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Abstract  
The Ordered Weighted Averaging (OWA) operator was introduced by R.R. Yager [58] to 
provide a method for aggregating inputs that lie between the max and min operators. In 
this article several variants of the generalizations of fuzzy probabilistic OWA operators 
POWA and FPOWA (introduced by J.M. Merigo [27,28]) are presented in the 
environment of fuzzy uncertainty, where  different monotone measures (fuzzy measure) 
are used as uncertainty measures. Monotone measures considered are: possibility 
measure, Sugeno −λ additive measure, monotone measure associated with Belief 
Structure and Choquet capacity of order two. New aggregation operators are introduced: 
AsPOWA, AsFPOWA, SA-AsPOWA and SA-AsFPOWA. Some properties of new 
aggregation operators and their information measures are proved. Concrete faces of new 
operators are presented with respect to different monotone measures and mean 
operators. Concrete operators are induced by the Monotone Expectation (Choquet 
integral) or Fuzzy Expected Value (Sugeno integral) and the Associated Probability Class 
(APC) of a monotone measure. For the classification of “classic” and new operators of 
aggregation presented here, the Information Structure is introduced where the incomplete 
available information in the general decision making system is presented as a 
concatenation of uncertainty measure + imprecision variable + objective function of 
weights. For the new operators the information measures – Orness, Entropy, Divergence 
and Balance are introduced as some extensions of the definitions presented in [28]. For 
the illustration of new constructions of AsFPOWA and SA-AsFPOWA operators the 
example of fuzzy decision making problem regarding the political management with 
possibility uncertainty is considered. Several aggregation operators (“classic” and new 
operators) are used for the comparing of the results of decision making.  
 
Keywords - mean aggregation operators, fuzzy aggregations, fuzzy measure, fuzzy numbers, 
fuzzy decision making, capacity of order, associated probabilities, most typical value, finite 
Sugeno averaging, finite Choquet averaging, body of evidence, possibility measure.  

 
INTRODUCTION 
It is well recognized that intelligent decision support systems and technologies have been 

playing an important role in improving almost every aspect of human society. Intensive study  over 
the past several years has resulted in significant progress in both the theory and applications of 
optimization and decision sciences. 

Optimization and decision-making problems are traditionally handled by either the 
deterministic or the probabilistic approach. When working with complex systems in parallel 
with classical approaches of their modeling, the most important matter is to assume fuzziness 
([3, 6, 14, 16-33, 36-44, 50-63] and others). All this is connected to the complexity of study of 
complex and vague processes and events in nature and society, which are caused by lack or 
shortage of objective information and when expert data are essential for construction of credible 
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decisions. With the growth of complexity of information our ability to make credible decisions 
from possible alternatives with  complex states of nature reduces to some level, below which 
some dual characteristics such as precision and certainty become mutually conflicting ([3, 11, 
21-23, 37-39, 42, 50, 52, 55, 56] and others). When working on real, complex decision systems 
using an exact or some stochastic  quantitative analysis is often less convenient, concluding that 
the use of fuzzy methods is necessary, because systems approach  for development of 
information structure of investigated decision system [21, 37, 38] with combined fuzzy-
stochastic uncertainty enables us to construct convenient intelligent decision support 
instruments. Obviously the source for obtaining combined objective + fuzzy + stochastic 
samplings is the populations of fuzzy-characteristics of experts knowledge ([23, 37, 39, 43, 52] 
and others). Our research is concerned with quantitative-information analysis of the complex 
uncertainty and its use for modeling of more précised decisions with minimal decision risks 
from the point of view of systems research. The main objects of our attention are 1) the analysis 
of Information Structures of experts knowledge and its uncertainty measure and imprecision 
variable; and 2) the construction of instruments of aggregation operators, which condense both 
characteristics of incomplete information - an uncertainty measure and an imprecision variable 
in the scalar ranking values of possible alternatives in the decision making system. 

Making decisions under uncertainty is a pervasive task faced by many Decision Making 
Persons (DMP) experts, investigators or others. The main difficulty is that a selection must be 
made between alternatives in which the choice of alternative doesn’t necessarily lead to well 
determined payoffs (experts valuations, utilities and so on) to be received as a result of selecting 
an alternative.  In this case DMP is faced with the problem of comparing multifaceted objects 
whose complexity often exceeds his/her ability to compare of uncertain alternatives. One 
approach to addressing this problem is to use valuation functions (or aggregation operators). 
These valuation functions convert the multifaceted uncertain outcome associated with an 
alternative into a single (scalar) value. This value provides a characterization of the DMP or 
expert perception of the worth the possible uncertain alternative being evaluated. The problems 
of Decision Making Under Uncertainty (DMUU) [52] were discussed and investigated by many 
well-known authors ([1-4, 6, 9, 10,1 4, 16-19, 24-34, 36-61, 63] and others). In this work our 
focus is directed on the construction of new generalizations of the aggregation OWA operator in 
the fuzzy-probabilistic uncertainty environment. 

In Section 2 some preliminary concepts are presented on the OWA operators; on the 
arithmetic of the triangular fuzzy numbers; on the some extensions of OWA operator – POWA and 
FPOWA operators and their information measures in the fuzzy probabilistic uncertainty (developed 
by J.M. Merigo [27, 28]). Subsection 2.3 considers probability representations – Associated 
Probability Class (APC) of a monotone measure [5, 37, 39, 42, 44]. Concepts of the Most Typical 
Value (MTV) [18, 19, 41, 42] of a compatibility function (membership function) of some 
imprecision variable with respect to some monotone measure is presented. The Fuzzy Expected 
value (FEV) [9] and Monotone Expectation (ME) [5] are interpreted as important MTVs of a 
compatibility function. The probability representations of ME and FEV are presented by the APC of 
a monotone measure. Also in this Subsection the associated probabilities representations are 
considered for the Choquet capacity of order two [7], possibility measure [11], Sugeno −λ additive 
measure [45] and a monotone measure associated with Dempster-Shafer Belief Structure [45]. 

In Section 3 a new conceptual Information Structure (IS) of a General Decision Making 
System (GDMS) with fuzzy probabilistic uncertainty is defined. This IS classifies some extensions 
of aggregation operators, e.g. new generalizations of the OWA operator defined in the paper. 

In Sections 4 and 5 new generalizations of POWA and FPOWA operators are presented with 
respect to different monotone measures (insert of the probability measure) and different mean 
operators. New versions of POWA and FPOWA operators are defined. AsPOWA and AsFPOWA 
operators are induced by the ME; SA-AsPOWA and SA-AsFPOWA operators are induced by the 
FEV. In Subsection 4.3 the generalized variants of information measures – Orness, Entropy, 
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Divergence and Balance are introduced for the new aggregation operators. Some properties of new 
operators and their information measures are proved in Subsections 4.1 – 4.3 and 5.1 – 5.2. 

For the illustration of the applicability of the new generalizations of POWA and FPOWA 
operators an example of the fuzzy decision making problem regarding political management is 
considered (Section 6), where we study a country that is planning its fiscal policy for the next year 
analogously the example considered by J.M. Merigo in [28]. But we use the possibility distribution 
(possibility uncertainty) on the states of nature of decision making system instead of probability 
distribution (probability uncertainty) as considered in [28]. We think our approach is more natural 
and applicable then the case presented in [28]. In this example several aggregation operators were 
used for the comparing of the results in decision making: 1. SEV (Shapely Expected Value) 
operator, introduced be R.R. Yager [52]; 2. A new operator SEV-FOWA as a weighted combination 
of SEV and FOWA operators; 3. New operators – AsFPOWAmin, AsFPOWAmean, 
AsFPOWAmax, SA-AsFPOWAmin, SA-AsFPOWAmean and Sa-AsFPOWAmax operators 
introduced in Section 5. The resulting table (see table 7) is presented for ordering of the policies. 
The values of Orness parameter are calculated for all presented aggregation operators.  
 

1.     PRELIMINARY CONCEPTS 
1.1. On the OWA operator and its some generalizations 
In this type of problem the DMP has a collection { }ndddD ,...,, 21=  of possible uncertain 

alternatives from which he must select one or some ranking of decisions by some expert’s 
preference relation values. Associated with this problem is a variable of characteristics, activities, 
symptoms and so on, which acts on the decision procedure. This variable is normally called the 
state of nature, which affects the payoff, utilities, valuations and others to the DMP’s preferences or 
subjective activities. This variable is assumed to take its values (states of nature) from some set 

{ }msssS ,...,, 21= . As a result the DMP knows that if he selects id  and the state of nature assumes the 
value js  then his payoff (valuation, utility and so on) is ija . The objective of the decision is to select 
the “best” alternative, get the biggest payoff (valuation, utility and so on). But in DMUU [52] the 
selection procedure becomes more difficult. In this case each alternative can be seen as 
corresponding to a row vector of possible payoffs. To make a choice the DMP must compare these 
vectors, a problem which generally doesn’t lead to a compelling solution. Assume id  and kd  are 
two alternatives such that for all kjij aamjj ≥= ....,,2,1,  (Table 1). In this case there is no reason to 
select id . In this situation we shall say id  dominates )( kik ddd  . Furthermore if there exists one 
alternative that dominates all the alternatives then it will be optimal solution and as a result, we call 
this the Pareto optimal. 

 
Table 1. Decision Matrix. 

 

D
S  1s  2s  … ks  … ms  

1d  11a  12a  … ka1  … ma1  

2d  21a  22a  … ka2  … ma2  
… … … … … … … 

id  1ia  2ia  … ika  … ima  
… … … … … …  

nd  1na  2na  … nka  … nma  
 

Faced with the general difficulty of comparing vector payoffs we must provide some means 
of comparing these vectors. Our focus in this work is on the construction of valuation function 
(aggregation operator) F  that can take a collection of m  values and convert it into a single value, 
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.: 1RRF m ⇒  
Once we apply this function to each of the alternatives we select the alternative with the 

largest scalar value. The construction of F involves considerations of two aspects. The first being 
the satisfaction of some rational, objective properties naturally required of any function used to 
convert (aggregate) a vector of payoffs (valuations, utilities and so on) into an equivalent scalar 
value. The second aspect being the inclusion of characteristics particular to the DMP’s subjective 
properties or preferences, dependences with respect to  risks and other main external factors.  

First we shall consider the objective properties required of the valuation function (aggregation 
operator) F [52]. 

1) The first property is the satisfaction of Pareto optimality. To insure this we require that if 
kjij aa ≥  for mj ...,,2,1= , then 

               )...,,,()...,,,,( 2121 kmkkimii aaaFaaaF ≥ .                                                                                   (1) 
  An aggregation operator satisfying this condition is said to be monotonic. 

2) A second condition is that the value of an alternative should be bounded by its best payoffs 
(valuations, utilities) and worst possible one. ni ...,,2,1=∀  

               
}{max)....,,,(}{min

,1
21,1 ij

mj
imiiijmj

aaaaFa
==

≤≤ .                                                                                 (2) 

 This condition is said to be bounded. 
3) Remark: if iij aa ≡  for  all j , then  from (2) 

  
}{max}{min

,1,1 ij
mj

ijmj
aa

==
=  and iimii aaaaF =)....,,,( 21 . 

 This condition is said to be idempotent. 
4) The final objective condition is that the indexing of the states of nature shouldn’t affect the answer: 

              )),....,,,(()....,,,( 2121 imiiimii aaanPermutatioFaaaF =                                                                 (3) 
where )(⋅nPermutatio  is some permutation of the set { }imii aaa ....,,, 21 . An aggregation 
function satisfying this is said to be symmetric (or commutative). 

Finally, we have required that our aggregation function satisfy four conditions: monotonicity, 
boundedness, idempotency and symmetricity. Such functions are called mean or averaging operators [52]. 

In determining which of the many possible aggregation operators to select as our valuation 
function we need some guidance from the DMP. The choice of a valuation function, from among 
the aggregation operators is essentially a “subjective” act reflecting the preferences of the DMP for 
one vector of payoffs over another. What is needed are tools and procedure to enable a DMP to 
reflect their subjective preferences into valuations. There are important problems in expert 
knowledge engineering for which we often use such intelligent technologies as neural networks, 
machine learning, fuzzy logic control systems, knowledge representations and others.  

These problems may be solved by introducing information measures of aggregation operators 
([1, 2, 4, 13, 14, 16, 17, 27-34, 36, 39, 41-43, 46-61, 63] and others). In this paper we will  present 
new extensions of information measures of operators constructed bellow. 

As an example we present some mean aggregation operators. Assume we have an m -tuple of 
values { }maaa ....,,, 21 . Then { }i

mi
m aMinaaaF

,1
21 )....,,,(

=
=  is one mean aggregation operator.  The use of 

the operator  Min  corresponds to a pessimistic attitude, one in which the DMP assumes the worst 
thing will happen. Another example of a mean aggregation operator is { }i

mi
m aMaxaaaF

,1
21 )....,,,(

=
= .  

Here we have very optimistic valuations. Another example is the simple average: 

.1)....,,,(
1

21 ∑
=

=
m

i
im a

m
aaaMean  In [58] R.R. Yager introduced a class of mean operators called 

Ordered Weighed Averaging (OWA) operator. 
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DEFINITION 1 [58] : An OWA operator of dimension m is mapping 1: RROWA m ⇒ that has an 

associated weighting vector W  of dimension m  with [ ]1;0∈jw and ,1
1

=∑
=

m

j
jw  such that  

                                              
∑
=

=
m

j
jjm bwaaOWA

1
1 )....,,( ,                                                                    (4) 

where jb  
is the  jth largest of the { } miai ,...,2,1, = . 

Note  that different properties could be studied such as the distinction between descending 
and ascending orders, different measures for characterizing the weighting vector and different 
families of  the OWA operator ([1, 4, 27-34, 46, 48-53, 57, 58, 60, 61, 63] and others). 

The OWA operator and its modifications are among the most known mean aggregation operators 
to the construction of DMUU valuation functions. These aggregations are generalizations of known 
instrument as Choquet Integral ([5, 7, 24, 39, 42, 52, 54, 55, 58] and others), Sugeno integral ([15, 18, 
25, 26, 37, 43, 45] and others) or induced mean functions ([2, 13, 61, 63] and others). 

The fuzzy numbers (FN) has been studied by many authors ([11,20] and others). It can 
represented in a more complete way as an imprecision variable of the incomplete information because it 
can consider the maximum and minimum and the possibility that the interval values may occur. 

DEFINITION 2 [20]: ]1;0[:)(~ 1 →Rta  is called the FN which can be considered as a 
generalization of the interval number: 

                                                              

( )

[ ]

[ ]

[ ]
















′′∈
′′−

−

′∈
−′
−

′′′∈

=

otherwise

aatif
aa
ta

aatif
aa

at
aatif

ta

0

,

,

;1

~

32
23

3

21
12

1

22

,                                           (5) 

where 1
3221 Raaaa ∈≤′′≤′≤ .     

In the following, we are going to review the triangular FN (TFN), [20] arithmetic operation as 
follows (in (5) 22 aa ′′=′ ). Let a~  and b~ be two TFNs, where ( )321 ,,~ aaaa =  and ( )321 ,,~ bbbb = . Then   

1: ( )332211 ,,~~ babababa +++=+   
2: ( )132231 ,,~~ babababa −−−=−  
3: ( ) 0,,,~

321 >=× kkakakaka   
4: ( ) 0,0,,,~

321 >>= i
kkkk akaaaa  

5: ( ) 0,0,,,~~
332211 >>=⋅ ii bababababa    

6: 0,1,1,1~

123

1 >








=−
ib

bbb
b

                                                                                                      
(6) 

7: 22

~~ baifba >>  and   bathenbaif ~~
22 >= baotherwisebbaaif ~~

22
3131 =

+
>

+ . 

The set of all TFNs is denoted by Ψ and positive TFNs ( 0>ia ) by +Ψ . 
Note that other operations and ranking methods could be studied ([20] and others). 
Now we consider some extensions of the OWA operator, mainly developed by Merigo and 

others [27, 28, 30], because our future  investigations concern with extensions of Merigo’s 
aggregation operators constructed on the basis of the OWA operator. 

DEFINITION 3 [30]: Let Ψ  be the set of TFNs. A fuzzy OWA operator - FOWA of dimension 
m  is a mapping Ψ⇒Ψ mFOWA :  that has an associated weighting vector W of dimension m  with 

[ ]1,0∈jw  , ∑
=

=
m

j
jw

1

1and  ∑
=

=
m

j
jjm bwaaaFOWA

1
21

~)~,...,~,~(  ,                                                                   (7) 
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 where jb~  is  the jth largest of the m
iia 1}~{ = , and .,...,2,1, miai =Ψ∈  

The FOWA operator is an extension of the OWA operator that uses imprecision information 
in the arguments represented in the form of TFNs. The reason for using this aggregation operator is 
that sometimes the available information presented by the DMP and formalized in payoffs 
(valuations, utilities and others) can’t be assessed with exact numbers and it is necessary to use 
other techniques such as TFNs. So, in this aggregation incomplete information is presented by 
imprecision variable of experts reflections and formalized in TFNs. Sometimes the available 
information presented by the DMP (or expert) also has an uncertain character, which is presented by 
the probability distribution on the states of nature consequents on the payoffs of the DMP. 

The fuzzy probability aggregations based on the OWA operator was constructed by J. M. 
Merigo and others. One of the variants we present here: 

DEFINITION 4 [28]: A probabilistic OWA operator - POWA of dimension m is a mapping 
1: RRPOWA m ⇒  that has an associated weighting vector W of dimension m  such that [ ]1,0∈jw  

and ∑
=

=
m

j
jw

1

1  according to the following formula:  

                                                                                 
j

m

j
jm bpaaaPOWA ∑

=

=
1

21 ˆ),...,,(  ,                           (8) 

 where jb  is the jth largest of the { } miai ,...,2,1, = ;  each argument ia  has an associated probability 

ip  with 1
1

=∑
=

m

i
ip , 10 ≤≤ ip , jjj pwp )1(ˆ β−+β=  with [ ]1,0∈β  and jp  is the probability ip  ordered 

according to jb ,  that is according  to the jth largest of the ia . 
Note that if 0=β , we get the usual probabilistic mean aggregation (mathematical expectation 

- pE  with respect to probability distribution m
iip 1}{ =  ), and  if 1=β , we get the OWA operator. 

Equivalent representation of (8) may be defined as: 

          
)...,,,()1()...,,,(

)1()...,,,(

2121

11
21

mpm

m

i
ii

n

j
jjm

aaaEaaaOWA

apbwaaaPOWA

⋅β−+⋅β=

=β−+β= ∑∑
== .                                           (9) 

We often use probabilistic information in the decision making systems and consequently in 
their aggregation operators. Many fuzzy-probabilistic aggregations have been researched in OWA 
and other operators ([5, 18, 19, 27-33, 36-43, 50-54, 60, 61, 63] and others).  In the following we 
present one of them defined in [28]: 

DEFINITION 5 [28]: Let Ψ  be the set of TFNs. A fuzzy-probabilistic OWA operator - FPOWA 
of dimension m  is a mapping Ψ⇒Ψ mFPOWA :  that associated a weighting vector W of dimension 

m  such that  [ ]1,0∈jw  , 1
1

=∑
=

m

j
jw , according to the following formula: 

                                                       
∑
=

=
n

j
jjm bpaaaFPOWA

1
21

~ˆ)~...,,~,~( ,                                                (10) 

 where jb~  is the  jth largest of the m
iia 1}{ =  are TFNs and each one has an associated probability 

)~~( ii aaPp =≡ , with 1
1

=∑
=

m

j
jp , 10 ≤≤ jp , jjj pwp ′β−+β= )1(ˆ  , [ ]1,0∈β  and jp′  is the probability 

ordered according to ( ))~~(~
jjj baPpb ==′  that is according to the  jth largest of the m

iia 1}~{ = .  
Analogously to (9) we present the equivalent form of the FPOWA operator as a weighted sum 

of the OWA operator and the mathematical expectation - pE  : 
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( )

( ) ( )mpm

m

i
ii

n

j
jjm

aaaEaaaOWA

apbwaaaFPOWA

~...,,~,~)1(~...,,~,~

~)1(~...,,~,~

2121

11

~

21

⋅β−+⋅β=

=β−+β= ∑∑
== .                                       (11) 

In [28] the Semi-boundary condition of the aggregation operator (11) was proved. Semi-
boundary condition of some operator F  if defined as: 

( ) ( )
( )mpii

mmpii

aaaEa

aaaFaaaEa
~...,,~,~)1(}~{max

~...,,~,~~...,,~,~)1(}~{min

21

2121

⋅β−+×β≤

≤≤⋅β−+×β
.                        (12) 

So the FPOWA operator is monotonic, bounded, idempotent, symmetric and semi-bounded. 
 

1.2. On the information measures of the POWA and FPOWA operators 
Now  we  present four probabilistic information measures of the POWA and FPOWA 

operators defined in [28] following similar methodology developed for the OWA operator ([1, 2, 3, 
6, 48, 49, 51, 53] and others). 

 
a) The Orness parameter classifies the POWA and FPOWA operators in regard to their 

location between and and or: 

               
∑∑
==









−
−′β−+








−
−

β=α
m

j
j

m

j
jm m

jmp
m

jmwppp
11

21 1
)1(

1
)ˆ,...,ˆ,ˆ(                                                      (13) 

 
b) The Entropy (dispersion) measures the amount of information being used in the 

aggregation: 

                







β−+β−= ∑∑
==

m

i
ii

m

j
jjm ppwwpppH

11
21 ln)1(ln)ˆ,...,ˆ,ˆ(                                                            

(14) 
 

c) The divergence of weighted vector W  measures the divergence of the weights against  the 
degree of Orness: 



















 α−

−
−′β−+

+


















 α−

−
−

β=

∑

∑

=

=

m

j
j

m

j
jm

P
m

jmp

W
m

jmwpppDiv

1

2

1

2

21

)(
1

)1(

)(
1

)ˆ,...,ˆ,ˆ(

,                                                            (15) 

where )(Wα  is an Orness measure of the OWA or FOWA operators ( 1=β ): 

    
∑
=









−
−

=α
m

j
j m

jmwW
1 1

)( ,                                                                                                      (16) 

and )(Pα  is an Orness measure of the fuzzy-probabilistic aggregation ( 0=β ): 

    
( ) ∑

=









−
−

⋅′=α
m

j
j m

jmpP
1 1

,                                                                                                   (17) 

 
d) The balance parameter measures the balance of the weights against the Orness or the 

Andness: 

















−
−+′β−+

+
















−
−+

β=

∑

∑

=

=

m

j
j

m

j
jm

m
jmp

m
jmwpppBal

1

1
21

1
21)1(

1
21)ˆ,...,ˆ,ˆ(

.                                                                  (18) 
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1.3.    On the Associated Probabilities of a Monotone Measure (Fuzzy Measure) 
1.3.1. Associated Probabilities of a Monotone Measure 
When trying to functionally describe insufficient expert data, in many real situations the 

property of additivity remains unrevealed for a measurable representation of a set and this creates 
an additional restriction. Hence, to study such data, it is frequently better to use monotone measures 
(estimators) instead of additive ones. 

We introduce the definition of a monotone measure (fuzzy measure) [45] adapted to the case 
of a finite referential. 

DEFINITION 6: Let { }msssS ,...,, 21=  be a finite set and g  be a set function [ ]1,02: →Sg . We 
say g  is a monotone measure on S  if it satisfies 

( ) ( ) ( ) .,,,)(;1)(;0)( BgAgthenBAifSBAiiSggi ≤⊆⊆∀==∅  
A monotone measure is a normalized and monotone set function. It can be considered as an 

extension of the probability concept, where additivity is replaced by the weaker condition of 
monotonicity. Non-additive but monotone measures were first used in the fuzzy analysis in the 
1980s [45] and is well investigated ([8, 15, 22, 23, 37-39, 44, 45, 54-56, 62] and others). 

A fuzzy integral is a functional which assigns some number or a compatibility value to each 
fuzzy subset when the monotone measure is taken as an uncertainty measure. As known ([10, 15, 
18, 19, 25, 26, 37, 38, 45, 63] and others), the concept of a fuzzy integral condenses the information 
provided by a compatibility (or membership) function of a fuzzy set and a monotone measure. 
Having the monotone measure determined, we can estimate a fuzzy subset by the most typical 
compatibility value - most typical value (MTV) ([18, 19, 41-45] and others) or a fuzzy average. As 
already known, fuzzy averages (MTVs) differ both in form and content from probabilistic–
statistical averages and other numerical characteristics such as mode and median and others. 
Nevertheless, in some cases ‘non-fuzzy’ (objective) and ‘fuzzy’ (subjective) averages coincide ([18, 
19, 41-45] and others). For a given set of fuzzy subsets with compatibility function values from the 
interval [0; 1], the fuzzy average determines the most typical representative compatibility value. 
From the point of our future presentations in the role of MTV we consider only two fuzzy statistics 
(integrals): 1. Monotone Expectation – ME (or Choquet Integral) and 2. Fuzzy Expected Value – 
FEV (or Sugeno Integral). So, we consider some aspects of a monotone measure in fuzzy statistics. 

DEFINITION 7: Assume  { }msssS ,...,, 21=  is a set on which we have a monotone measure g  and 
a function  +⇒ 0: RSa  such that miasa ii ,...,2,1,0)( =≥≡ . Then  

a) The aggregation  

,),...,,(),...,,(
1

)(2121 ∑
=

=≡
m

j
jijmmg awaaaFCAaaaME

 
                                                          (19) 

where { }( ) { }( ) { }( ) ,0,.....,,.....,, )0()1()1()()1( ≡−= − ijiijiij sgssgssgw  is called a Finite Choquet  Averaging 
(FCA) or Monotone Expectation (ME) operator. In the proceeding )(⋅i  is index function such that 

)( jia  is the jth largest of the { }m
iia 1= .  

b) The aggregation  

               
{ },ˆ;minmax),...,(),...,( max)(

,1
max11 jji

mj
mmg waaaaaFSAaaFEV

=
=≡

                                        
 (20) 

where }),...,,({ˆ )()2()1( jiiij sssgw = , { }i
mi

aa
,1

max max
=

=  is called a Finite Sugeno Averaging (FSA) or a 

Fuzzy Expected Value (FEV) operator. 
The ME always exists and is finite for each monotone measure g  and some compatibility 

variable a . It is obvious that ( )aMEg  is a generalization of the mathematical expectation )(aEP  and 
the ME of a non-negative function a  with respect to a monotone measure g  coincides with the 
mathematical expectation of a  with respect to a probability measure that depends only on g  and 
the ordering of the values of a . 
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Following the definition 7 the maximum number of probability distributions in ME (formula 
19) coincides with the number of possible orderings or permutations in a set with m elements, that 
is, !m . Thus, it makes sense to associate the !m  probabilities to each monotone measure, provided 
that they are deduced from this monotone measure through the different possible orderings. 

In general, the possible orderings of the elements of S  are given by the permutations of a set 
with  m  elements, which form the group mS . 

DEFINITION 8  [5]:  The probability functions σP  defined by 

                                        

( ) { }( )
( ) { }( ) { }( )
( ) { }( ),,....,1

,....,,....,,....,
,....,

)1()1()(

)1()1()()1()(

)1()1(

−σσσσ

−σσσσσσ

σσσ

−=

−=

=

mm

iii

ssgsP
ssgssgsP

sgsP

                                       (21) 

for each ( ) ( ) ( )( ) mSm ∈σσσ=σ ,...,2,1 , are called the associated probabilities and the Associated 
Probability Class (APC) - SP ∈σσ}{  of the monotone  measure g .  

An interesting case is when the monotone measure is a probability. It is easy to prove that in 
this case, all associated probabilities are equal. 

PROPOSITION 1 [5]: A monotone measure g  is a probability measure )( pg =  if and only if its 
m! associated probabilities coincide. 

The concept of duality of monotone measures is very important, since it permits one to obtain 
alternative representations of a piece of information. So, we will consider a monotone measure and 
its dual measure to contain the same information, but codified in a different way. 

The most remarkable case where different monotone measures provide the same !m  
probabilities, but ordered in a different way, is the case of dual monotone measures. Before 
exposing it in the following proposition, we need a definition: 

DEFINITION 9:  We will say that two permutations mS∈σσ ∗,  are dual if  
( ) ( ) miimi ,...,1,1 =+−σ=σ∗ . 

PROPOSITION 2 [5]:  A necessary and sufficient condition for two monotone measures ∗g  and 
∗g  to be dual is to have the same m! associated probabilities corresponding to dual permutations, 

that is, *
* ∗σσ = PP , if σ  and ∗σ  are dual, where ∗P  and ∗P  are associated probabilities for the 

measures ∗g  and ∗g   respectively. 
An especially interesting class of monotone measures is the capacities of order two [7], 

because they cover a great number of monotone measures. 
DEFINITION 10:  Let ( )*

* , gg  be a pair of dual monotone measures:  
*g  is a lower capacity of order two if and only if 

( ) ( ) ( ) ( );.,, *** BgAgBAgBAgSBA +≥∩+∪⊆∀ ∗  
*g  is an upper capacity of order two if and only if 

( ) ( ) ( ) ( )..,, **** BgAgBAgBAgSBA +≤∩+∪⊆∀  
The most used classes of monotone measures such as belief and plausibility measures [35], 

necessity and possibility ones [11], λ -measures [45] and probabilities are capacities of order two. 
PROPOSITION 3 [5]:  Let ( )*

* , gg  be a pair of dual monotone measures. Then *g  is a lower 
capacity of order two ( *g  is an upper capacity of order two, respectively) if and only if 

         
( ) ( ) ,min* XAAPAg

mS
⊆∀= σ∈σ

   ( ( ) ( ) ,max* XAAPAg
mS

⊆∀= σ∈σ
 ).                                                 (22) 

So the main characteristic of a capacity of order two is that it only depends on the 
probabilities associated to such a measure, but does not depend on the permutations that generate 
them: we can regenerate the initial monotone measure by only knowing its associated probabilities, 
without the necessity to know the corresponding permutations. This characteristic makes the use of 
capacities of order two by means of associated probabilities especially easy. 

Starting from this property, the following result is evident and valid for every monotone measure: 
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PROPOSITION 4 [5]: If mSP ∈σσ , , are the associated probabilities to a monotone measure g , 
then for every +→ 0: RXa  , it holds  

                                            
( ) ( ) ( )aEaMEaE PSgPS mm σσ ∈σ∈σ

≤≤ maxmin .                                                        (23) 

PROPOSITION 5 [39]: A necessary and sufficient condition for a pair of dual fuzzy measures 
( )∗gg ,*   to be lower and upper capacities of order two, respectively, is that +→∀ 0: RXa , 

                                            
( ) ( ) ( ) ( )aEaMEaEaME PSgPSg

mm σ∗σ∗ ∈σ∈σ
== max,min .                                        (24) 

Let ( )m
a

m
a

m SSS ⊂)()(  be the subgroup of all permutations such that )(a
mS∈σ∀  

                                                           ( ) ( ) ( ))()2()1( ... msasasa σσσ ≥≥≥ .                                                 (25) 
Following Proposition 2 and Definitions 7 and 8 there exist some connections of 

mathematical expectations with respect to dual associated probability ( ):; )(a
mSPP ∈σσ

∗
σ∗  

          

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )aEsasPsasPaEaME

sasPaEaME

P

m

j
imim

m

i
iiPg

m

i
iiPg

∗σ∗∗∗σ

σ

====

==

∑∑

∑

=
+−σ+−σσ∗

=
σσσ

=
σσσ

***

**

1
)1()1(

1
)()(

*

1
)()(* ,

,                            (26) 

where σ∗P  and ∗
σP  are associated probabilities for *g  and ∗g  monotone measures, 

respectively; σ  and ∗σ  are dual permutations and a  is symmetric. 
 
1.3.2. FEV’s probability representation 
It clearly follows that (definition 7b) the FEV somehow ‘averages’ the values of the 

compatibility function a  not in the sense of a statistical average but by cutting subsets of the α  level, 
whose values of  monotone measure g are either sufficiently ‘high’ or sufficiently ‘low’. The FEV 
gives a concrete value of the compatibility function a , this value being the most typical characteristic 
of all possible values with respect to the monotone measure g , obtained by cutting off the ‘upper’ 
and ‘lower’ strips on the graph of ( ) }))(/({ α≥=α sasgHg . Thus, the incomplete information carried 
by an imprecision variable a  and an uncertain measure g  is condensed in the FEV, which is the 
MTV of all compatibility levels of a . Following definition 7b for all permutation such that )(a

mS∈σ  
the FEV can be written by the associated probabilities of a monotone measure g  as 
     )}();(max{minmin)( )(

max)(,1max
σ

σ′∗σ∈σ′=
=

∗ iiSmjg APasaaaFEV
m

,                                                                  (27) 

where { } misssA ii ,..,1,,....,, )()2()1(
)( == σσσ

σ . 
Let ( )*

* , gg  be a pair of a dual lower and upper capacities of order two. Using propositions 2, 
3 and formulas (27) the FEV can be written, )(a

mS∈σ∀ : 

         
( )

.)}(;)(min{maxmax

)}(;)(min{maxmax

,)}();(max{minmin)(

)(
max)(

,1
max

)(
max)(

,1
max

)(
max)(

,1
max

*

σ

σ′∗σ∈σ′=

σ∗
σ′σ∈σ′=

σ
σ′∗σ∈σ′=

∗

∗

=

==

=

iiSmi

iiSmig

iiSmj
g

APasaa

APasaaaFEV

APasaaaFEV

m

m

m

                                                         
 (28) 

 
1.3.3. Dempster–Shafer belief structure and its associated probabilities 
The Theory of Evidence (Dempster–Shafer Belief Structure) ([11, 15, 22, 23, 25, 32, 37, 43, 

56, 59, 62] and others) is a powerful tool which enables one to build: 1. models of decisions and 
their risks’ measures; 2. Aggregation operators in an uncertain environment and so on. 

The Theory of Evidence is based on two dual monotone measures: Belief measures and 
Plausibility measures. These classes of monotone measures are subclasses of classes of dual lower and 
upper capacities of order two. This is easily provable after introduction of Belief and Plausibility 
measures ([22,23] and others). Belief and Plausibility measures can be characterized by the set function: 
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[0;1]2:m S → , 
which is required to satisfy two conditions: 

                                                                    
1.m(B)(b)
0,)m(      (a)

2B

=
=∅

∑
∈ S                                                        

 (29) 

This function is called a Basic Probability Assignment (BPA). For each set SB 2∈ , the value 
( )Bm  expresses the proportion that all available and relevant evidence supporting the claim that a 

particular element of  S , whose characterization in terms of relevant attributes is deficient, belongs 
to the set B . This value ( )Bm , pertains solely to one set – B ; it does not imply any additional claims 
regarding subsets of  B . If there is some additional evidence supporting the claim that the element 
belongs to a subset of B , say BB ⊆1 , it must be expressed by another value ( )1Bm  [23]. 
Let m be a PBA on S . The plausibility measure Pl  associated to m  is given by 

SA 2,m(B) Pl(A)
ØBA :SB

∈∀= ∑
≠⊂ 

    

and the Belief measure Bel  associated to m  is given by 
SA 2,m(B)=Bel(A)

AB:B

∈∀∑
⊂

.     

Inverse procedures are also possible. Given, for example, a Belief measure Bel , the corresponding 
BPA is determined for all SA 2∈  by formula 

                                                          
( )∑

⊆AB:B

B\A Bel(B)1-=m(A) ,                                                      (30) 

where  BA \  is the cardinality of the set difference of A and B. If the Belief measure is also additive that is 

                        ( ) SBABAifBBelABelBABel 2,,),()( ∈∅=+=  ,                                          (31) 
then we obtain the classical probability measure [23]. 

Given a BPA, every set SA 2∈  for which ( ) 0>Bm  is called a focal element. The pair mFS ,  
where SF  denotes the set of all focal elements induced by m is called a Body of Evidence. Because 
Bel  is a lower capacity of order two, then using proposition 3 and formulas (29) and (30) we 
receive probability representation of the BPA, m

S SA ∈σ∈∀ ,2 : 
( ) ( ) ( ),min1-=m(A),m(B)

AB:FB

)(B\A

}..,{B:FB
)(

)(

S
Ø})({

)(),1(S

∑∑
⊆∈

σ∈σ
⊆∈

σσ Ρ=Ρ

≠σ∩
σσ

Bs Bel

S
ss

i
Bel

m

iSB
i

                                             (32) 

where  { }
mS

BelP ∈σσ
)(

 
are the associated probabilities of  the monotone measure Bel . 

 
1.3.4. Possibility measure and its associated probabilities 
When the focal elements of a body of evidence mFS ,  are required to be nested, 

{ }
ljjj AAAF ⊂⊂⊂= ...

21
, the associated belief and plausibility measures are called consonant [23]. 

The special branch of the evidence theory that deals only with bodies of evidence whose focal 
elements are nested is referred to as the possibility theory [11]. 

Special counterparts of Bel  measures and Pl  measures in the possibility theory are called 
necessity ( Nec ) measures and possibility ( Pos ) measures, respectively: 

PROPOSITION 6 [23]: Given a consonant body of evidence mFS , , the associated consonant 
belief (necessity) and plausibility (possibility) measures possess the following properties: 

                                           

( )
( ) .2,)}();(max{

,2,)}();(min{
S

S

BAallforBPosAPosBAPos
BAallforBNecANecBANec
∈=

∈=





                           
 (33) 

PROPOSITION 7 [23]: Every possibility measure Pos  on S2  can be uniquely determined by its 
possibility distribution function [ ]1,0: →π S  ; 1)(max =π

∈
s

Ss
 via the formula: SA 2∈∀  
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)(max)( sAPos

As
π=

∈
.                                                      (34) 

Assume the finite universe { }msssS ...,,, 21=
 
is given and let }...{

21 ljjjS AAAF ⊂⊂⊂=  be some 
consonant body of evidence.  

Let  ( ) ( ) .1;,...,1;,;,...,1, 11 =π=π≥ππ≡π=≡ + misliAmm iiiijj ii

  Then, we have the l -tuple 

                                                             ljjj mmmm ...,,,
21

=
                                                           

(35) 
and m -tuple 

                                                            ....,,, 21 mπππ=π                                                                 (36) 
It is easy to show that 

                                                     






=≡ππ−π=

==π

++

ν

ν∑
∈∈ν

.,...,2,1,0,

,..,2,1,

11

:

lim

mim

liii

Sji

jjjj

FAs
ji

                                           (37) 

Let { }
mS

PosP ∈σσ
)(

 
be the associated probabilities class of a possibility measure Pos . Then, we 

have the following connection between { }iπ , { }
ij

m
 
and { } mS SP

m
∈σ∀∈σσ :
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(38) 

Since Pos  is a capacity of order two, using proposition 5 we receive: 

         
{ }( ) ( ) ,,..,2,1,}{max )( missPos i

Pos

Sii
m

=Ρ==π σ∈σ  
                                                                            (39) 

         
( ) ( ) .,..,2,1,}{max}{max

11

)()( lissm
i

m
i

m
iii j

Pos

Sj
Pos

Sjjj =Ρ−Ρ=π−π=
++ σ∈σσ∈σ                                              

   (40) 

 
1.3.5. Monotone measures associated with a belief structure and its associated 

probabilities 
Let m be a BPA with a body of evidence { }qS AAAF ,...,, 21= . For each focal element 

,,..,1, qjAj =  let 0
j

W  be a weighting vector of dimension jA  whose components )(0 iw
j  

( ))(),...,1( 000
jAwwW

jjj
≡   satisfy the conditions [ ]1,0)(0 ∈iw

j
 , 1)(

1

0 =∑ =

j

j

A

i
iw .  We shall call these the 

allocation vectors. In [56], it was shown that a set function [ ]1,02: →Sg  defined by  

                                                 
( ) ( ) ( ) S

q

j
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i
j AiwAmAg

j

j
2,....

1 1

0 ∈∀











⋅=∑ ∑

=

∩

=
                                            

 (41) 

is a monotone measure associated with the belief structure. Thus, by selecting a collection 
{ }0000 ,...,,

21 q
WWWW =   of allocation vectors, we can define a unique monotone measure associated 

with a belief structure. For example: if all the 0
j

W  are such that 1)1(0 =
j

w , then the resulting 

monotone measure is the plausibility measure Pl . If all 0
j

W  are selected such that 1)(0 =jAw
j

, then 
this results in the belief measure Bel . 

We have the following important proposition concerning all associated monotone measures 
with a belief structure. 
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PROPOSITION 8 [56]: If g  is any monotone measure generated from a collection of allocation 
vectors: 

(a) ( ) ( )   2A         )( S∈∀≤≤ APlAgABel ; 
(b)The Shapley Entropy of generated monotone measures coincide 

    
( ) ( ) ( )PlEgEBelE ShapleyShapleyShapley == .

                

i.e. generated monotone measures have the same information but codified in a different way. 
Now, we shall compute the associated probabilities of a monotone measure g  associated with 

the belief structure: miSm ,...,2,1, =∀∈σ∀ . 
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(42) 

 
1.3.6. Sugeno λ -additive monotone measure and its associated probabilities 
DEFINITION 11 [45]: A monotone measure [ ] ( )11,02: −>λ→λ

Sg  is called a λ -additive 
monotone measure if for any ∅=∈ BABA S ,2, , 

         ( ) ( ) ( ) ( ) ( ) .BgAgBgAgBAg λλλλλ ⋅λ++=                                                                               (43) 
It is easy to verify that for any SA 2∈  

         
( ) ( )













−λ+
λ

= ∏
∈

λ
As

i
i

gAg 111 ,                                                                                                      (44) 

where { }( ) 1;,...,1,0 −>λ=≡< misgg ii

 
is the parameter with following normalization condition: 

          
( ) .1111

=
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

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−λ+
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i
i

g
                                                                                                          

  (45) 

Note, that ( )00 =λg  is a probability measure  if .1=∑
∈Ss

i
i

g  

It is easy to prove that the λ -additive monotone measure λg  is a capacity of order two and 

)1/(
*

λ+λ−λ = gg .   
Due to (44), (45) and (21), we can write the class of associated probabilities for the λ -

additive monotone measure λg  for any mS∈σ

 
as  

( ) { }( ) { }( )( ),1
1

1
)()()( ∏

−

=
σλσλσσ λ+=Ρ

i

j
jii sgsgs

                                                                               
(46) 

or, more exactly, as 

          
( ) { }( ) { }( )( ),1
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jii sgsgs

                                                                                         
 (47) 

where )(;,,...,2,1 σ∈σ= iSmi m is the location of is  in the permutation σ (if 1)( =σi , then )1
0

1∏ =
≡

j
. 
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2. GENERAL DECISION MAKING SYSTEM (GDMS) AND ITS INFORMATION  
STRUCTURE (IS) 

Our focus is directed for the construction of a new POWA and FPOWA fuzzy-probabilistic 
aggregation operators induced by the ME or the FEV with respect to different monotone measures. 
The different cases of incompleteness (uncertainty measure + imprecision variable) and objectivity 
(objective weighted function) will be considered in new aggregation operators. Therefore from the 
point of view of systems research it is necessary to describe and formally present the scheme of 
general decision making system (GDMS) in uncertain – objective environment.  GDMS gives us 
the possibility to identify the different cases of levels of incompleteness and objectivity of available 
information which in whole defines the aggregation procedure. 
DEFINITION 12: The general decision making system (GDMS) that will combine decision-making 
technologies and methods of construction of decision functions (aggregation operators) may be 
presented by the following  8-tuple  

)48(,,,,,,,, mIFIWgaSD          
where 

1) { }ndddD ...,,, 21=

 
is a set of all possible alternatives (decisions, diagnosis and so on) that 

are made by a Decision-Making Person (DMP). 
2) { }msssS ...,,, 21=  is a set of systems states of nature (actions, activities, factors, symptoms 

and so on) that are  act on the possible  alternatives in the decision procedure. 
3) a - is an imprecision on precision variable of payoffs (utilities, valuations, some degrees 

of satisfaction to a fuzzy set, prices and so on), which will by defined by DMP’s 
subjective properties of preferences, dependences with respect to risks and other external 
factors. As a result a  constructs some decision matrix (binary relation)  on .SD×  

4) g  is an uncertainty measure on [ ]( )1,02:2 →SS g . In our case it may be some monotone 
measure. 

5) W  is an objective weighted function (or vector) on the states of nature - .S  
6) I  is the Information Structure on the data of states of nature. Cases of different levels of  

information incompleteness (uncertainty measure + imprecision variable) and objectivity 
(objective weighted function) on the states of nature will be considered as:  
I = Information Structure (on S): =imprecision (on S) + uncertainty (on S) + objectivity 
(on S), where: 
a) Imprecision on S may be presented by some inexact (stochastic, fuzzy, fuzzy-
stochastic or other) variable. 
b) Uncertainty on S may be presented by the levels of belief, credibility, probability, 
possibility and other monotone measures on S2 . These levels identify the possibility of 
occurrence of some groups (events, focal elements and others) on the states of nature. 
c) Objectivity on S is defined by the objective importance of states of nature in the 
procedure of decision making. As usual the objective function is presented by a weighted 
function (vector)  .: 0

+⇒ RSW  
Now we may classify cases of the Information Structure – I: 

I1: The case:  
a) –  imprecision is presented by the some exact variable  ;: 1RSa ⇒  
b) –  the measure of uncertainty does not exists; 
c) – Objectivity is presented by the weights { };...,,, 21 mwwwW =  
Examples: OWA and MEAN operators belong to I1. 

I2: The case:  
a) –  imprecision is presented by the some fuzzy variable:  [ ]1,0:~;~ ⇒ψ∈ Saa ; 
b) – The measure of uncertainty does not exist; 
c) – Objectivity is presented by the weights { };...,,, 21 mwwwW =  
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Examples: OWA and FOWA operators belong to I2. 
I3: The case:  

a) – imprecision is presented by the some stochastic variable:  ;: 1RSa ⇒  
b) –  the measure of uncertainty is presented by concerning probability 
distribution on S ( [ ]1,02: ⇒Ρ S )  { } .,...,2,1, misp ii =Ρ=  
c) – Objectivity is presented by the weights { };...,,, 21 mwwwW =  

Example: POWA operator belongs to I3. 
I4: The case:  

a) – imprecision is presented by the some fuzzy-stochastic variable:  
[ ]1,0:~;~ ⇒ψ∈ Saa ; 

b) – uncertainty measure is presented by the concerning probability distribution 
on S ( [ ]1,02: ⇒Ρ S )  { } .,...,2,1, misp ii =Ρ=  
c) – Objectivity is presented by the weights { };...,,, 21 mwwwW =  

Example: FPOWA operator belongs to I4. 
I5: The case:  

a) – imprecision is presented by the some exact variable:  ;: 1RSa ⇒  
b) – the measure of uncertainty defined by some monotone measure (possibility 
measure, λ -additive measure and so on ) [ ]1,02: ⇒Sg . 
c) – Objectivity is presented by the weights { };...,,, 21 mwwwW =  

Examples: SEV (R.R. Yager [52]) operator belongs to I5; SEV-POWA, AsPOWA, SA-
POWA, SA-AsPOWA (will be defined in the following sections) operators belong to I5. 

I6: The case:  
a) – imprecision is presented by the some fuzzy variable:  [ ]1,0:~;~ ⇒ψ∈ Saa ; 
b) – the measure of uncertainty is presented by some monotone measure      

[ ]1,02: ⇒Sg ; 
c) – Objectivity is presented by the weights { };...,,, 21 mwwwW =  

Examples: SEV-FOWA, AsFPOWA, and SA-AsFPOWA operators belong to I6. 
Note that some other cases may be considered in the Information Structure – I (for an 
example, the cases when the weights in structure are not present and others). 

7) F  – is an aggregation (in our case OWA-type) operator for ranking of possible 
alternatives by its outcome values calculated by the F . Following the Information 
Structure  I   on the states of nature for all possible alternatives  )(, dFDd ∈   is a 
ranking value. In general )(dF  is defined as a converted (or condensed)  information of 
imprecision values plus uncertainty measure and objective weights.  

                  ( )( ) .,,)( WgdanaggregatiodF =                                                                                       (49) 
We say – that alternative jd  is more prefered (dominated) than ,kd ,kj dd   

),()( kj dFdFif > and jd  is equivalent to kd , kj dd ≡ , if  )()( kj dFdF = . So the 
aggregation operator F  induces some preference binary relation 

 
on the all possible 

alternatives - D . 
8) Im  is a set of information measures of an aggregation operator  F : 

                   { }BalanceDivergenceDispersionOrness ,,,Im = .                                                           (50) 
In order to classify OWA-type aggregation operators }{F it is necessary to investigate 

information measures (50). This analysis also gives us some information on the inherent 
subjectivity of the choice of the decision aggregation operator by DMP [6]. 
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3. ASSOCIATED PROBABILITIES’ AGGREGATIONS IN THE POWA OPERATOR 
Different approaches were developed by the authors, which constructed aggregation operators 

with respect to a monotone measure, where   I1-I6 and other levels of IS were considered. But for 
the POWA or FPOWA-type operators Information Structures on the levels I5 and I6 (or weighted 
OWA operators constructed on the basis of a monotone measure) were not investigated. So, we 
leave the Information Structures I1-I4 and go to the levels of I5 and I6. In this Section we consider 
the level I5. 

It is important that in the aggregation operators POWA and FPOWA defined in Section 2 the 
both nature of incomplete information: 1. an uncertain measure (probability distribution  { }ip  ) and 
2. An imprecision variable (random variable ( a ) or fuzzy variable ( a~ )) are condensed in the 
outcome values, which get us more credibility for use of these aggregation operators in applications. 
In this Section we define new generalization of POWA operator where more general measure of 
uncertainty – monotone measure (fuzzy measure) is used instead of probability measure in the role 
of uncertainty measure. 
 

3.1. AsPOWA operators induced by the ME 
Let on the states of nature { }msssS ...,,, 21=  be given some monotone measure [ ]1,02: ⇒Sg  

instead of probability measure { } ( ).,...,,, 21 iim sppppP Ρ==  There exist  many aggregations in the 
decision making systems when we use monotone measure g as a measure of fuzzy uncertainty ([10, 
15, 18, 19, 24-26, 36, 37, 39, 40-43] and others)  the definition of which was given in Section 2. In 
Section 2 the FEV and ME were defined along with their probability representations by associated 
probability class (APC) { }

mS∈σσΡ , where the number of probability distributions on S  is equal to 
!mk =  . We have k  values of mathematical expectations for random or fuzzy-random variable a - 

( ){ } ,
mS

a
∈σΡσ

Ε  where  

                                 
( ) ( ) .,

1
∑
=

σΡ ∈σ=Ε
σ

m

i
mii SsPaa

                                                                           
 (51) 

So, we will focus on the use of !m  mathematical expectations in the POWA operator, instead 
of one expectation ( ) ∑=ΕΡ ii paa ,  as a more usual extension of this operator.  

Let !,: 1 mkRRM k =⇒  be some deterministic mean aggregation function with symmetricity, 
boundedness, monotonicity and idempodency properties (see the definition in the Section 1). Let 

+→ 0: RSa  be some random variable. 
DEFINITION 13: An associated POWA operator - AsPOWA of dimension m is a mapping  

,: 1RRAsPOWA m ⇒ that has an associated objective weighted vector W  of dimension m  such that 

[ ]1,0∈jw  and ,1
1

=∑
=

m

i
jw  some  uncertainty measure - monotone measure  [ ]1,02: ⇒Sg  with 

associated probability class { }
mS∈σσΡ , and is defined according the following formula: 

               

( ) ( )

( ) ( ) ( )( )aEaEaEMbw

SsaMbwaaaAsPOWA

kPPP

m

j
jj

m

m

i
ii

m

j
jjm

σσσ
⋅β−+β=

=







∈σΡ⋅β−+β=

∑

∑∑

=

=
σ

=

...,,,)1(

)1(...,,,

21
1

11
21

,                             (52) 

where jb  is the  jth largest of the  .,...,1},{ miai =    
It is easy proved that in general cases of operator M  the AsPOWA operator is induced by the ME:  
PROPOSITION 9:  Let M  be the Min  operator, then AsPOWA operator may be written as: 
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( ) ( ) ,min)1(...,,,min

11
21 








∈σΡ⋅β−+β= ∑∑

=
σ∈σ

=
m

m

i
iiS

m

j
jjm SsabwaaaAsPOWA

m                                
 (53) 

and if monotone measure g  is a lower capacity of order two, then in the AsPOWAmin  operator the 
second addend coincides with gME  :  

          ( ) ( ) ( )mgmm aaaMEaaaOWAaaaAsPOWA ...,,,)1(...,,,...,,,min 212121 ⋅β−+⋅β= .              (54) 
PROPOSITION 10: Let M be the Max  operator, then AsPOWA operator may be written as: 

         
( ) ( ) ,max)1(...,,,max

11
21 








Ρ⋅β−+β= ∑∑

=
σ∈σ

=

m

i
iiS

m

j
jjm sabwaaaAsPOWA

m                                            
 (55) 

and if monotone measure g  is an upper Choquet capacity of order two, then in the AsPOWAmax  
operator the second addend coincides with gME  :  

         ( ) ( ) ( ) ....,,,)1(...,,,...,,,max 212121 mgmm aaaMEaaaOWAaaaAsPOWA ⋅β−+⋅β=               
 (56) 

These proofs are easy if we use the results of proposition 5 (formula (24)). 
PROPOSITION 11: Let M  be any mean aggregation operator and in AsPOWA operator 

monotone measure g is a probability measure. Then AsPOWA and POWA operators coincide. 
( ) ( ) ....,,,...,,, 2121 mm aaaPOWAaaaAsPOWA =                                                                            (57) 

Proof: As known the associated probabilities of probability measure coincide                            
(see proposition 1). Using the property of idempotency of operator   M ( )( ),,...,,

21 PPPP EEEEM
m
≡  

because ppi EEkipp
i
==≡ ;,...,1,  and  ,),...,,( pppp EEEEM =  then AsPOWA removes to the 

POWA (formula 11). 
PROPOSITION 12:  If *g  and  ∗g  are dual monotone measures on S2 , then AsPOWA operators 

constructed on basis  *g  and  *g  coincide: 
Proof: Using simmetricity of operator M and results of proposition 2 it is easy to prove this 

proposition. Consider  AsPOWA  operator for  the lower monotone measure  *g : 

( ) ( ) ( )( )

( ) ( ) ( )

,)...,,,(

,...,,)1(

,...,,)1()...,,,(

21

1

1
21*

21

21

m

PPP

m

j
jj

PPP

m

j
jjm

aaaAsPOWA

aEaEaEMbw

aEaEaEMbwaaaAsPOWA

k

k

∗

=

σσσ
=

=

=




β−+β=

=β−+β=

∗
σ

∗
σ

∗
σ

∗∗∗

∑

∑

        
 

where { }k

ii
P

1* =σ  is  the associated probability class for the measure  *g   and { }k

ii
P

1

*

=σ
  is   the associated 

probability class for the measure  ∗g .  
Now we consider different variants of the AsPOWA operator induced by the ME with respect 

to different classes of monotone measures. Following the Subsection 2.3 associated probabilities’ 
formulas were presented for different classes of monotone measures. For example: a) possibility 
measure (Subsection 2.3.4); b) monotone measure associated with a belief structure (Subsection 
2.3.5); c) Sugeno λ -additive monotone measure (Subsection 2.3.6). Therefore there exist many 
combinatorial possibilities for the analytical construction of concrete faces of the AsPOWA 
operator for concrete classes of a monotone measure and concrete operator M  induced by the ME. 
But this procedure is omitted here. We will consider some of them: 

1) Consider AsPOWAmax for the Sugeno λ -additive monotone measure λg . Using  
formulas (55) and (46), we receive: 

                

( )













⋅







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+⋅β=

σ
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−

=
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∑ ∏

∑

)(
1

)(

1

1
)(

1
21

}))({1(}))({max)1(

...,,,max

i

m

i
j

i

j
iS

m

j
jjm

asgsg

wbaaaAsPOWA

m

.                                 
(58) 
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2) Analogously we may construct  the face of  AsPOWAmin: 
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i

j
iS

m

j
jjm

asgsg

wbaaaAsPOWA

m

.                                  (59) 

3)  Following Subsection 2.3.1 we consider the AsPOWAmin and AsPOWAmax  operators 
for the monotone measure associated with the belief structure. Using formulas (53) and 
(42) we construct new variants of the AsPOWA operator:  
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 (60) 
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
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ijjjS

m

j
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aSSFwFm
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ijj
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
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 (61) 

 
3.2. AsPOWA operators induced by the FEV 
In this Subsection we define new generalizations of the POWA operator induced by the 

Sugeno Averaging Operator - Fuzzy Expected Value (FEV) with respect to probability measure - 
P . Analogously definition 13 (formula 52) but difference is that Mathematical Expectation operator 

(.)pE  is changed by the ( ).PFEV . 
DEFINITION 14: A Sugeno Averaging POWA operator SA-POWA of dimension m  is a 

mapping  +⇒− 0: RRPOWASA m
  that has an associated weighting vector W  of dimension m  such 

that   [ ]1,0∈jw  and  1
1

=∑
=

m

j
jw  according to the following formula: 

( ) ( )

{ } [ ]{ },,minmaxmax)1(

...,,,)1(...,,,

)(
,1,11
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P
jji

mj
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∑

                          

 (62)

 

 

where )( jij ab =  is the  j-th largest of the ( ){ } misaa ii ,...,2,1,0 =≥= ; on S  there                            

exists probability distribution ( ){ }ii sPp =  with ,1
1

=∑
=

m

j
ip 10 ≤≤ ip ; 

{ }( ) ∑
=

==
j

l
lijiii

P
j psssPw

1
)()()2()1( ,...,,   and  { }l

ml

ji
ji a

a
a

,1

)(
)( max

=

=′ . 

On the basis of the definition 14 analogously to the definition 13 we may generalize the 
POWA operator induced by the FEV with respect to some monotone measure g . 

DEFINITION 15: A Sugeno Averaging AsPOWA operator SA-AsPOWA of dimension m  is 
mapping  +⇒− 0: RRAsPOWASA m , that has an associated objective weighted vector W of 

dimension m such that [ ]1,0∈jw  and  1
1

=∑
=

m

j
jw  ; some monotone  measure  [ ]1,02: →Sg  with 

associated probability class   { }
mSP ∈σσ ,  according the following formula: 
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where  
( ) { } { }σ
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and { }( ) ∑
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Now we consider SA-AsPOWA operators induced by the FEV with respect to MaxM =  and 
MinM =  averaging operators:  

( )

{ } [ ]{ }
 ′⋅β−+

+⋅β=−

σ

=∈σ=

=
∑

P
jji

mjSl
ml

m

j
jijm

waa

awaaaAsPOWASA

m
,minmaxmaxmax)1(

...,,,max

)(
,1,1

1
)(21

,                                                           (65) 
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It is easy to prove the propositions analogously to propositions 9-12.  But these propositions 
are omitted here.  

 
3.3. Information measures of the AsPOWA and SA-AsPOWA operators 
Analogously to [28] (see Subsection 2.2) now we extend the definitions of the information 

measures for the AsPOWA and SA-AsPOWA operators: 
DEFINITION 16:  The Orness measure of the AsPOWA operator is the extension of the formula (15): 
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For AsPOWAmax we receive: 
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but for AsPOWAmin we have: 
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Constructing the Orness measure of the SA-AsPOWA  operator induced by the  FEV we 
receive the analogous extension. 

DEFINITION 17:  The Orness measure of the SA-AsPOWA operator is the extension of the formula (15): 
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For example, for the AsPOWAmax operator we have: 


















−
σ−

⋅β−+







−
−

⋅β=





α σ

=∈σ
=

∧∧∧

∑ P
j

mjS

m

j
jm w

m
jm

m
jmwppp

m
,

1
)(minmaxmax)1(

1
...,,,

,11
21 ,                             (71) 

and  for AsPOWAmin : 
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DEFINITION 18:  The entropy (the dispersion) H of the AsPOWA  operator of the  amount  of 
information is defined as: 
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For example, if we have AsPOWAmax operator, then 
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and for AsPOWAmin: 
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DEFINITION  19:  The divergence measure Div has the following face: 
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where )(Wα   is an Orness measure of the OWA operator 
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and )(Pα   is an Orness measure of associated  probabilities’ aggregations: 
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Analogously to definition 19  we may construct the concrete analytical forms of the measure 
Div for AsPOWAmax and AsOWAmin and other operators with respect to different monotone 
measures (Here these formulas are omitted). 

DEFINITION 20: The Balance parameter of the AsPOWA operator has the following extension 
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The Bal of the AsPOWAmax and AsPOWAmin operators and the H, Div, Bal parameters of 
the SA-AsPOWA operator may be written analogously definitions 9-20, but are omitted here. 

 
4. ASSOCIATED PROBABILITIES AGGREGATIONS IN THE FPOWA 

OPERATOR 
In this Section we construct new aggregations in the FPOWA operator (definition 5) by 

monotone measure’s associated probabilities when the imprecision variable is presented by the 
fuzzy triangular number. So we consider the Information Structure I6. 

Let on the states of nature  { }msssS ,...,, 21=
 
be given some monotone measure [ ]1,02: ⇒Sg  as 

a uncertainty measure of incomplete information and on S  defined some payoffs (utilities and so 
on) which are presented by  triangular fuzzy numbers as expert reflections on possible alternatives. 
I.e. for every alternative and for every state of nature is  there exists  ( )ii saa ~~ =  - positive triangular 
fuzzy number as some payoff.  So vector { }maaa ~,...,~,~

21  is imprecision values of expert reflections on 
states of nature with respect to alternatives. 

Using the arithmetic operations on the triangular fuzzy numbers, presented in section 1, we 
may define new aggregations in the FPOWA operator (definition of the FPOWA see in Section 2) 
as induced functions by monotone measures’ associated probabilities. 



GESJ: Computer Science and Telecommunications 2015|No.1(45) 
ISSN 1512-1232 

 

    113 

 
4.1 AsFPOWA operators induced by the ME 
Let ( )!: mkM k =Ψ⇒Ψ ++  be some deterministic mean aggregation function with 

symmetricity, boundedness, monotonicity and idempotency properties. 
DEFINITION 21:  An associated FPOWA operator AsFPOWA of  dimension m is mapping 

++ Ψ⇒Ψ mAsFPOWA : , that has an associated objective weighted vector W of dimension  m  such 

that )1,0(∈jw  and  1
1

=∑
=

m

j
jw , and some uncertainty measure – monotone measure [ ]1,02: ⇒Sg  with 

associated probability class  { }
mSP ∈σσ , and is defined according to the following formula: 

( )

( ) ( ) ( )( )aEaEaEMbw

SsPaMbwaaaAsFPOWA

kPPP

m

j
jj

m

m

i
ii

m

j
jjm

~,...,~,~)1(~

~)1(~)~...,,~,~(

21
1

11
21

σσσ
β−+β=

=








∈σβ−+β=

∑

∑∑

=

=
σ

= ,                                 (79) 

where jb~  is the  jth largest of the miai ,...,1},~{ = . 
Now we consider concrete AsFPOWA operators for concrete mean functions  M  and induced 

by the ME. 
DEFINITION 22:   
 
1)  Let M  be the  Min -operator  dimension of k=m! then 
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2) Let M  be the Max -operator dimension of k=m! then 
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3) Let M  be the   averaging operator  dimension of  k=m!, ,1)...,,,(
1
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4) Let M  be the α -averaging operator dimension of k=m!, ,1)...,,,(
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The propositions analogous to propositions 9-12 are true (we omitted this propositions here). 
Now we define concrete AsFPOWA operators for concrete monotone measures analogously 

to Section 4. Consider AsFPOWAmax for Sugeno λ -additive monotone measure  - λg . 
Analogously to (58) we have: 
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Analogously we may construct the face of the AsFPOWAmin: 
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Analogously to Section 4 (formulas (60)-(61)) we may construct AsFPOWAmin and 
AsFPOWAmax   operators induced by the belief structure’s associated monotone measure (omitted 
here). We also may define some other combinations of different monotone measures and averaging 
operator M . So, there exist many cases of Information Structures on the level I6 for the constructions 
of the AsFPOWA operator. For example - αnAsFPOWAmea

  

induced by the belief structure: 

  

{ }
{ }










































⋅β−+

+β=α

∑ ∑ ∑

∑

∈σ

α

α

=
σ

∅≠∈
σσ

=

σm ijSj
j

S

m

i
i

sAFA
ijj

m

j
jjm

sassAwAm
m

bwaaanAsFPOWAmea

1

1
)(

:
)()1(

0

1
21

})(~|,...,(|)({
!

1)1(

~)~...,,~,~(

)(



                           

 (86) 

and others. 
Note the information measures of the  AsFPOWA  operator  - Orness,  Entropy,  Div and Bal 

are defined analogously to Subsection 4.3 (omitted here). We may add the proposition concerning 
the dual monotone measures   *g  and  *g , which is general for AsPOWA and AsFPOWA operators. 

PROPOSITION 13: Let *g  and *g be dual monotone measures on [ ]1,02 ⇒S ; let AsPOWA* and 
AsPOWA* (or AsFPOWA* and AsFPOWA*)  be AsFPOWA (or AsFPOWA)  operators constructed on the 
basis of the measures *g  and ∗g  respectively. Then corresponding information measures coincide: 
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In this proof we use the property of symmetry of the function M ; the fact, that Associated  
Probability Classes of  *g  and  ∗g   coincide { } { }

mm SS PP
∈σσ∈σσ
∗∗

≡ *
*  and *

)1()(* +−σσ ∗
≡ jmj PP  , where σ  and 

∗σ  are dual permutations. 
 
4.2. AsFPOWA operators induced by the FEV 
Now we define new generalizations of the FPOWA operator induced by the ( )PFEV . The 

values of imprecision of the incomplete information on S are presented by the fuzzy variable 
( ) ).,..,2,1~~(,:~,~ mieveryforsaaorSaTFNa ii =Ψ∈=Ψ⇒∈ ++

 



GESJ: Computer Science and Telecommunications 2015|No.1(45) 
ISSN 1512-1232 

 

    115 

DEFINITION 23: A Sugeno Averaging FPOWA operator SA-FPOWA  of dimension m is 
mapping  ++ Ψ⇒Ψ− mFPOWASA : , that has an associated weighting vector W of dimension m  

such that  [ ]1,0∈jw  , 1
1

=∑
=

m

j
jw  and is defined according to the following formula: 
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where jb~  is the jth largest of the { } miai ,...,1,~ =
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On the basis of definition 23 and analogously to definition 21 we present a definition of the 
operator AsFPOWA induced by the FEV with respect to some monotone measure [ ]1,02: ⇒Sg . 

DEFINITION 24: A Sugeno Averaging AsFPOWA operator SA-AsFPOWA of dimension m  is 
mapping  ++ Ψ⇒Ψ− mAsFPOWASA : , that has an associated objective weighted vector W  of 

dimension m  such that  [ ]1,0∈jw   and 1
1

=∑
=

m

j
jw ; some uncertain measure – monotone measure  

[ ]1,02: ⇒Sg  with associated probability  class { }
mSP ∈σσ  

defined according  the following formula:
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where ( ) ( ) { } { }[ ]σ
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1
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=
σσ

σ ; M  is some averaging operator.   

Analogously to Subjection 4.2 (formulas 65-66) we may define new SA-AsFPOWA  
operators induced  by the FEV with respect to concrete monotone measures: Sugeno λ -additive 
measure, possibility measure, believe structure’s associated monotone measure and others (but 
these procedures are omitted here). 

 
5.  EXAMPLE 
Analogously to [28] we analyze an illustrative example on the use of new AsFPOWA and 

SA-AsFPOWA operators in a fuzzy decision-making problem regarding political management. We 
study a country that is planning its fiscal policy for the next year. 

Assume that government of a country has to decide on the type of optimal fiscal policy for the 
next year. They consider five alternatives: 

d1: “Development a strong expansive fiscal policy”; 
d2: “Development an expansive fiscal policy”; 
d3: “Do not make any changes in the fiscal policy”; 
d4: “Development of a contractive fiscal policy”; 
d5: “Development a strong contractive fiscal policy”. 
In order to analyze these fiscal policies, the government has brought together a group of 

experts. This group considers that the key factors are the economic situations of the world (external) 
and country (internal) economy for the next period. They consider 3 possible states of nature that in 
whole could occur in the future. 

s1: “Bad economic situation”; 
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s2: “Regular economic situation”; 
s3: “Good economic situation”. 
As a result the group of experts gives us their opinions and results. The results depending on 

the state of nature is  and alternative  kd  that the government selects are presented in the Table 2: 
 

Table 2: Expert’s valuations in TFNs 
 

D
       S  

1s  2s  3s  

1d  (60,70,80) (40,50,60) (50,60,70) 

2d  (30,40,50) (60,70,80) (70,80,90) 

3d  (50,60,70) (50,60,70) (60,70,80) 

4d  (70,80,90) (40,50,60) (40,50,60) 

5d  (60,70,80) (70,80,90) (50,60,70) 
 
Following the expert’s knowledge on the world economy for the next period, experts decided 

that the objective weights (as an external factor) of states of nature must be ( )2,0;3,0;5,0=W , while 
for the economy of the country for the next period the occurrence of presented states of nature is 
defined by some possibilities (as an internal factor). So, there exists some possibilities (internal 
levels), as an uncertainty measure, of the occurrence of states of nature in the country. This decision 
making model (Information Structure I6) is more detailed than the model (Information Structure I4) 
presented in [28]. In another words in decision model we cannot define the objective probabilities 

)( ii sPp =  for the future events, but we can define subjective possibilities )( ii sPos=π based on the 
experts’ knowledge. Let on the basis of some fuzzy term of internal factor – country economy 
experts define the possibility levels of states of nature:   

.5,0)(;1)(;7,0)( 332211 =π≡=π≡=π≡ sposssposssposs  
So, we have the Information Structure I6 of decision making system (48) (definition 12), 

where [ ]1,02:(.): ⇒= SPosg  SAAPos iAsi
⊆∀π=

∈
,max)( ; (a monotone measure is a possibility 

measure). In this model as in [28]  3,0≡β . Decision procedure is equivalent to the detalization of 
GDMS as the Information Structure I6 (but in [28] the author had the IS as  I4). So, for every 
decision d  payoffs’ values are the column from Table 2; 

)2,0;3,0;5,0(;: == WPosg ; 6II = ; AsFPOWAF =  or AsFPOWASAF −=  and others. Im  is the 
quadruple structure  (definition 12). For ranking of alternatives { }51 ,..,dd  we must calculate its 
AsFOWA or other operators. For ( )321

~,~,~~ aaaa =  we have: 

( ) ( ) ( ) ( )( )aEaEaEMwbaaaAsFPOWA PPP
j

jj
~,...,~,~)1(~~,~,~

621

3

1
321 σσσ

β−+β= ∑
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. It is clear that                      

k=m!=3!=6 and for calculation of the AsFPOWA operator we firstly define                                             
the associated probability class { }

3SP ∈σσ  for the [ ]1,02: ⇒SPos .  
For every   
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 where 
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The results are presented in the Table 3. 
 
 
 
 

Table 3: Associated Probability Class - 
3

}{ SP ∈σσ  

( ) ( ) ( )( )3,2,1 σσσ=σ  )1(σP  )2(σP  )3(σP  

( ) 13,2,1 σ=  7,01 =P  3,02 =P  03 =P  

( ) 22,3,1 σ=  7,01 =P  03 =P    3,02 =P  
( ) 33,1,2 σ=  12 =P       01 =P  03 =P  
( ) 41,3,2 σ=  12 =P  03 =P  01 =P  

( ) 52,1,3 σ=  5,03 =P  2,01 =P     3,02 =P  

( ) 61,2,3 σ=  5,03 =P  5,02 =P  01 =P  
 

Following the Table 3 we calculate Mathematical Expectations - ( ){ }
3SPE

∈σ
⋅

σ
 (Table 4) and 

Fuzzy Expected Values -
mSPFEV ∈σσ

(.)){ (Table 5).   
 

Table 4: Mathematical Expectations - ( ){ }
3SPE

∈σ
⋅

σ
 

( )⋅
σPE

     
σ  

1σ  2σ  3σ  4σ  5σ  6σ  

( )1dEPσ
 (54,64,74) (54,64,74) (40,50,60) (40,50,60) (49,59,69) (45,55,65) 

( )2dEPσ
 (39,49,59) (39,49,59) (60,70,80) (60,70,80) (59,69,79) (65,75,85) 

( )3dEPσ
 (50,60,70) (50,60,70) (50,60,70) (50,60,70) (55,65,75) (55,65,75) 

( )4dEPσ
 (61,71,81) (61,71,81) (40,50,60) (40,50,60) (46,56,66) (40,50,60) 

( )5dEPσ
 (63,73,83) (63,73,83) (70,80,90) (70,80,90) (58,68,78) (60,70,80) 

 
Table 5: Fuzzy Expected Values - 

mSPFEV ∈σσ
(.)){  

( )⋅
σPE

       
σ  

1σ  2σ  3σ  4σ  5σ  6σ  

( )1dEPσ
 (70,70,70) (70,70,70) (50,60,70) (50,60,70) (40,50,60) (40,50,60) 

( )2dEPσ
 (30,40,50) (30,40,50) (60,70,80) (60,70,80) (60,70,80) (60,70,80) 

( )3dEPσ
 (50,60,70) (50,60,70) (50,60,70) (50,60,70) (50,60,70) (50,60,70) 

( )4dEPσ
 (40,50,60) (40,50,60) (40,50,60) (40,50,60) (40,50,60) (40,50,60) 

( )5dEPσ
 (60,70,80) (60,70,80) (70,80,90) (70,80,90) (40,50,60) (40,50,60) 
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Now we may calculate the values of different variants of the AsFPOWA and SA-AsFPOWA 

operators with respect to different averaging operators M (Tables 6 and 7): 
 
 
 
 
 

Table 6: Aggregation results 
 

D
/A

g.
 O

p.
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A
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A
sF
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W

A
m
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A
sF

PO
W

A
m

ea
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d1 (53,63,73) (46,57,68) (48,59,70) (44,54,64) (54,64,74) (49,59,69) 

d2 (59,69,73) (53,64,75) (55,66,77) (45,55,65) (64,74,84) (57,66,75) 

d3 (55,65,75) (51,62,73) (52,63,74) (52,62,72) (56,66,76) (53,63,73) 

d4 (63,73,83) (47,58,69) (52,63,74) (45,55,65) (60,70,80) (51,61,71) 

d5 (63,73,83) (63,74,85) (63,74,85) (60,70,80) (68,78,88) (64,74,84) 
 
 

Table 7: Aggregation results 
 

D
/A

g.
 O

p.
 

SA
-A

sF
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W
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m
in

 

SA
-A

sF
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m
ax

 

SA
-A

sF
PO

W
A

m
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d1 (44,54,64) (65,68,71) (55,61,69) 

d2 (37,47,57) (58,68,77) (51,61,70) 

d3 (51,61,71) (51,61,71) (51,61,71) 

d4 (44,54,64) (44,54,64) (44,54,64) 

d5 (44,54,64) (65,75,85) (56,66,76) 
 
 

For possibility distribution  { }m
ii 1=π  and payoff vector ( )maaa ~...,,~~

1=  R.R. Yager in [52] defined 
the aggregation mean operator - Shapely Expected Value (SEV) for possibility uncertainty:   

                                           
( ) ∑

=

π
σσ=

m

i
iim PaaaSEV

1
)()(1

~...,,~ ,                                                         (89) 
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where { }m

iiP
1)( =

π
σ  is the probability distribution on ( )mssS ...,,1=  induced by possibility distribution { }m

ii 1=π   

∑
σ

=

−σσπ
σ −+

π−π
=

)(

1

)1()(
)( 1

i

j

jj
i jm

P
 

where  ( ){ })(,...,1 mσσ=σ

  
is some permutation from mS  form which .1...0 )()1()0( =π≤≤π≤π= σσσ m  

On 
the other hand this values are Shapley Indexes of a possibility measure with a possibility distribution 
{ }m

ii 1=π  . It was proved [52] that the ( )⋅SEV  coincides with the ME for possibility measure: 

( ) ( ) ( )∫ α=α≥==
1

0
11 ,...,1~~...,,~~...,,~ dmiaPossaaMEaaSEV imPossm

.
 

On the basis of definition SEV we connect the SEV operator to the OWA operator as weighted 
sum. So we consider new generalization of the FOWA operator in Information Structure I6: 

.
1

~)1(~)~...,,~,~(
1

)(

1

)1()(
)(

1
21 ∑ ∑∑

=

σ

=

−σσ
σ

=









−+

π−π
β−+β=−

m

i

i

j

jj
i

m

j
jjm jm

abwaaaFOWASEV

 Calculating numerical values of FOWA, SEV, SEV-FOWA, AsFPOWAmin, AsFPOWAmax, 
AsFPOWAmean, SA-AsFPOWAmin, SA-AsFPOWAmax, SA-AsFPOWAmean operators we 
constructed the Decision Comparing Matrix (Table 9). Firstly we calculated Shapely Indexes - 
{ } 3,1, =π jPi   for the possibility measure (Table 8). 

 
Table 8:  Shapley Indexes of the possibility distribution 

 
π

iP  15/4  30/17  6/1  

is  1s  2s  3s  

 
According to the information received in this Section, we can rank the alternatives from the 

most prefered to the less prefered. The results are shown in table 9. 
 

Table 9: Ordering of the policies 
 

N Aggreg. Operator Ordering Information Structure 
1 FOWA 13245 ddddd =  I2 
2 SEV 14325 ddddd =  I6 (without weights) 
3 SEV-FOWA 13425 ddddd  =  I6 
4 AsFPOWAmin 14235 ddddd  =  I6 
5 AsFPOWAmax 13425 ddddd   I6 
6 AsFPOWAmean 14325 ddddd   I6 
7 SA-AsFPOWAmin 21453 ddddd  ==  I6 
8 SA-AsFPOWAmax 43125 ddddd   I6 
9 SA-AsFPOWAmean 41235 ddddd   I6 

 
We also calculated values of the Orness parameter of the aggregation operators presented in Table 10. 

 
Table 10: Orness values 
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W
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m
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α  0,65 0,55 0,58 0,37 0,79 0,58 0,68 0,89 0,79 

Following Table 10 we see that for the nearer of SA-AsFPOWA operators  is  to  on or, the 
closer its measure is to one, while AsFPOWAmin operator  is to on and, the closer is to zero. 
Calculations of other information measures are omitted here. More on these measures of new 
aggregation operators we will present in our future investigations. 

 
CONCLUSIONS 
New generalizations  of the POWA and FPOWA operators were presented with respect to 

monotone measure’s associated probability class (APC) and induced by the Choquet and Sugeno 
integrals (finite cases). There exist many combinatorial variants to construct faces or expressions of 
generalized operators: AsPOWA, AsFPOWA, SA-AsPOWA and SA-AsFPOWA for concrete mean 
operators (Mean, Max, Min and so on) and concrete monotone measures (Choquet capacity of order 
two, monotone measure associated with belief structure, possibility measure and Sugeno 
−λ additive measure). Some properties of new operators and their information measures  (Orness, 

Enropy, Divergence and Balance) are proved. But only some variants (AsPOWAmax, 
AsPOWAmin and others) are presented, the list of which may be longer that it is presented in the 
paper. So, other presentations of new operators and  properties of information measures will be 
considered in our future research. The example was constructed for the illustration of the properties 
of generalized operators in the problems of political management. 
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