. 

Within the corpus constructor, x must be a Source object which abstracts the input location. 
tm provides a set of predefined sources, e.g., DirSource, VectorSource, or DataframeSource, which 
handle a directory, a vector interpreting each component as document, or data frame like structures 
(like CSV _les), respectively. Except DirSource, which is designed solely for directories on a file 
system, and VectorSource, which only accepts (character) vectors, most other implemented sources 
can take connections as input (a character string is interpreted as file path). getSources() lists 
available sources, and users can create their own sources.   
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The second argument readerControl of the corpus constructor has to be a list with the named 
components reader and language. The first component reader constructs a text document from 
elements delivered by a source. The tm package ships with several readers (e.g., readPlain(), 
readPDF(), readDOC(), . . . ). See getReaders() for an up-to-date list of available readers. Each 
source has a default reader which can be overridden. E.g., for DirSource the default just reads in the 
input files and interprets their content as text.Finally, the second component language sets the texts' 
language (preferably using ISO 639-2 codes). In case of a permanent corpus, a third argument 
dbControl has to be a list with the named components dbName giving the filename holding the 
sourced out objects (i.e., the database), and dbType holding a valid database type as supported by 
package filehash. Activated database support reduces the memory demand, however, access gets 
slower since each operation is limited by the hard disk's read and write capabilities 

 
2.2. DATA EXPORT 
Suppose we have created a corpus via manipulating other objects in R, thus do not have the 

texts already stored on a hard disk, and  we want to save the text documents to disk, we can simply 
use function writeCorpus(). 

 
2.3. INSPECTING CORPORA 
For inspecting the corpus tm package provides the print() which hide the raw amount of 

information. print() gives a concise overview whereas the full content of text documents is 
displayed with inspect(). 

 
2.4. TRANSFORMATIONS 
Once we have a corpus we typically want to modify the documents in it, e.g., stemming, stop 

word removal, et cetera. In tm, all this functionality is subsumed into the concept of a 
transformation. Transformations are done via the tm_map() function which applies (maps) a 
function to all elements of the corpus. Basically, all transformations work on single text documents 
and tm_map() just applies them to all documents in a corpus. 

 
2.5. FILTERS 
Often it is of special interest to filter out documents satisfying given properties. For this 

purpose the function tm_filter is designed. It is possible to write custom filter functions which get 
applied to each document in the corpus. Alternatively, we can create indices based on selections and 
subset the corpus with them. E.g., the following statement filters out those documents having an ID 
equal to "237" and the string "INDONESIA SEEN AT CROSSROADS OVER ECONOMIC 
CHANGE" as their heading. 

 
2.6. METADATA MANAGEMENT 
Metadata is used to annotate text documents or whole corpora with additional information. 

The easiest way to accomplish this with tm is to use the meta() function. A text document has a few 
predefined attributes like author but can be extended with an arbitrary number of additional user-
defined metadata tags. These additional metadata tags are individually attached to a single text 
document. From a corpus perspective these metadata attachments are locally stored together with 
each individual text document. Alternatively to meta() the function DublinCore() provides a full 
mapping between Simple Dublin Core metadata and tm metadata structures and can be similarly 
used to get and set metadata information for text documents 
 

3. APPEND FUNCTION 
From the above discussion about  the tm package it is cleared to all the it has include different 
function for data import, data export, document transforming , corpus filtering and for creating 
term-document matrixes. After analyzing the functions of corpus transforming and filtering we have 
summarized these points. 
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i.   For searching the document we can easily remove the stop words, white space and 
concatenate token. 

ii. By using the above character vector can be initialized by tokens. 
iii. We can directly search the documents from the corpus by any token. 

 
When user want to filter out the documents by using the entered token tm package offers the desired 
output. Suppose a user enter token with wrong spelling then the entire term-document matrix will 
be formed based on the given wrong token. Therefore required output may not be come.To 
overcome this scenario a function can be added for generating the list of possible tokens of 
character vector. Then depends on this character vector term- document matrix will be formed. 

 
4. EXPERIMENT & RESULT 

This module helps us to correct spelling of tokens. For correcting the spelling it generates the 
possible combination of input keyword .In the next module we will search all the possible tokens 
from the files of corpus. For doing so we use a matrix. This matrix has 26 rows and 3 columns 
.Every row contains that three alphabets which are similar sounding words and uses make 
frequently typing mistake because of similar looks and appearance in nearest distance in keyboard. 
Here we input the similar matrix which is given bellow:                                                                                    

 

 
Figure 1: simi1 matrix 

 
The steps which are followed in text correction module are given below 
 
Step 1:  Accept the user keyword. 
Step 2:  Perform the dot (.) operation between each row of simil matrix and input keyword. 
Step 3:  The output of dot (.) operation is the coordinate of input keyword stored in   

input_vectector 
Step 4:  Perform the dot (.) operation between each category files and simil matrix. 
Step 5:  All the coordinates of the same files store in an individual_vector matrix. 
Step 6:  Calculate the distance between input_vector and each indivisual_vector. 
Step 7:  Identify the minimum distance and fetch keyword from the minimum distance 

location from each categorical_data_files. 
Step 8: Store all words in text_list matrix.  
 
                                                                      
 
      
     
 
    

Figure 2: text_list 

Simi1 = 
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The objective is to provide the correct result for all times even if the input keyword is wrongly 

spelled. When a user enters the token then this function gives the list of tokens which are similar to 
the entered one.  

  Suppose when a user want to search a files which contains “India” then he /she give the 
“India” in search data field. And click on “search files” filed then the following output will appear 

 

 
 

Figure 3: GUI for searching “India” 
 
When a user gives the incorrect spelling of “India” suppose he gives “Indea”. 
Then also same files will be opened. It is observed that always the same filed will be opened. 

This is shown in Figure 4. 

              
 

 Figure 4: GUI for searching “Indea” 
 
 
5. CONCLUSION & FUTURE WORK 

The term text mining becomes more interesting when tm packaged has been lunched. Tm 
package provides all the possible functions for mining the text.Actuallly it has open a new door for 
text mining. It has given a facility to append the user function according to the requirement. So after 
pursue the tm package it is found that if a function like token correction will be appended to this 
package may provide the better output. There are many other techniques for correcting the text is 
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available. We can append them. To analysis the term-document matrix is very challenging just 
because of huge data. In future we have to propose some easiest method to handle term-documents 
matrix easily. 
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