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 Abstract  

A new time-varying autoregressive (TVAR) modeling approach is proposed for 
non-stationary signal processing and analysis. In the new parametric modeling frame 
work, the time-dependent coefficients of the TVAR model are represented using a novel 
multi-wavelet decomposition scheme. The realization of the time-varying 
AR(TVAR)model here is distinguished from existing time-varying parametric models 
where the relevant time-dependent coefficients are represented using basis function 
expansions. In most existing time-varying parametric models, the basis functions used 
for representing  the time-dependent coefficients are global, while the basis functions 
involved in the new proposed modeling approach are locally defined. The main features 
of the multi-wavelet approach is that it enables smooth trends to be tracked but also to 
capture sharp changes in the time-varying  process parameters. The associated time-
varying coefficients are then estimated by using a Orthogonal least square (OLS) 
Algorithm. Simulation results show the effectiveness of the proposed method. 
 
Keywords: TVAR model, Time-dependent coefficients, Multi-wavelet basis, Orthogonal 
least square(OLS). 

 
 

1.   Introduction 
Many processes are inherently time-varying and cannot effectively be characterized using 

time invariant models[1].Modeling and analysis of time-varying systems is often a challenging 
problem. One feature of time-varying systems is that such signals contain non-stationary transient 
events. One approach To characterize such non-stationary processes is to employ time-varying 
parametric models for example  Time-varying Autoregressive (TVAR)model[2].Approaches for the 
estimation of time-varying parameters in TVAR model can be broadly classified into two 
categories[3]: the adaptive recursive algorithm methods and the basis function approximation 
methods. Adaptive algorithms such as Least mean squares (LMS), recursive least squares(RLS) and 
Kalman filtering, are applied to estimate the time-varying parameters and are capable of tracking 
the transient variation providing that the variation is slow and smooth[4]. For the basis function 
method, time-varying parameters are expanded as a finite sequence of predetermined basis 
functions; the problem of time-varying estimation can then be reduced to a time invariant parameter 
estimation problem. The basis function expansion approaches are able to track process parameter 
changes even those with jumps, provided that appropriate basis functions are used. Many types of 
basis functions ,such as the Legendre polynomial, Fourier series, Walsh and Haar functions are 
available and capable of representing TV model coefficients. The choices of basis functions have 
significant  effects on the change speeds and smoothness of the estimated parameters. But there is 
no uniform selection guideline on how to select the appropriate basis functions from the large-
family of available basis functions[1]-[4]. 
 

 
An attractive approach is to expand the time-varying parameters using wavelets as basis 

functions. Wavelets have distinctive approximation properties and are well suited for approximating 
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general non-stationary signals and thus have been successfully applied to many areas including 
nonlinear signal processing and parametric identification[1]. The objective of this study is to present 
a novel TVAR modeling approach, where the time-dependent coefficients are expanded using a 
finite set of multi-wavelet basis functions [1]-[2]. Based on a multi-wavelet expansion scheme, a 
new method for time-dependent parameter estimation is then proposed. The term 'multi-wavelet' 
here has a twofold meaning. Firstly, the TV coefficients of the TVAR model are approximated 
using several types of wavelet basis functions(i.e. the TV Parameter estimation involves multiple 
wavelets).Secondly, these wavelet basis functions are combined in a form of multi-resolution 
wavelet decomposition[3].The advantage of the proposed method, compared with a method 
involving only a single type of wavlets, is that the multi-wavelet expansion scheme is much  more 
flexible in that it exploits the excellent properties of both non-smooth and smooth wavelet basis 
functions and thus can effectively track both rapid and slow variations of TV coefficients. In 
addition, the expansion of TV parameters onto multi-wavelet basis functions is more accurate and 
effective for dealing with non-stationary signal modeling than traditional power spectral estimation 
approaches and classical time -invariant parameter models.    

The TVAR model with multi-wavelet basis functions is able to track and capture the 
parameter changes even those with jumps .However, it should be Pointed out that in many 
applications, not all  these candidate wavelet basis functions need to be simultaneously involved in 
a same time varying coefficient approximation, some wavelet basis functions which play a more 
important role need be included in the expression, some other wavelet basis functions, however, 
may only play  some little role and can be exclude from the expression. Orthogonal least 
Squares(OLS)algorithms[6] will be applied to determine which wavelet basis functions should be 
included in the final approximation expression and which candidate wavelet basis functions should 
be eliminated From the dictionary[6].   

The paper is organized as follows .Section 2 introduces Time varying Autoregressive Model. 
In section 3, wavelet theory is briefly reviewed to provide the basis of multi-resolution expansions 
for arbitrary functions. Linear Regression model can be used to determine time varying parameters, 
and this is introduced in section 4.Simulation examples are provided in section 5, and conclusions 
are given in section 6.  

 
 2.The Time-Varying Auto Regressive Model(TVAR Model) 
 

The p-th order time-varying AR model, TVAR(p),is formulated as below[1]-[2] 

1
( ) ( ) ( ) ( )

p

i
i

y t a t y t i e t
=

= − +∑  ,                                                     (1) 

where t is the time instant (or) sampling  index of the signal ( )y t ( )e t ,is the model residual that can 
often be treated as a stationary white noise sequence with zero mean and variance 2

eσ  ,and ( )ia t  
are the time-varying coefficients.  Approaches for the estimation of time-varying parameters can be 
broadly be classified into two categories: the adaptive recursive algorithm methods and the basis 
function approximation methods. Adaptive algorithms such as least mean squares (LMS), recursive 
least squares (RLS) and Kalman filtering, are applied to estimate the time -varying parameters and 
are capable of tracking the transient variation providing that the variation is slow and smooth. For 
the basis function method, time-varying parameters are expanded as a finite sequence of 
predetermined basis functions; the problem of time -varying estimation can then be reduced to a 
time invariant parameter estimation problem, in the basis function expansion approach the time-
varying coefficients ( )ia t  using a set of basis functions{ }( ) : 1, 2,.....m t m Lπ = ,where ( )m tπ  are scalar 
functions as below [3]. 
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,
1

( ) ( )
L

i i m m
m

a t c tπ
=

=∑  .                                                                         (2) 

Substituting (2) into (1), yields 

,
1 1

( ) ( ) ( ) ( )
p L

i m m
i m

y t c t y t i e tπ
= =

= − +∑∑                                                         (3) 

 
Denote 

[ ]1 2( ) ( ), ( ),......, ( )Lt t t tπ π π π=  

( ) ( ) ( )iX t y t i tπ= −  

1 2( ) ( ), ( ),........, ( )pX t X t X t X t =    

,1 ,2 ,, ,......,i i i i MC C C C =   ,      1 2, ,........., pC C C C =    

Equation (3) can then be written as  
( ) ( ) ( )Ty t X t C e t= + ,                                                                 (4)                                                                                                                      

where the upper script 'T' indicates the transpose of a vector or a matrix. Equation (4) is a standard 
linear regression model that can be solved using linear least squares algorithms. 

Let   be the estimate of C,  be t he estimate of ( )ia t  and    be the estimate of 
2
eσ .The time-dependent spectral function relative to the TVAR model (1) is then given by [3] 

          

2

2
2

1

( , )

1 ( ) s

e

p fj f
i

i

H f t

a t e
π

σ
−

=

=

+∑
 ,                                                      (5) 

where sf  is the sampling frequency. The spectral function (5) is continuous with respect to the 
frequency f and thus can be used to produce spectral estimates at any desired frequencies up to the 

Nyquist frequency 2
sf  However, the frequency resolution is primarily not infinite, but is 

determined by the underlying model order and the associated parameters. 
 

Two basic issues are encountered when the basis function expansion and regression approach 
is applied to general time-varying parametric modeling problems, namely, how  to choose the basis 
functions and how to select the significant ones from the pool of the basis functions. For the first 
issue, while there are a number of choices and alternatives, for example, Fourier bases, Walsh, Haar 
functions, wavelets, discrete prolate spheroidal sequences, time polynomial, Chebyshev 
polynomials, Legendre polynomials, there is no a guideline on how to choose the appropriate ones 
from these available basis functions for a specific modeling problem[7]. In fact, each family of 
basis functions possess its own unique tractability and accuracy, for example, polynomial and 
Fourier basis functions work well for most smoothly and slowly varying coefficients; Walsh and 
Haar functions, however, perform well for time-varying coefficients that have sharp variations 
(or)piecewise changes[3]. 
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The second issue involves regression selection and model refinement. For a high dimensional 

parametric regression modeling problem, the initial full regression model, produced by a basis 
function  expansion  approach, often involves a great number of regressors (or) model terms, 
whatever types of basis functions are employed. In most cases the initial full regression model may 
be redundant (or ) ill-posed, meaning that many of the candidate regressors in the initial full 
regression equation are linearly dependent on the others and therefore can be removed from the 
model and the resultant parsimonious model with just a relatively small number of regressors can 
often produce satisfactory results[6] 

In order to alleviate the dilemma that the choice of basis functions has to be highly dependent 
on a priori information on the signals to be studied, and also to make the modeling algorithm more 
flexible and able to track both fast and slowly varying trends, we propose a new TVAR modeling 
approach using a multi-wavelet basis function expansion scheme, where properties of different 
types of wavelets are exploited and combined in a form of multi resolution decompositions. 

 
3. The Multi-Wavelet Basis Functions 

From wavelet theory a square integrable scalar function 2( ) ( )f x L Rε  can be arbitrarily 
approximated using the multiresolution wavelet decomposition below [5] 
  

0, 0,

0

, ,( ) ( ) ( )
k kj j j k j k

k j j k
f x x xα ϕ β ψ

≥

= +∑ ∑∑                                           (6) 

where the wavelet family 2
, ,( ) 2 (2 )

j
j

j k j kx x kψ ψ= −  and  2
, ,( ) 2 (2 )

j
j

j k j kx x kϕ ϕ= − , with ,j k Zε  (Z 
is a set consisting of whole integers) are the dilated and translated versions of the mother wavelet ψ   
and the associated scale function ϕ ,

0 ,j kα and ,j kβ   are the wavelet decomposition coefficients, 0j is 
an arbitrary integer representing the coarsest resolution (or) scale level. Also from the properties of  
multi resolution  analysis theory, any square integrable function ( )f x  Can be arbitrarily 

approximated using the basic scale functions 2
, ,( ) 2 (2 )

j
j

j k j kx x kϕ ϕ= − , by setting the resolution 
scale level to be sufficiently large, that is, there exists an integer J  , such that  
 

, ,( ) ( )J k J k
k

f x xα ϕ=∑  .                                                      (7) 

 
3.1. B-spline wavelets  
B-splines as piece-wise polynomial functions with functions with good local properties, were 

originally introduced by Chui and Wang[5] as wavelet and scaling functions in multi-resolution 
expansions. 

The first order cardinal B-spline is very the well-known Haar function defined as [13] 

1 [0,1)( ) ( ) 1, [0,1)N x x xχ ε= =                                                       (8) 

The B-spline function of mthorder is defined by the following recursive formula [9]: 

1 1( ) ( ) ( 1); 2
1 1m m m

x m xN x N x N x m
m m− −

−
= + − ≥

− −
                                    (9) 

 
Setting ( )mN x  as the scaling function, that is, ( ) ( )mx N xϕ = , then the scaling function can be 

expressed in terms of the scaling function ( )mN x  as follows 
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0
( ) (2 )

m

k m
k

x c N x kϕ
=

= −∑                                                                (10) 

 
with the coefficients given by 
 

1

1
2k m

m
c

k−

 
=  

 
,       0,1,........,3 2k m= −    .                                   (11) 

 
Clearly, the support of the mth  order B-spline scaling function is supp supp [0, ]mN mϕ = =  
B-spline scaling function is symmetric in the support. The most commonly used B-spline 

wavelets are the linear (m=2) and cubic (m=4) cases, both of which can be expressed explicitly. The 
second, third, fourth and fifth order cardinal B -splines 2 3 4( ), ( ), ( )B x B x B x and 5 ( )B x  are given in 
Table 1. 
 
                                  Table 1. Cardinal B -splines of order from 1 to 5 
 
  

1( )B x  
 

2 ( )B x  
 

32 ( )B x  
       
     46 ( )B x  

 
    524 ( )B x  

0 1x≤ <  1 x  2x  3x         4x  

1 2x≤ <   2 x−  22 6 3x x− + −
 

3 23 12 12 4x x x− + − +  4 3 24 20 30
20 5

x x x
x

− + −
+ −

 

2 3x≤ <  0 0 2( 3)x −  3 23 24 60 44x x x− + −  4 3 26 60 210
300 155
x x x

x
− +

− +
 

3 4x≤ <  0 0 0 3 212 48 64x x x− + − +  4 3 24 60 330
780 655

x x x
x

− + −
+ −

 

4 5x≤ <  0 0 0 0 4 3 220 150
500 500

x x x
x

− +
− +

 

elsewhere 0 0 0 0                0 

 
One attractive feature of cardinal B-splines is that these functions are completely supported, 

and this property enables the operation of the multi resolution decomposition (6) to be much more 
convenient. For example, the mth order B-spline is defined on [0, m], thus, the scale and shift 
indices j and k for the family of the functions 

2
, ( ) 2 (2 ),0 2

j
j j

j k mx B x k x k mϕ = − ≤ − ≤ .                                               (12) 
Assume that the function ( )f x  that is to be approximated with decompositions (6) or (7) is 

defined within[0,1],then for any given scale index(resolution level)  based on [0,1]xε ,and 
0 2 j x k m≤ − ≤  the effective values for the shift index, k  are restricted to the collection 
{ }: 2 1jk m k− ≤ ≤ − with the ( ) 0mB m =  The first and second  order  B-splines 1 2( ) ( )B x andB x are 
non-smooth piecewise functions, which would perform well for signals with sharp transients and 
burst-like spikes, B-splines of higher order would work well on smoothly changing signals. 
Motivated by this consideration, this study proposes using multi-wavelet basis functions for TVAR 
model. An example of the new multi-wavelet based algorithm is given in the following. 
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Take the B-splines of order from 1 to 5 as an example, and consider the decomposition (7).Let  

{ }: 2 1J
m k m kΓ = − ≤ ≤ −  with 1,2,......,5;m = let, ( ) 2( ) 2 (2 )

Jm J
k mx B x kϕ = − with mkεΓ .The time-

varying coefficients ( )ia t   in (1) can then be approximated using a combination of functions from 

the families ( ){ }: 1, 2,......,5;m
k mm kϕ ε= Γ .For example one such combination can be chosen as [1]  

( ) ( ) ( ) ( ) ( ) ( )
, , ,( )

q r s

q q r r s s
i i k k i k k i k k

k k k

t t ta t C C C
N N Nε ε ε

ϕ ϕ ϕ
Γ Γ Γ

     = + +     
     

∑ ∑ ∑ .                       (13) 

Where 1 5q r s≤ < < ≤   , t=1,2,.....N,    and N is number of observations of the signal. 
Simulation results with a large number of experiments have shown that for most time varying 
problems, the choice of  4, 4, 5q r s= = =  work well to recover the time-varying coefficients. If, 
however, there is strong evidence that the time-dependent coefficients have sharp changes, then the 
inclusion of the first and second order B-splines would work well. The decomposition (13) can 
easily be converted into the form of (2), where the collection, is }{ ( ) : 1, 2,.....,m t m Lπ =  Replaced by 
the union of the three families [1]-[3]: 

( ){ } ( ){ } ( ){ }( ) : , ( ) : , ( ) :q r s
k q k r k st k t k t kϕ ε ϕ ε ϕ εΓ Γ Γ . 

 
4. Linear Regression Model 
TVAR Model with multi wavelet basis functions can be represented in terms of standard 

linear regression model. Substitute (13) in (1) leads the following equation  
 

( ) ( ) ( )3 3 33
1 1, 3 1, 2, 1,7[ , ........ ]C C C C− −=  

 
( ) ( ) ( ) ( )

( ) ( )

, ,
1 1

,
1

( ) ( ) ( )

( ) ( )

q r

s

p p
q q r r

i k k i k k
i k i k

p
s s

i k k
i k

t ty t C y t i C y t i
N N

tC y t i e t
N

ε ε

ε

ϕ ϕ

ϕ

= Γ = Γ

= Γ

   = − + −   
   

 + − + 
 

∑∑ ∑∑

∑∑
                            (14) 

 
 TVAR Model order p=2 and  q=3, r=4, s=5,( third, fourth  and  fifth order cardinal  -

splines) works well for most of the mono-component signals. If there is strong evidence that the 
time-dependent coefficients have sharp changes, then the inclusion of the first and second order B-
splines would work well. Scale index (resolution level) J=3. 

For q=3 }{3 3, : 3 7k k kεΓ Γ = − ≤ ≤ ; for r=4; }{4 4, : 4 7k k kεΓ Γ = − ≤ ≤ ; For s=5, 

}{5 5, : 5 7k k kεΓ Γ = − ≤ ≤ .   

 

( ) ( ) ( ) ( )

( ) ( )

2 7 2 7
3 4
, ,

1 3 1 4

2 7
5
,

1 5

( ) ( ) ( )

( ) ( )

k k
i k k i k k

i k i k

k
i k k

i k

t ty t C y t i C y t i
N N

tC y t i e t
N

ϕ ϕ

ϕ

= =− = =−

= =−

   = − + −   
   

 + − + 
 

∑∑ ∑∑

∑∑
                (15) 

 
Denote 

( ) ( ) ( ) ( ) ( ) ( )3 4 5 3 4 5
1 1 1 2 2 2( ) [ ( ), ( ), ( ), ( ), ( ), ( )]A t A t A t A t A t A t A t=     
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( )3 (3) (3) (3)
1 3 2 7( ) [ , ,............, ( 1)t t tA t y t

N N N
ϕ ϕ ϕ− −

     = ⊗ −     
     

 

( )4 (4) (4) (4)
1 4 3 7( ) [ , ,............, ( 1)t t tA t y t

N N N
ϕ ϕ ϕ− −

     = ⊗ −     
     

 

( )5 (5) (5) (5)
1 5 4 7( ) [ , ,............, ( 1)t t tA t y t

N N N
ϕ ϕ ϕ− −

     = ⊗ −     
     

 

( )3 (3) (3) (3)
2 3 2 7( ) [ , ,............, ( 2)t t tA t y t

N N N
ϕ ϕ ϕ− −

     = ⊗ −     
     

 

( )4 (4) (4) (4)
2 4 3 7( ) [ , ,............, ( 2)t t tA t y t

N N N
ϕ ϕ ϕ− −

     = ⊗ −     
     

 

( )5 (5) (5) (5)
2 5 4 7( ) [ , ,............, ( 2)t t tA t y t

N N N
ϕ ϕ ϕ− −

     = ⊗ −     
     

 

                 ⊗ Indicates kroneker delta product 
 

3 4 5 3 4 5
1 1 1 2 2 2[ , , , , , ]C C C C C C C=  
( ) ( ) ( )3 3 33

1 1, 3 1, 2, 1,7[ , ........ ]C C C C− −=  
( )44 (4) (4)

1 1, 4 1, 3, 1,7[ , ........ ]C C C C− −=  
( )55 (5) (5)

1 1, 5, 1, 4 1,7[ ,........ ]C C C C− −=  
( ) ( ) ( )3 3 33

2 2, 3 2, 2, 2,7[ , ........ ]C C C C− −=  
( ) ( ) ( )4 4 44

2 2, 4 2, 3, 2,7[ , ........ ]C C C C− −=  
( ) ( ) ( )5 5 55

2 2, 5 2, 4, 2,7[ , ........ ]C C C C− −=  

Equation (15) can be represented as below 

    Y H eθ= +                                                                      (16) 

       Where  
[ ](1), (2).......... ( ) ,TY y y y N=  

[ ](1), (2).......... ( ) ,TH A A A N=  

                                                       [ ]TCθ = , 
                                                      [ (1), (2),......., ( )]Te e e e N= . 
 
Here H  is a regression vector and  θ is coefficient vector the initial full regression equation (15) 
may involve a great number of free parameters; the associated regressors may be highly correlated, 
and the ordinary least squares algorithm may fail to produce reliable results for such ill-posed 
problems. These problems, however, can easily be overcome by performing an effective model 
refinement procedure where significant model terms (or) regressors can be selected one by one 
[6].The well-known Orthogonal least squares(OLS)type of algorithms have been proven to be very 
effective to deal with multiple dynamical regression problems, which involve a great number of 
candidate model terms (or) regressors that may be highly correlated. In this present   study, the OLS 
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algorithm given in [6] is used to solve the regression equation (16).This includes a model 
refinement procedure involving the selection of significant regressors and model parameter 
estimation. The   resultant estimates will then be used to recover the time-varying coefficients   

( )ia t   using (13) in the TVAR model (1). 
5. Time-Dependent Spectrum Estimation 

The time-varying frequency can be extracted from the TVAR parameters. ( )ia t  Since the 
nonstationary signal is modeled as the output of the TVAR process, with a zero-mean white noise 
input, ( )e t  the time varying power spectral density of the nonstationary signal is given by [3]  

 
2

2
2

1

( , )

1 ( ) s

e

p fj f
i

i

H f t

a t e
π

σ
−

=

=

+∑
  ,                                                 (17) 

 
where sf  is the sampling frequency. The spectral function (17) is continuous with respect to the 
frequency  and thus can be used to produce spectral estimates at any desired frequency up to the 

Nyquist frequency 2
sf . 

 
Simulation Examples 
To verify the performance of the multi-wavelet basis functions approach, three examples will 

be studied.  
1) Signaltest1: Consider a TVAR model of order 2 below 
 

          (18) 
 

where ( )e t  is zero-mean Gaussian white noise. The TV parameters in (18) are given by: 
 

1

40.32cos(1.5 cos( )),1
4

4( ) 0.32cos(3 cos( )), 1 3 42 4
40.32cos(1.5 cos( )),3 4 1

t Nt
N
t Na t t N

N
t N t N

N

π π

π π

π π

 − + ≤ ≤

= − + + ≤ ≤

 − + + ≤ ≤

 

 

2
4( ) 0.4cos( ),1ta t t N
N
π

= ≤ ≤ ,                                                       (19)   

                                                          
Where the length of data N is 512.The variance of the noise ( )e t  was chosen to be 0.04, and this 
made the signal-to-noise ratio to be around 13dB. A second order TVAR model was estimated to 
describe the time-varying signal 1( )y t . The third, fourth and fifth order B-splines, as shown by (15) 
where the scale index (resolution level) J  was chosen to be 3,were employed to approximate the 
time-varying parameters ( )ia t  with 1, 2i = and 1,2,.....,512n = .An OLS algorithm was then applied 
to estimate and refine the model including significant regressor selection and model parameter 
estimation. The true and estimates of the two time-varying coefficients 1( )a t  and 2 ( )a t  are shown 
in Figure 1.and Figure 2.  
 

1 1 1 2 1( ) ( ) ( 1) ( ) ( 2) ( )y t a t y t a t y t e t= − + − +
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Figure 1 The true and estimates of the time- varying coefficients   for the signaltest1 

 

 
Figure 2 The true and estimates of the time- varying coefficients  for the signaltest1 

 
2) Signaltest2 a sinusoid with normalized frequency nonlinearly varying in a periodic manner 

over N=256 samples, starting from 0f  and oscillating between max 0.4f =   and min 0.1f =  with a 

sweep rate of 3.2
f N

µ =    

{2 0( ) cos 2 cos(2 ,1 256
2 f

f

y n f n n nµπ πµ
πµ

 = − ≤ ≤ 
  

,                                     (20) 

            Where           

       max min

2
f fµ −

= . 

 
A second order TVAR model was estimated to describe the time-varying signal 2 ( )y n . The 

third, fourth and fifth order B-splines, as shown by(15) where the scale index(resolution level) J  
was chosen to be 4,were employed to approximate the time-varying parameters ( )ia t  with 1, 2i =  
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and 1,2,....., 256n =  An OLS algorithm was then applied to estimate and refine the model including 
significant regressor selection and model parameter estimation. The estimates of the two time-
varying coefficients 1( )a t  and  2 ( )a t  are shown in Figure 3.The topographical map of the time-
dependent spectrum estimated from the TVAR model is shown in Figure4, and the 2-D image of the 
time-dependent spectrum produced from the 3-D topographical map is shown in Figure 5.In this 
example the main features of the multi-wavelet approach is that it enables smooth trends to be 
tracked in the time-varying process parameter. 

 

 
Figure.3 The estimates of the two time -varying coefficients  and   for the signal 

test2.

 
        Figure.4 The 3-D topographical map of the time-dependent spectrum estimated from the 

TVAR model for the signal test2 
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   Figure.5 The 2-D image of the time-dependent spectrum produced from the  
3-D topographical map shown in Figure4. 

 
 

3) Signaltest3 a sinusoid with frequency jump. The frequency remains constant up 
to 0 0.1f = .for first 127 samples and then it jumps to 0.4Nf =  at the 128th sample and remains 
constant over the next 128 samples 

 

[ ]
0

3
0

cos(2 ),1 127
( )

cos 2 ( ) ,128 256
f n n

y n
f f n n

π

π

≤ ≤=  + ∆ ≤ ≤
                                        (21) 

  Where   
                   0Nf f f∆ = − . 
 

A second order TVAR model was estimated to describe the time-varying signal. 3 ( )y n  The 
first, second and third order B-splines, as shown by(15)where the scale index(resolution level) 
J was chosen to be 3,were employed to approximate the time-varying parameters ( )ia t with 

1,2i = and 1,2,.....,512n = An OLS algorithm was then applied to estimate and refine the model 
including significant regressor selection and model parameter estimation. The estimates of the two 
time-varying coefficients 1( )a t  and 2 ( )a t  are shown in Figure 6.The topographical map of the time-
dependent spectrum estimated from the TVAR model is shown in Figure 7,and the 2-D image of the 
time-dependent spectrum produced from the 3-D topographical map is shown in Figure 8.In this 
example, the main features of the multi-wavelet approach is that it enables to capture sharp changes 
in the time-varying process parameter. 
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      Figure 6 The estimates of the two time-varying coefficients  and  for the  

signal test 3 
 

 
 

        Figure 7 The 3-D topographical map of the time-dependent spectrum estimated from  
the TVAR model for the signal test3 
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Figure 8 The 2-D image of the time-dependent spectrum produced from the  
3-D topographical map shown in Figure7. 

6. Conclusions 
Time-varying parameters in TVAR model have been estimated using a new multi-wavelet 

basis function approach with OLS algorithm introduced in this study where the associated time 
dependent coefficients are expanded using multi-wavelet basis functions. The orthogonal least 
square (OLS) algorithm is then applied to refine the model parameter estimates of the TVAR 
model. From the  results above, it can be concluded that  the main features of the multi-wavelet 
approach is that it enables smooth trends to be tracked but also to capture sharp changes in the time-
varying process parameter. The time-dependent spectrum, calculated from the multi-wavelet based 
TVAR model, has a capability that not only reveals the global frequency behavior of the signal but 
also reflects the local variations of the signal along the time course.    
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