
GESJ: Computer Science and Telecommunications 2015|No.2(46)
ISSN 1512-1232

 16

Solution of Problem of Set Covering by Means of Genetic Algorithm

Natela Ananiashvili
Faculty of Exact and Natural Sciences, I. Javakhishvili Tbilisi State University, Tbilisi

Abstract
Heuristic algorithm of solution of problem of covering minimal summary weight

of given set with subsets of non-uniform values is offered. The algorithm is based on
genetic algorithm with operators of crossover and mutation. The results of
computational experiments are given on the basis of famous test problems.

Keywords: minimal set covering, heuristic algorithm, genetic algorithm

1. Introduction
The problem of set covering is a NP-complex problem of combinatorial optimization [1].

Algorithms of precise solution of this problem use techniques of branches and limits [2]. Time
necessary for realization of such algorithms rapidly increases and when dimension of a problem
also increases, it is impossible to get optimal values in real time [3-4]. This problem is a
mathematical model for practical tasks, such as location of service centers, development of
transport schedule [6], location of sources of power systems [6], etc. Therefore, it is very important
to solve this problem in real time. When such problems are solved, heuristic algorithms are often
used that find near optimal solutions in reasonable time interval. Approximate algorithms mainly
imply partial selection of covering sets. In genetic algorithms, this process is similar to development
of biological populations [7-8]. Therefore, terminology is similar to biological terminology.

2. Problem Formulation
The problem of set covering can be formally described as follows (for instance. as in [2]). Let

us assume, we have finite set and set of subsets ,
where each is assigned with positive weight . Any subset from is

called covering of set , if the following condition is met: . Minimal covering means

selection of subset from such subsets, when sum of weights is minimal. It is the problem

of weighted covering.
Let us introduce matrix to write down a mathematical model of problem of set

covering:

It is presumed that is in one of . Let us introduce binary variables :

Therefore, the problem of covering can be formulated in the following way. Let us minimize

the following sum:

GESJ: Computer Science and Telecommunications 2015|No.2(46)
ISSN 1512-1232

 17

considering the following restrictions:

3. The General Design of Genetic Algorithm
The proposed algorithm of solution of problem of minimal covering implies general

principles of genetic algorithms [8]. It can be described informally in the following way:

Step 1. Selection of initial population.

Step 2. Determination of function of fitness (usefulness) and estimation of individuals’ fitness
from the corresponding population.

Step 3. Selection of parents on the basis of fitness. Usage of genetic operators, such as
crossover and mutation for selected individuals and derivation of offspring individuals.

Step 4. Estimation of fitness of offspring individuals. Replacement of one parent with the best
offspring individual from the initial population on the basis of fitness.

Step 5. If condition of completion of algorithm is met, then check if number of iterations has
been expired. In other case, jump to Step 3.

Let us consider a design that is used in the proposed algorithm. The first step of genetic
algorithm is selection of scheme of encoding. Binary encoding is selected, i.e. every chromosome is
n-dimension vector , where th element is equal to 1, if set is into kth
chromosome and , if the same set isn’t in the kth chromosome. It means that values
() are chromosomes that correspond to the individuals. Values are genes that can be
equal to 0 or 1. sets correspond to genotypes. Quantity of individuals (chromosomes) in a
population depends on the scale of problem. Generally, values are chosen.

First of all, let us select an initial population and then compute value of fitness function for
chromosomes:

Then we select the parents. When the problems are solved by means of genetic algorithms and

the parents are selected, technique of roulette or some other techniques are used [8]. In the proposed
article, selection is made with the following technique. At the odd iteration two individuals are
selected from the population that has minimal values of fitness function. At the even iteration we
select one chromosome with minimal value of fitness function and another chromosome with
maximal value of fitness function. In this way we’ll avoid rapid convergence towards some local
minimum. Then we breed selected individuals with operator of one-point crossover. Individuals
derived after crossover are mutated. Fixed value of mutation operator is often used in genetic
algorithms, but we choose variable value of mutation, because purpose of crossover and mutation
operators is to derive individuals that are different from individuals of population. Besides, when
we approach local extreme, individuals are slightly different from each other. Therefore, we must
use mutation operator with variable value to avoid selection of only kindred individuals. This value
will depend on individual, as well as characteristics of genotype of these individuals, particularly
quantity of 1s and 0s in the genotype.

GESJ: Computer Science and Telecommunications 2015|No.2(46)
ISSN 1512-1232

 18

From the chromosomes derived by means of crossover and mutation, we select the best one
that has minimal value of function of fitness/usefulness. Then we look for individual with maximal
fitness in the initial population and replace it with individual selected from offspring. The process of
selection of parent chromosomes, crossover, mutation and replacement of parent individual with
offspring individual is repeated until the end of iterations.

4. Algorithm
4.1. Formation of initial population
Let us assume that columns of matrix A are arranged according to growth of costs.
Quantity of individuals of population is denoted with s, L is the matrix of population with
 size.

Algorithm 1: Formation of initial population.
Step 1. Let us take ; ; ;
;

Let us form the first row of matrix L, i.e. the first chromosome of population in the following
way:

Step 2. Let us find the first column with number of matrix A that covers th node, i.e.
 and take it into covering. Let us assume, ,

.

Step 3. Let us find number of the first zero element of R. Let us take and jump to
step 2. If zero element is absent, then jump to step 4.

The following rows of matrix L, i.e. remaining chromosomes of population are formed in the
following way:

Step 4. Let us take . If , then finish, otherwise take ,
.

Step 5. Let us find numbers of columns of matrix A that cover th node. Then
randomly select some number from , i.e. and take it into t-th
chromosome: . Let us assume .

Step 6. Let us find number of the first zero element of R. If such element exists, then
assume and jump to step 5. If zero element doesn’t exist, the jump to step 4.

When a population is formed with such technique, it is possible to find excessive genes in
each population, i.e. after deleting some or several columns from each covering, set

 can be covered again. We call dead-end covering, if isn’t covering for
any . Therefore, it is necessary to delete excessive columns from each individual of given
population and make them dead-end. For this purpose the following heuristic algorithm is used:

Algorithm 2: Deletion of excessive columns from kth individual.
Step 1. Let us define for every as , where is quantity of

columns that cover th node in th chromosome. It means that we must find quantity of
covering columns in th chromosome that is represented in th row of matrix L,
when .

Let us assume .

Step 2. Let us find minimal number : , when . If such number doesn’t
exist, then the process is finished.

GESJ: Computer Science and Telecommunications 2015|No.2(46)
ISSN 1512-1232

 19

Step 3. If every , then deletion of column from kth
chromosome is possible. Let us assume and .

Step 4. Let us assume . If , then jump to step 3.

Step 5. Let us assume . If then jump to step 2, otherwise the process is
finished.

By means of this algorithm we can delete excessive columns from kth individual
) of population L and find dead-end coverings.

4.2. Crossover
After formation of population, we can compute values of fitness function for each

chromosome by means of equation (3). We select two parent chromosomes on the basis of rule that
is described in the third paragraph. Let us assume these chromosomes are:

Let us define location of crossover with random value . After crossover
we’ll get offspring chromsomes:

After such crossover offspring chromosomes may not cover . So, it is
necessary to find and add covering sets for uncovered nodes of those chromosomes. We propose
algorithm that guarantees this process:

Algorithm 3: Addition of subsets that cover uncovered nodes to chromosomes.
For legibility, chromosome is selected.
Step 1. Let us find numbers of non-zero elements in chromosome . are

numbers of corresponding covering sets of this chromosome. To satisfy condition for
every th row of columns of covering matrix A, let us count number of columns
that cover th node, i.e. when and .
Let us assume and .

Step 2. Let us find minimal number for which . If every element of R
is non-zero, then the process is finished.

Step 3. Let us find numbers of those columns of matrix A that cover node.
Let us select randomly any number from , i.e. ; take column into the
current chromosome: .

Let us assume .

Step 4. Let us assume . If , then jump to step 2, otherwise the process is
finished.

By means of described algorithm chromosomes and will cover again set
. After crossover offspring chromosomes are mutated.

4.3. Mutation

Let us select some number k from set for offspring chromosomes and
 and mutate kth gene of this chromosome. Note that specification of gene in this problem is its

weight, as well is number of 1s and 0s in corresponding genotype. Let us calculate quantity of

GESJ: Computer Science and Telecommunications 2015|No.2(46)
ISSN 1512-1232

 20

1s and quantity of 0s for each jth columns of matrix A, when . Besides, let us
calculate the following values for each column:

then develop vector of probability of mutation:

Let us select gene for mutation, where is random normalized integer from range

. Let us define condition of mutation:
1. If the following conditions are met: , and , then

gene mutates and we'll get .
2. If the following conditions are met: , and , then

gene mutates and we'll get .
Similarly we can mutate the second chromosome . As in the case of crossover, after

mutation offspring chromosomes may not cover set . Let us use above
mentioned algorithm #3 for and . Then add columns that cover every uncovered node.
Chromosomes derived after addition may not represent dead-end coverings. Let us use algorithm #2
and delete excessive columns. This process is repeated until depletion of iterations.

5. The results of experiment
This algorithm is realized in Matlab. Test problems from famous library Or-Library [9] are

used to check efficiency of proposed algorithm. The library includes problems of 11 classes. These
classes are 4, 5, 6, A, B, C, D, E, F, G, H. The problems are derived randomly with weights

 and matrices A, where number of 1s is from 2% to 20%.

Table 1. The names and sizes of problems

Problem
class

Number of
rows

Number of
columns

Number of
problems

4 200 1000 10
5 200 2000 10
6 200 1000 5
A 300 3000 5
B 300 3000 5
C 400 4000 5
D 400 4000 5
E 500 5000 5
F 500 5000 5
G 1000 10000 5
H 1000 10000 5

10 experiments were made for each problem and for each experiment new population was

selected. The best results are given in Table 2 and 3. These results are compared to values of
optimal weights of minimal covering. In sum, 65 problems were considered. Size of population was
always . Number of iterations changed from 550 to 35250. For class 4-6 and A-D problems
optimal values are known [10]. For large-scale class E-H problems the best known results are taken
[11].

GESJ: Computer Science and Telecommunications 2015|No.2(46)
ISSN 1512-1232

 21

 Let us denote with Fmin the best result of experiments.

Table 2. The results of experiments for class 4-6 and A-D problems

Problem
class

Optimal
solution

Fmin Number of
iterations

Computation
time

4,1 429 432 850 5.748834
4,2 512 549 27250 189.521844
4,3 516 526 650 5.591801
4.4 494 509 5250 41.614141
4,5 512 527 650 7.285392
4,6 560 578 550 4.547840
4,7 430 437 650 4.874183
4,8 492 499 750 5.513872
4,9 641 665 15250 84.042923
4,10 514 537 750 5.267568
5,1 253 264 27250 184.503032
5,2 302 311 25250 160.479980
5,3 226 237 1250 10.480415
5,4 242 245 5250 38.623774
5,5 211 212 5250 36.555420
5,6 213 228 5250 35.234376
5,7 293 313 1250 11.987480
5,8 288 296 15250 106.514343
5,9 279 280 35250 254.069516
5,10 265 270 45250 345.253260
6,1 138 147 550 4.952619
6,2 146 150 35250 239.397738
6,3 145 150 5250 35.749140
6,4 131 132 5250 38.840746
6,5 161 169 1250 10.292615
A,1 253 255 1250 20.120029
A,2 252 267 850 15.381661
A,3 232 246 45250 699.561851
A,4 234 246 5250 79.033534
A,5 236 240 15250 279.40790
B,1 69 76 15250 260.158726
B,2 76 83 5250 114.132584
B,3 85 85 550 13.921434
B,4 79 83 5250 97.910171
B,5 72 75 650 12.822692
C,1 227 233 35250 886.189983
C,2 219 227 40250 835.990969
C,3 243 254 15250 367.848676
C,4 219 235 35250 844.615780
C,5 215 221 850 26.015785
D,1 60 60 35250 859.387968

GESJ: Computer Science and Telecommunications 2015|No.2(46)
ISSN 1512-1232

 22

D,2 66 70 550 23.790084
D,3 72 77 15250 452.277166
D,4 61 64 850 28.991679
D,5 62 64 550 18.933103

Table 3. The results of experiments for class E-H problems

Problem

class
Proposed

minimal value
Fmin Number of

iterations
Computation

time
E,1 29 29 650 37.089270
E,2 30 32 1250 55.733434
E,3 27 29 5250 222.218509
E,4 28 31 15250 795.258351
E,5 28 30 550 31.467857
F,1 14 16 550 38.747741
F,2 15 17 650 36.459649
F,3 14 17 550 32.964627
F,4 14 16 850 45.287650
F,5 14 16 550 31.603698
G,1 179 185 35250 4163.728506
G,2 158 164 25250 2921.625042
G,3 169 175 5250 932.124276
G,4 172 176 25250 3059.695269
G,5 168 177 35250 5870.136848
H,1 64 69 5250 706.016420
H,2 64 66 35250 4681.564954
H,3 60 67 1250 226.269730
H,4 59 65 550 111.810822
H,5 55 60 850 148.935323

For test the standard computer was used with specifications Intel(R) Pentium (R) Dual CPU

E2220 2.40 GHz, 2.00 GB of RAM. In most cases the problems were solved in seconds, but in
some cases they required several minutes. Only class E-H problems requires more than hour. On the
basis of experiment, we can conclude that proposed algorithm is sufficiently efficient.

References:

1. Garey M. R., Johnson D. S. Computers and intractability. A guide to the theory of NP-

completeness. San Francisco: W. H. Freeman and Co.,1979.
2. Christofides Nicos, Graph Theory. An Algorithmic Approach, Computer science and applied

mathematics, London, Academic Press, 1986.
3. Ananiashvili N., "About the one solution of the set partition problem". V Annual international

conference of the Georgian mathematical union, Batumi, September, 2014. pp.60.
4. Ananiashvili N., "Solution of problems of minimal set partition and set covering". (2015)Bull.

Georg. Natl. Sci., 9, 1: 38-42
5. Capara A. et al. Algorithms for Railway Crew Management // Mathematical Programming. 1997.

79. P. 125–141.
6. Minieka E., Optimization Algorithms For Networks And Graphs, New York : M. Dekker, c1978.
7. Randy L. Haupt, Sue Ellen Haupt, "Practical genetic algorithms"-2nd ed.Published by John Wiley

& Sons, Inc., Hoboken, New Jersey. 2004.

http://www.goodreads.com/book/show/8404888-optimization-algorithms-for-networks-and-graphs

GESJ: Computer Science and Telecommunications 2015|No.2(46)
ISSN 1512-1232

 23

8. Rutkovskaia D., Pilinski M., Rutkovski L., “Neironnie Seti, Geneticheskie Algoritmi i Nechetkie
Sistemi”. Moscow, “Goriachaia Linia – Telekom”. 2006 (In Russian).

9. Beasley, J. E. , OR-Library: "Distributing Test Problems by Electronic Mail,The Journal of the
Operational Research Society". Vol. 41, No. 11 (Nov., 1990), pp. 1069-1072.

10. Beasley J. E. and Jornsten K. Enhancing an algorithm for set covering problems //European
Journal of Operational Research. 1992. 58. P. 293–300.

11. Jacobs L. W. and Brusco M. J. A simulated annealing-based heuristic for the set covering problem
//Working paper, Operations Management and Infprmation Systems Department, Northern Illinois
University, Dekalb, IL 60115, USA. 1993.

Article received: 2015-07-09

