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Abstract 
Heuristic algorithm of solution of problem of covering minimal summary weight 

of given set with subsets of non-uniform values is offered. The algorithm is based on 
genetic algorithm with operators of crossover and mutation. The results of 
computational experiments are given on the basis of famous test problems.  
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1. Introduction 
The problem of set covering is a NP-complex problem of combinatorial optimization [1]. 

Algorithms of precise solution of this problem use techniques of branches and limits [2]. Time 
necessary for realization of such algorithms rapidly increases and when dimension of a problem 
also increases, it is impossible to get optimal values in real time [3-4]. This problem is a 
mathematical model for practical tasks, such as location of service centers, development of 
transport schedule [6], location of sources of power systems [6], etc. Therefore, it is very important 
to solve this problem in real time. When such problems are solved, heuristic algorithms are often 
used that find near optimal solutions in reasonable time interval. Approximate algorithms mainly 
imply partial selection of covering sets. In genetic algorithms, this process is similar to development 
of biological populations [7-8]. Therefore, terminology is similar to biological terminology.  

 
2. Problem Formulation 
The problem of set covering can be formally described as follows (for instance. as in [2]). Let 

us assume, we have finite set  and set  of subsets , 
where each  is assigned with positive weight . Any subset  from  is 

called covering of set , if the following condition is met: . Minimal covering means 

selection of subset from such subsets, when sum of weights  is minimal. It is the problem 

of weighted covering.  
Let us introduce matrix  to write down a mathematical model of problem of set 

covering: 

 
It is presumed that is in one of . Let us introduce binary variables  : 

 
Therefore, the problem of covering can be formulated in the following way. Let us minimize 

the following sum: 
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considering the following restrictions: 

 
 
3. The General Design of Genetic Algorithm 
The proposed algorithm of solution of problem of minimal covering implies general 

principles of genetic algorithms [8]. It can be described informally in the following way: 

Step 1. Selection of initial population. 

Step 2. Determination of function of fitness (usefulness) and estimation of individuals’ fitness 
from the corresponding population.  

Step 3. Selection of parents on the basis of fitness. Usage of genetic operators, such as 
crossover and mutation for selected individuals and derivation of offspring individuals. 

Step 4. Estimation of fitness of offspring individuals. Replacement of one parent with the best 
offspring individual from the initial population on the basis of fitness. 

Step 5. If condition of completion of algorithm is met, then check if number of iterations has 
been expired. In other case, jump to Step 3. 

Let us consider a design that is used in the proposed algorithm. The first step of genetic 
algorithm is selection of scheme of encoding. Binary encoding is selected, i.e. every chromosome is 
n-dimension vector , where th element is equal to 1, if set  is into kth 
chromosome and , if the same set isn’t in the kth chromosome. It means that  values 
( ) are chromosomes that correspond to the individuals.  Values are genes that can be 
equal to 0 or 1.  sets correspond to genotypes. Quantity  of individuals (chromosomes) in a 
population depends on the scale of problem. Generally,  values are chosen. 

First of all, let us select an initial population and then compute value of fitness function for 
chromosomes: 

 
Then we select the parents. When the problems are solved by means of genetic algorithms and 

the parents are selected, technique of roulette or some other techniques are used [8]. In the proposed 
article, selection is made with the following technique. At the odd iteration two individuals are 
selected from the population that has minimal values of fitness function. At the even iteration we 
select one chromosome with minimal value of fitness function and another chromosome with 
maximal value of fitness function. In this way we’ll avoid rapid convergence towards some local 
minimum. Then we breed selected individuals with operator of one-point crossover. Individuals 
derived after crossover are mutated. Fixed value of mutation operator is often used in genetic 
algorithms, but we choose variable value of mutation, because purpose of crossover and mutation 
operators is to derive individuals that are different from individuals of population. Besides, when 
we approach local extreme, individuals are slightly different from each other. Therefore, we must 
use mutation operator with variable value to avoid selection of only kindred individuals. This value 
will depend on individual, as well as characteristics of genotype of these individuals, particularly 
quantity of 1s and 0s in the genotype.  
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From the chromosomes derived by means of crossover and mutation, we select the best one 
that has minimal value of function of fitness/usefulness. Then we look for individual with maximal 
fitness in the initial population and replace it with individual selected from offspring. The process of 
selection of parent chromosomes, crossover, mutation and replacement of parent individual with 
offspring individual is repeated until the end of iterations. 

 
 
4. Algorithm 
4.1. Formation of initial population 
Let us assume that columns of matrix A are arranged according to growth of costs. 
Quantity of individuals of population is denoted with s, L is the matrix of population with 
 size. 

Algorithm 1: Formation of initial population. 
Step 1. Let us take ; ; ; 
; 

Let us form the first row of matrix L, i.e. the first chromosome of population in the following 
way: 

Step 2. Let us find the first column with number  of matrix A that covers th node, i.e. 
 and take it into covering. Let us assume, , 

. 

Step 3. Let us find number  of the first zero element of R. Let us take  and jump to 
step 2. If zero element is absent, then jump to step 4. 

The following rows of matrix L, i.e. remaining chromosomes of population are formed in the 
following way: 

Step 4. Let us take . If  , then finish, otherwise take , 
. 

Step 5. Let us find numbers  of columns of matrix A that cover th node. Then 
randomly select some number  from , i.e.  and take it into t-th 
chromosome: . Let us assume . 

Step 6. Let us find number  of the first zero element of R. If such element exists, then 
assume  and jump to step 5. If zero element doesn’t exist, the jump to step 4. 

When a population is formed with such technique, it is possible to find excessive genes in 
each population, i.e. after deleting some or several columns from each covering, set 

 can be covered again. We call  dead-end covering, if  isn’t covering for 
any . Therefore, it is necessary to delete excessive columns from each individual of given 
population and make them dead-end. For this purpose the following heuristic algorithm is used: 

Algorithm 2: Deletion of excessive columns from kth individual.  
Step 1. Let us define  for every  as , where  is quantity of 

columns that cover th node in th chromosome. It means that we must find quantity  of 
covering columns  in th chromosome that is represented in th row of matrix L, 
when . 

Let us assume . 

Step 2. Let us find minimal number :  , when . If such number doesn’t 
exist, then the process is finished. 
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Step 3. If every , then deletion of column  from kth 
chromosome is possible. Let us assume  and . 

Step 4. Let us assume . If , then jump to step 3. 

Step 5. Let us assume . If  then jump to step 2, otherwise the process is 
finished.  

By means of this algorithm we can delete excessive columns from kth individual 
) of population L and find dead-end coverings.  

 
4.2. Crossover 
After formation of population, we can compute values of fitness function for each 

chromosome by means of equation (3). We select two parent chromosomes on the basis of rule that 
is described in the third paragraph. Let us assume these chromosomes are: 

 
 

Let us define location of crossover with random value . After crossover 
we’ll get offspring chromsomes: 

 
 

After such crossover offspring chromosomes may not cover . So, it is 
necessary to find and add covering sets for uncovered nodes of those chromosomes. We propose 
algorithm that guarantees this process: 

Algorithm 3: Addition of subsets that cover uncovered nodes to chromosomes. 
For legibility, chromosome  is selected.  
Step 1. Let us find numbers of non-zero elements in chromosome .  are 

numbers of corresponding covering sets of this chromosome. To satisfy condition  for 
every th row of columns  of covering matrix A, let us count number  of columns 
that cover th node, i.e. when  and . 
Let us assume  and . 

Step 2. Let us find minimal number  for which . If every element of R 
is non-zero, then the process is finished.  

Step 3. Let us find numbers  of those columns of matrix A that cover  node. 
Let us select randomly any number  from , i.e. ; take column  into the 
current chromosome: . 

Let us assume . 

Step 4. Let us assume . If , then jump to step 2, otherwise the process is 
finished.  

By means of described algorithm chromosomes  and  will cover again set 
. After crossover offspring chromosomes are mutated. 

 
 

4.3. Mutation 

Let us select some number k from set  for offspring chromosomes  and 
 and mutate kth gene of this chromosome. Note that specification of gene in this problem is its 

weight, as well is number of 1s and 0s in corresponding genotype. Let us calculate quantity  of 
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1s and quantity  of 0s for each jth columns of matrix A, when . Besides, let us 
calculate the following values for each column: 

 
then develop vector of probability of mutation: 

 
Let us select gene  for mutation, where  is random normalized integer from range 

. Let us define condition of mutation: 
1. If the following conditions are met: ,  and , then 

gene  mutates and we'll get . 
2. If the following conditions are met: ,  and , then 

gene  mutates and we'll get . 
Similarly we can mutate the second chromosome . As in the case of crossover, after 

mutation offspring chromosomes may not cover set . Let us use above 
mentioned algorithm #3 for  and . Then add columns that cover every uncovered node. 
Chromosomes derived after addition may not represent dead-end coverings. Let us use algorithm #2 
and delete excessive columns. This process is repeated until depletion of iterations. 

 
 
5. The results of experiment 
This algorithm is realized in Matlab. Test problems from famous library Or-Library [9] are 

used to check efficiency of proposed algorithm. The library includes problems of 11 classes. These 
classes are 4, 5, 6, A, B, C, D, E, F, G, H. The problems are derived randomly with weights 

 and matrices A, where number of 1s is from 2% to 20%. 
 

Table 1. The names and sizes of problems 

Problem 
class 

Number of 
rows 

Number of 
columns 

Number of 
problems 

4 200 1000 10 
5 200 2000 10 
6 200 1000 5 
A 300 3000 5 
B 300 3000 5 
C 400 4000 5 
D 400 4000 5 
E 500 5000 5 
F 500 5000 5 
G 1000 10000 5 
H 1000 10000 5 

 
10 experiments were made for each problem and for each experiment new population was 

selected. The best results are given in Table 2 and 3. These results are compared to values of 
optimal weights of minimal covering. In sum, 65 problems were considered. Size of population was 
always . Number of iterations changed from 550 to 35250. For class 4-6 and A-D problems 
optimal values are known [10]. For large-scale class E-H problems the best known results are taken 
[11].  
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 Let us denote with Fmin the best result of experiments. 
 
 
 
 

Table 2. The results of experiments for class 4-6 and A-D problems 
 

Problem 
class 

Optimal 
solution 

Fmin Number of 
iterations 

Computation 
time 

4,1 429 432 850 5.748834 
4,2 512 549 27250 189.521844 
4,3 516 526 650 5.591801 
4.4 494 509 5250 41.614141 
4,5 512 527 650 7.285392 
4,6 560 578 550 4.547840 
4,7 430 437 650 4.874183 
4,8 492 499 750 5.513872 
4,9 641 665 15250 84.042923 
4,10 514 537 750 5.267568 
5,1 253 264 27250 184.503032 
5,2 302 311 25250 160.479980 
5,3 226 237 1250 10.480415 
5,4 242 245 5250 38.623774 
5,5 211 212 5250 36.555420 
5,6 213 228 5250 35.234376 
5,7 293 313 1250 11.987480 
5,8 288 296 15250 106.514343 
5,9 279 280 35250 254.069516 
5,10 265 270 45250 345.253260 
6,1 138 147 550 4.952619 
6,2 146 150 35250 239.397738 
6,3 145 150 5250 35.749140 
6,4 131 132 5250 38.840746 
6,5 161 169 1250 10.292615 
A,1 253 255 1250 20.120029 
A,2 252 267 850 15.381661 
A,3 232 246 45250 699.561851 
A,4 234 246 5250 79.033534 
A,5 236 240 15250 279.40790 
B,1 69 76 15250 260.158726 
B,2 76 83 5250 114.132584 
B,3 85 85 550 13.921434 
B,4 79 83 5250 97.910171 
B,5 72 75 650 12.822692 
C,1 227 233 35250 886.189983 
C,2 219 227 40250 835.990969 
C,3 243 254 15250 367.848676 
C,4 219 235 35250 844.615780 
C,5 215 221 850 26.015785 
D,1 60 60 35250 859.387968 
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D,2 66 70 550 23.790084 
D,3 72 77 15250 452.277166 
D,4 61 64 850 28.991679 
D,5 62 64 550 18.933103 

 
Table 3. The results of experiments for class E-H problems 

 
Problem 

class 
Proposed 

minimal value 
Fmin Number of 

iterations 
Computation 

time 
E,1 29 29 650 37.089270 
E,2 30 32 1250 55.733434 
E,3 27 29 5250 222.218509 
E,4 28 31 15250 795.258351 
E,5 28 30 550 31.467857 
F,1 14 16 550 38.747741 
F,2 15 17 650 36.459649 
F,3 14 17 550 32.964627 
F,4 14 16 850 45.287650 
F,5 14 16 550 31.603698 
G,1 179 185 35250 4163.728506 
G,2 158 164 25250 2921.625042 
G,3 169 175 5250 932.124276 
G,4 172 176 25250 3059.695269 
G,5 168 177 35250 5870.136848 
H,1 64 69 5250 706.016420 
H,2 64 66 35250 4681.564954 
H,3 60 67 1250 226.269730 
H,4 59 65 550 111.810822 
H,5 55 60 850 148.935323 

 
For test the standard computer was used with specifications Intel(R) Pentium (R) Dual CPU 

E2220   2.40 GHz, 2.00 GB of RAM. In most cases the problems were solved in seconds, but in 
some cases they required several minutes. Only class E-H problems requires more than hour. On the 
basis of experiment, we can conclude that proposed algorithm is sufficiently efficient.  
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