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Abstract

A new time-varying autoregressive (TVAR) modeling approach is proposed for
non-stationary signal processing and analysis. In the new parametric modeling frame
work, the time-dependent coefficients of the TVAR model are represented using a novel
multi-wavelet decomposition scheme. The realization of the time-varying
AR(TVAR)model here is distinguished from existing time-varying parametric models
where the relevant time-dependent coefficients are represented using basis function
expansions. In most existing time-varying parametric models, the basis functions used
for representing the time-dependent coefficients are global, while the basis functions
involved in the new proposed modeling approach are locally defined. The main features
of the multi-wavelet approach is that it enables smooth trends to be tracked but also to
capture sharp changes in the time-varying process parameters. The associated time-
varying coefficients are then estimated by using a Orthogonal least square (OLS)
Algorithm. Simulation results show the effectiveness of the proposed method.

Keywords: TVAR model, Time-dependent coefficients, Multi-wavelet basis, Orthogonal
least square(OLS).

1. Introduction

Many processes are inherently time-varying and cannot effectively be characterized using
time invariant models[1].Modeling and analysis of time-varying systems is often a challenging
problem. One feature of time-varying systems is that such signals contain non-stationary transient
events. One approach To characterize such non-stationary processes is to employ time-varying
parametric models for example Time-varying Autoregressive (TVAR)model[2].Approaches for the
estimation of time-varying parameters in TVAR model can be broadly classified into two
categories[3]: the adaptive recursive algorithm methods and the basis function approximation
methods. Adaptive algorithms such as Least mean squares (LMS), recursive least squares(RLS) and
Kalman filtering, are applied to estimate the time-varying parameters and are capable of tracking
the transient variation providing that the variation is slow and smooth[4]. For the basis function
method, time-varying parameters are expanded as a finite sequence of predetermined basis
functions; the problem of time-varying estimation can then be reduced to a time invariant parameter
estimation problem. The basis function expansion approaches are able to track process parameter
changes even those with jumps, provided that appropriate basis functions are used. Many types of
basis functions ,such as the Legendre polynomial, Fourier series, Walsh and Haar functions are
available and capable of representing TV model coefficients. The choices of basis functions have
significant effects on the change speeds and smoothness of the estimated parameters. But there is
no uniform selection guideline on how to select the appropriate basis functions from the large-
family of available basis functions[1]-[4].

An attractive approach is to expand the time-varying parameters using wavelets as basis
functions. Wavelets have distinctive approximation properties and are well suited for approximating
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general non-stationary signals and thus have been successfully applied to many areas including
nonlinear signal processing and parametric identification[1]. The objective of this study is to present
a novel TVAR modeling approach, where the time-dependent coefficients are expanded using a
finite set of multi-wavelet basis functions [1]-[2]. Based on a multi-wavelet expansion scheme, a
new method for time-dependent parameter estimation is then proposed. The term 'multi-wavelet'
here has a twofold meaning. Firstly, the TV coefficients of the TVAR model are approximated
using several types of wavelet basis functions(i.e. the TV Parameter estimation involves multiple
wavelets).Secondly, these wavelet basis functions are combined in a form of multi-resolution
wavelet decomposition[3].The advantage of the proposed method, compared with a method
involving only a single type of wavlets, is that the multi-wavelet expansion scheme is much more
flexible in that it exploits the excellent properties of both non-smooth and smooth wavelet basis
functions and thus can effectively track both rapid and slow variations of TV coefficients. In
addition, the expansion of TV parameters onto multi-wavelet basis functions is more accurate and
effective for dealing with non-stationary signal modeling than traditional power spectral estimation
approaches and classical time -invariant parameter models.

The TVAR model with multi-wavelet basis functions is able to track and capture the
parameter changes even those with jumps .However, it should be Pointed out that in many
applications, not all these candidate wavelet basis functions need to be simultaneously involved in
a same time varying coefficient approximation, some wavelet basis functions which play a more
important role need be included in the expression, some other wavelet basis functions, however,
may only play some little role and can be exclude from the expression. Orthogonal least
Squares(OLS)algorithms[6] will be applied to determine which wavelet basis functions should be
included in the final approximation expression and which candidate wavelet basis functions should
be eliminated From the dictionary[6].

The paper is organized as follows .Section 2 introduces Time varying Autoregressive Model.
In section 3, wavelet theory is briefly reviewed to provide the basis of multi-resolution expansions
for arbitrary functions. Linear Regression model can be used to determine time varying parameters,
and this is introduced in section 4.Simulation examples are provided in section 5, and conclusions
are given in section 6.

2.The Time-Varying Auto Regressive Model(TVAR Model)

The p-th order time-varying AR model, TVAR(p),is formulated as below[1]-[2]
p
y(©) =2 aO)yt-i)+et) , (1)
i=1

where t is the time instant (or) sampling index of the signal y(t) e(t),is the model residual that can
often be treated as a stationary white noise sequence with zero mean and variance o, ,and a,(t)

are the time-varying coefficients. Approaches for the estimation of time-varying parameters can be
broadly be classified into two categories: the adaptive recursive algorithm methods and the basis
function approximation methods. Adaptive algorithms such as least mean squares (LMS), recursive
least squares (RLS) and Kalman filtering, are applied to estimate the time -varying parameters and
are capable of tracking the transient variation providing that the variation is slow and smooth. For
the basis function method, time-varying parameters are expanded as a finite sequence of
predetermined basis functions; the problem of time -varying estimation can then be reduced to a
time invariant parameter estimation problem, in the basis function expansion approach the time-

varying coefficients a, (t) using a set of basis functions{fzm t):m=12,.... L} ,\where r_(t) are scalar
functions as below [3].
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A0=36,7,(0) @
Substituting (2) into (1), yields
YO = 336,07, OY(E-i) +e() ®

Denote
z(t) = [7[1('[),7z2 )y, (t)]

Xi(0) = y(t-)z(t)

C=[C1CnCn],  C=[CiCpn .C, |

Equation (3) can then be written as
y(t)= X ({)CT +e(t), 4)

where the upper script 'T' indicates the transpose of a vector or a matrix. Equation (4) is a standard
linear regression model that can be solved using linear least squares algorithms.

Let C be the estimate of C, &, (t) be t he estimate of a(t) and &2 be the estimate of
o2 . The time-dependent spectral function relative to the TVAR model (1) is then given by [3]

2
(o)

H(f =T
1+Zai(t)e12”/&

2

, ()

where f, is the sampling frequency. The spectral function (5) is continuous with respect to the
frequency f and thus can be used to produce spectral estimates at any desired frequencies up to the

Nyquist frequency % However, the frequency resolution is primarily not infinite, but is
determined by the underlying model order and the associated parameters.

Two basic issues are encountered when the basis function expansion and regression approach
is applied to general time-varying parametric modeling problems, namely, how to choose the basis
functions and how to select the significant ones from the pool of the basis functions. For the first
issue, while there are a number of choices and alternatives, for example, Fourier bases, Walsh, Haar
functions, wavelets, discrete prolate spheroidal sequences, time polynomial, Chebyshev
polynomials, Legendre polynomials, there is no a guideline on how to choose the appropriate ones
from these available basis functions for a specific modeling problem[7]. In fact, each family of
basis functions possess its own unique tractability and accuracy, for example, polynomial and
Fourier basis functions work well for most smoothly and slowly varying coefficients; Walsh and
Haar functions, however, perform well for time-varying coefficients that have sharp variations
(or)piecewise changes[3].
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The second issue involves regression selection and model refinement. For a high dimensional
parametric regression modeling problem, the initial full regression model, produced by a basis
function expansion approach, often involves a great number of regressors (or) model terms,
whatever types of basis functions are employed. In most cases the initial full regression model may
be redundant (or ) ill-posed, meaning that many of the candidate regressors in the initial full
regression equation are linearly dependent on the others and therefore can be removed from the
model and the resultant parsimonious model with just a relatively small number of regressors can
often produce satisfactory results[6]

In order to alleviate the dilemma that the choice of basis functions has to be highly dependent
on a priori information on the signals to be studied, and also to make the modeling algorithm more
flexible and able to track both fast and slowly varying trends, we propose a new TVAR modeling
approach using a multi-wavelet basis function expansion scheme, where properties of different
types of wavelets are exploited and combined in a form of multi resolution decompositions.

3. The Multi-Wavelet Basis Functions

From wavelet theory a square integrable scalar function f (x)sL?(R) can be arbitrarily
approximated using the multiresolution wavelet decomposition below [5]

f(x)zzk:ajoykgpjoyk (X)+sz:ﬂj,k‘//j,k(x) (6)
12)o
. i - i - I
where the wavelet familyy;  (x) =22y, (2'x-k) and ¢, ,(x) =272 ¢, (2'x=Kk), with j,keZ (Z
IS a set consisting of whole integers) are the dilated and translated versions of the mother wavelet y
and the associated scale function ¢, «; ,and g;, are the wavelet decomposition coefficients, j, is
an arbitrary integer representing the coarsest resolution (or) scale level. Also from the properties of
multi resolution  analysis theory, any square integrable function f(x) Can be arbitrarily
j :

approximated using the basic scale functions ¢, (x) = 24¢jyk(21X—k), by setting the resolution
scale level to be sufficiently large, that is, there exists an integer J , such that

f(x)= ZaJ,k¢J,k(X) : (7)

3.1. B-spline wavelets

B-splines as piece-wise polynomial functions with functions with good local properties, were
originally introduced by Chui and Wang[5] as wavelet and scaling functions in multi-resolution
expansions.

The first order cardinal B-spline is very the well-known Haar function defined as [13]

N, (x) = Ao (x) =1,x£[0,2) (8)
The B-spline function of mthorder is defined by the following recursive formula [9]:
N () = N, () + N, (X~1);m > 2 ©)
m-1 m-1

Setting N, (x) as the scaling function, that is, ¢(x) = N (x), then the scaling function can be
expressed in terms of the scaling function N_ (x) as follows
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o(x) = 6N, (2x—k) (10)
k=0
with the coefficients given by
1 (m
Ckzﬁ{kj’ k:O,l, ........ ,3m—2 . (11)

Clearly, the support of the mth order B-spline scaling function is suppe =supp N, =[0,m]

B-spline scaling function is symmetric in the support. The most commonly used B-spline
wavelets are the linear (m=2) and cubic (m=4) cases, both of which can be expressed explicitly. The
second, third, fourth and fifth order cardinal B -splines B,(x),B,(X),B,(x)and B,(x) are given in

Table 1.

Table 1. Cardinal B -splines of order from 1 to 5

B,(x) B,(X) | 2B,(X) 6B, (x) 24B.(x)

0<x<l1 1 X X2 X3 x4

1<x<2 L 2-X | 22x*+6x-3| =3x®+12x* —12x+4 | —4x* +20x° —30x>
+20x -5

2<x<3 0 0 (x—3)? 3x® —24x° +60x—44 | 6x* —60x° +210x°
—300x +155

3<x<4 0 0 0 —x* +12x% —48x+64 | —4x* +60x° —330x?
+780x — 655

4<x<5 0 0 0 0 x* —20x% +150x°
—500x + 500

elsewhere 0 0 0 0 0

One attractive feature of cardinal B-splines is that these functions are completely supported,
and this property enables the operation of the multi resolution decomposition (6) to be much more
convenient. For example, the m™ order B-spline is defined on [0, m], thus, the scale and shift
indices j and k for the family of the functions

goj’k(x):Z%Bm(ij—k),OSij—kSm. (12)

Assume that the function f(x) that is to be approximated with decompositions (6) or (7) is
defined within[0,1],then for any given scale index(resolution level) j, based on x&[0,1],and
0<2'x—k<m the effective values for the shift index,k are restricted to the collection
{k —m<k<2! —1} with the B, (m)=0 The first and second order B-splines B, (x)andB,(x)are

non-smooth piecewise functions, which would perform well for signals with sharp transients and
burst-like spikes, B-splines of higher order would work well on smoothly changing signals.
Motivated by this consideration, this study proposes using multi-wavelet basis functions for TVAR
model. An example of the new multi-wavelet based algorithm is given in the following.
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Take the B-splines of order from 1 to 5 as an example, and consider the decomposition (7).Let
r = {k —-m<k<2’ —1} withm=1,2,......,5; let, @™ (x)= 272 B, (2’ x—k)with kel .The time-
varying coefficientsa, (t) in (1) can then be approximated using a combination of functions from

the families {golﬁm) 'm=12,....,5; ngm}.For example one such combination can be chosen as [1]

ai(t)=ZCi(,ﬁ)¢£q( j > Cllo ( j > g ( J (13)

kgrq kel', kel

Where 1<g<r<s<5 , t=1.2,...N, and N is number of observations of the signal.

Simulation results with a large number of experiments have shown that for most time varying
problems, the choice of q=4,r=4,5=5 work well to recover the time-varying coefficients. If,

however, there is strong evidence that the time-dependent coefficients have sharp changes, then the
inclusion of the first and second order B-splines would work well. The decomposition (13) can

easily be converted into the form of (2), where the collection, is{zzm t:m=12,...., L} Replaced by
the union of the three families [1]-[3]:

{p0@) ke Ty} {ol" ke T | {0l (©) ke T}

4. Linear Regression Model

TVAR Model with multi wavelet basis functions can be represented in terms of standard
linear regression model. Substitute (13) in (1) leads the following equation

y(t)=izc}f;)¢£“[ jy(t—u)+ZZC.k(pk [;jy(t—i)

i=1 kgrq =1 kel

+jzc§y¢§s> (ﬁjy(t—me(t)

i=1 kel'g

(14)

TVAR Model order p=2 and ¢=3, r=4, s=5,( third, fourth and fifth order cardinal E-

splines) works well for most of the mono-component signals. If there is strong evidence that the
time-dependent coefficients have sharp changes, then the inclusion of the first and second order B-
splines would work well. Scale index (resolution level) J=3.

For q=3kel, T,={k:-3<k<7}; for r=4; ke, I,={k:-4<k<7}; For s=5,
kel's, T ={k:-5<k<7}.

y(t) = ZZC.up&”( jy(t—n)+ii0.k¢k [;jy(t—i)

=1 k i=1 k (15)

+22: 27: Clol [W) y(t—i)+e(t)

i=1 k=-5

Denote

A®) =[A% @), A 1), A” ), A% (1), A (1), A (t)]
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A_a)[¢”ﬂﬁj @(ﬁq, ............ ,@®($)®ya—n
A a)[¢m-%,¢@ ﬁ-, ............ ,@“-ﬁ-@ya—n
A =109 1 102 ¢ Jrrerena | 5 | YD
AG) (1) = m@-ﬁ,¢@-ﬁ, ............ e ﬁ-@ya—a
00 Do) (Yo
API(t) = W’( j«pfi’[;j, ............ ,¢§5>(ﬂ®y(t—2>

® Indicates kroneker delta product

C=[C?,C!,C5,C3,Ccl Co
-t z,c;iz, ........ Cf?;)]

C25 = [C§5_)5 ] C§,5_)4, """" C§57)]

Equation (15) can be represented as below

Y=HO+e

Where

=[y@D, y(2)....eee. y(N)],
=[AD), AQ2).......... A(N)],

0=[C"],

e’ =[e(1),e(2),

...... e(N)].

ISSN 1512-1232

(16)

Here H is a regression vector and @is coefficient vector the initial full regression equation (15)
may involve a great number of free parameters; the associated regressors may be highly correlated,
and the ordinary least squares algorithm may fail to produce reliable results for such ill-posed
problems. These problems, however, can easily be overcome by performing an effective model
refinement procedure where significant model terms (or) regressors can be selected one by one
[6]. The well-known Orthogonal least squares(OLS)type of algorithms have been proven to be very
effective to deal with multiple dynamical regression problems, which involve a great number of
candidate model terms (or) regressors that may be highly correlated. In this present study, the OLS
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algorithm given in [6] is used to solve the regression equation (16).This includes a model
refinement procedure involving the selection of significant regressors and model parameter
estimation. The resultant estimates will then be used to recover the time-varying coefficients
a,(t) using (13) in the TVAR model (1).

5. Time-Dependent Spectrum Estimation

The time-varying frequency can be extracted from the TVAR parameters.a, (t) Since the

nonstationary signal is modeled as the output of the TVAR process, with a zero-mean white noise
input, e(t) the time varying power spectral density of the nonstationary signal is given by [3]

2
(o

H(f,t)= £ > 17)

Zioat
1+Zp:ai(t)e g %
i=1

where f is the sampling frequency. The spectral function (17) is continuous with respect to the
frequency 7 and thus can be used to produce spectral estimates at any desired frequency up to the

Nyquist frequency f% .

Simulation Examples

To verify the performance of the multi-wavelet basis functions approach, three examples will
be studied.

1) Signaltestl: Consider a TVAR model of order 2 below

v () =a Oy, (t-1)+a,(t)y,(t—2) +e(t) (18)
where e(t) is zero-mean Gaussian white noise. The TV parameters in (18) are given by:
0.32 cos(l.5—cos(%+ 7)),1<t s%
a(t) = 0.32005(3—cos(ﬂ+77)),ﬂ+1£t <3N/4
N /274

0.32cos(1.5- cos(% +7)),3N/4+1<t<N

a,(t) = 0.4c03(%),1st <N, (19)

Where the length of data N is 512.The variance of the noise e(t) was chosen to be 0.04, and this
made the signal-to-noise ratio to be around 13dB. A second order TVAR model was estimated to
describe the time-varying signal y, (t) . The third, fourth and fifth order B-splines, as shown by (15)
where the scale index (resolution level) J was chosen to be 3,were employed to approximate the
time-varying parametersa, (t) with i=1,2and n=1,2,....,512 .An OLS algorithm was then applied
to estimate and refine the model including significant regressor selection and model parameter
estimation. The true and estimates of the two time-varying coefficients a (t) and a,(t) are shown
in Figure 1.and Figure 2.
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Figure 1 The true and estimates of the time- varying coefficients a,(t) for the signaltestl
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Figure 2 The true and estimates of the time- varying coefficients a,{t) for the signaltestl

2) Signaltest? a sinusoid with normalized frequency nonlinearly varying in a periodic manner
over N=256 samples, starting from f, and oscillating between f_, =0.4 and f , =0.1 with a

3.2
sweep rate of u, N

f

y,(n) = cos{27{ f,n— 5 £ cos(27y, n}},ls n <256, (20)
T
Where
fmax _ fmin

2

ﬂ:

A second order TVAR model was estimated to describe the time-varying signal y,(n). The

third, fourth and fifth order B-splines, as shown by(15) where the scale index(resolution level) J
was chosen to be 4,were employed to approximate the time-varying parameters a(t) with i=1,2
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and n=1,2,.....,256 An OLS algorithm was then applied to estimate and refine the model including
significant regressor selection and model parameter estimation. The estimates of the two time-
varying coefficients a,(t) and a,(t) are shown in Figure 3.The topographical map of the time-
dependent spectrum estimated from the TVAR model is shown in Figure4, and the 2-D image of the
time-dependent spectrum produced from the 3-D topographical map is shown in Figure 5.In this
example the main features of the multi-wavelet approach is that it enables smooth trends to be
tracked in the time-varying process parameter.

= i i i i i
a 50 100 150 200 250 300
sampleindesx

g ! ! ! ! !

20)

i i i i i i
0 50 100 150 200 250 300
sampleindex

Figure.3 The estimates of the two time -varying coefficients a, () and a,(t) for the signal
test2.

Time varying power spectrum of signal

240

100

Fractional frequency sample index(n)
Figure.4 The 3-D topographical map of the time-dependent spectrum estimated from the
TVAR model for the signal test2
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Y Time varying power spectrum of signal

0.45

0.35 |

Fractional frequency

8] 50 100 150 200 250

sample index{n)

Figure.5 The 2-D image of the time-dependent spectrum produced from the
3-D topographical map shown in Figure4.

3) Signaltest3 a sinusoid with frequency jump. The frequency remains constant up
to f, =0.1.for first 127 samples and then it jumps to f, =0.4 at the 128th sample and remains

constant over the next 128 samples

cos(2x f,n),1<n <127
Y3 = (21)

cos[27z( f,+Af)n],128 <n < 256

Where
Af =, —f1,.

A second order TVAR model was estimated to describe the time-varying signal. y,(n) The

first, second and third order B-splines, as shown by(15)where the scale index(resolution level)
Jwas chosen to be 3,were employed to approximate the time-varying parameters a, (t)with
i=12and n=12,....,512 An OLS algorithm was then applied to estimate and refine the model
including significant regressor selection and model parameter estimation. The estimates of the two
time-varying coefficients a,(t) and a,(t) are shown in Figure 6.The topographical map of the time-
dependent spectrum estimated from the TVAR model is shown in Figure 7,and the 2-D image of the
time-dependent spectrum produced from the 3-D topographical map is shown in Figure 8.In this

example, the main features of the multi-wavelet approach is that it enables to capture sharp changes
in the time-varying process parameter.
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Figure 6 The estimates of the two time-varying coefficients a,{#} and a,(t) for the
signal test 3

Time varying power spectrum of signal

power in dB/Hz
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Sample index{n)

Figure 7 The 3-D topographical map of the time-dependent spectrum estimated from
the TVAR model for the signal test3
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Figure 8 The 2-D image of the time-dependent spectrum produced from the
3-D topographical map shown in Figure?.
6. Conclusions

Time-varying parameters in TVAR model have been estimated using a new multi-wavelet

basis function approach with OLS algorithm introduced in this study where the associated time
dependent coefficients are expanded using multi-wavelet basis functions. The orthogonal least
square (OLS) algorithm is then applied to refine the model parameter estimates of the TVAR
model. From the results above, it can be concluded that the main features of the multi-wavelet
approach is that it enables smooth trends to be tracked but also to capture sharp changes in the time-
varying process parameter. The time-dependent spectrum, calculated from the multi-wavelet based
TVAR model, has a capability that not only reveals the global frequency behavior of the signal but
also reflects the local variations of the signal along the time course.
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