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ABSTRACT 

The analytic solution of the model is obtained using the method of mapping. One 
observes ferromagnetic and ferromagnetic phases, and the reentrance phenomenon. 
For a certain range of interaction parameters between nearest neighbors, as a result of 
geometrical frustration, the ground state is degenerate, but nevertheless the system 
exhibits phase transition at a finite critical temperature accompanied by coexistence of 
order and disorder. 
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INTRODUCTION 
 

The model proposed by Lenz [1] to his student Ising [2] has an important place in the theory 
of phase transitions, as shown by the huge number of published papers accumulated over the years. 
The model has been applied to magnetic systems, lattice gas, binary alloys, systems with random 
interactions and random fields, and different types of lattices 
with nearest and further neighbor interactions. An introductory guide to the literature in the field has 
been prepared by Tobochnik [3]. 

Geometrical frustration first appeared when the triangular lattice was considered [4]. The 
spin system is said to be frustrated if its minimum energy does not incorporate the minimum of all 
local interactions of each pair of spins. In an elementary triangle with Ising spins with two possible 
orientations at each vertex, when the interaction is antiferromagnetic, all three bonds cannot be 
simultaneously in the state of lower energy. 

ISING MODEL ON THE 3-7 LATTICE AND ITS TRANSFORMATION 
 

The elementary plaquette of the lattice in the shape of a square is depicted in Fig. 1a. There 
are five internal sites, connected in the shape of bow tie and four at the corners of the square. The 
spin at each site can be in one of two possible states, denoted as upwards and downwards 
orientations, or plus and minus. The lattice has a structure similar to a chessboard pattern. Each 
plaquette is surounded by four plaquettes, all of them rotated by 90o  with respect to the one in the 
middle. This gives rise to heptagons from the elements of each pair of   eighboring plaquettes. 
Hence the name 3-7 or bow tie lattice. The Cairo lattice has a similar structure, containing only 
pentagons [5, 6]. There are sites with two different coordination numbers, three and four. Only pair 
interactions between nearest neighbors are assumed, with an interaction strength, J , 1J , or 2J , 
depending on the type of bond (Fig. 1a). The contribution to the Hamiltonian of the system from 
each elementary plaquette is given by 

)()( 443322114321 σσσσ ssssJssssJH +++−+−= .                                    (1) 
There are several ways to proceed. It can be verified that the partial summation in the partition 
function leads to a system that satisfies the free fermion condition [7] and subsequently to an 
equation for the critical temperature. Another method is to use star-triangle and dedecoration 
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transformations [8] to map the model to the centered square lattice with nearest and next-nearest 
neighbor diagonal noncrossing interactions solved by Vaks et al. [9]. It is simpler to achieve the 
mapping to the above mentioned lattice by using the general transformation [10]. Thus, summation 
over all possible orientations of the internal spins of an elementary plaquette and the subsequent 
identity in Eq. 2, provide the effective interactions ( )21,, KKKP  and ( )21,, KKKQ  of the centered 
square lattice (Fig. 1b) 
 

 
 
FIGURE 1. (a) Elementary plaquette of 3-7 lattice, (b) Transformation by elimination of the internal spin variables 1s  
and 2s . 
 

 
 
FIGURE 2. Critical temperature as a function of JJ 2  for several values of JJ1 : (a) 0>J , (b) 0<J . The 
slightly inclined lines are the asymptotes in the limit 0→cT  indicating reentrance in a tiny interval. 
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                                    ( )[ ]21210exp σσσσ QPsA ++= ,                                                      (2) 
 

where 
( ) ( )[ ] ( ) ( )[ ]2121 2coshexpexp2coshexpexp)4exp( KKKKKKP −+−++−= ,      (3) 
( ) [ ]×++= )(2coshexp)exp(4exp 21 KKKQ  

( ) ( )[ ] ( )[ ]22121 2coshexp2coshexp2coshexpexp KKKKKKK −+−+−         (4) 
=4A  
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( ) ( )[ ] ( ) ( )[ ] ( )[ ]2212121 2coshexp2coshexp2coshexpexp2coshexpexp16 KKKKKKKKKK −+−+−++−=
(5) 

kTJK =  , kTJK 11 = , kTJK 22 =  , k is the Boltzmann constant and T  is the absolute 
temperature. Here A  represents a factor contributed to the partition function from each elementary 
plaquette. The effective interaction ( )21,, KKKP  is even function of 1K  and 2K , while 
( )21,, KKKQ  is odd function of the same arguments. Therefore ( ) ( )2121 ,,,, KKKPKKKP =−−  and 
( ) ( )2121 ,,,, KKKQKKKQ =−− , and the space of parameters to be examined can be reduced to 

01 >J or 02 >J . 

CRITICAL TEMPERATURE 
 

There are two equivalent ways for determination of the critical temperature. In the first case it can 
be obtained from one or both of the following two equations [9] 

 
 
FIGURE 3. Ground state energy and spin orientations of the elementary plaquette: ((a) 0>J , (b) 

0<J , (c) two basic ground states when 0<J  and JJ <2 . FM - ferrimagnetic state, F - 
ferromagnetic state, OD - coexistence of order and disorder. 
 

                        ( ) ( ) ( ) ( ) ( ) ( )2222222222 1211,1211 xyxyxxy −=++−=++ ,            (6) 
where Px tanh=  and Qy tanh= . Alternatively the equation for cT  is given by [9, 11] 

                                          ( ) ( ) ( )[ ]2222424 14141 xxyyxx +=−+−                                  (7)  
where )2exp( Px −=  and )2exp( Qy −= . The latter equation can be factorized, which leads to the 
following simplified expressions 
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+±=                                  (8)   

Only 1y  and 2y  are positive and provide the expressions for determination of the critical 
temperature.  

In Fig. 2a the dependence of cT  on the exchange interaction parameters is shown for the 
case 0>J . The critical temperature increases with the increase of the strength of 1J  independently 
of its sign. The minima of the curves correspond to the critical temperature of the doubly decorated 
square lattice which is obtained when the interaction 2J  vanishes. The analogous curves for 0<J  
are shown in Fig. 2b. The critical temperature, similarly to the case of the 
triangular lattice, vanishes due to frustration when JJ ±=2 . The approach to zero, for 02 >J , 
follows the asymptotic law 

                                                     ( )( )JJJkTc 212ln4 += ,                                            (9) 
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or its symmetric expression when 02 <J . The same asymptotic law is found for the dependence of 

cT  on J , for a given 2J , when 2JJ −→ . 
In a narrow interval for 2J when JJ >2 , increasing the temperature from zero, a 

disordered phase appears, which is followed by an ordered phase that disappears with further 
increase of the temperature. Such a behavior is known as reentrance phenomenon. 

GROUND STATE 
The ground states of the system are shown in Fig. 3a and 3b. When 0<J  and JJ <2 , the 

ground state is degenerate. There are altogether 8 different arrangements of the spins on an 
elementary plaquette with a minimal energy. They arise from the two basic configurations (Fig. 3c) 
by mirror symmetry with respect to vertical line and from interchange between up and down spin 
orientations. Only the configurations obtained from the upper arrangement in Fig. 3c can cover the 
whole plane with plaquettes at their lowest energy. All possible coverages can be obtained by the 
quadruplets containing four elementary plaquettes shown in Fig. 4a and 4b for 0<J and JJ <2 , 
and 01 <J  or 01 <J , respectively. 

Depending on the interaction parameters, the ground state is ferromagnetic (F) or 
ferrimagnetic (FM), except for the case when 0<J  and JJ <2 . In the latter case, at T = 0, one 
observes coexistence of order and disorder (OD). 
 

 
 
The central spins of each plaquette have arbitrary orientation, while the remaining spins are ordered 
antiferromagnetically 
(Fig. 4a) or superantiferromagnetically (Fig. 4b). The entropy at T = 0 for the OD state is 

( ) 62ln0 =S . The magnetization of the quadruplets with lowest energy takes one of the following 
values: 12/1,0 ± and 6/1± . Despite the degeneracy of the ground state for the case under 
consideration, the system has a finite critical temperature (Fig. 2b). Similar behavior was observed 
in other two-dimensional Ising models [12]. 

DISCUSSION 
The analysis of the model was performed without any approximation. It shows phase 

transition to some ordered phase or transition to a state leading to coexistence of order and partial 
disorder. For 0→J  the model is reduced to decorated square lattice, for ∞→J  it becomes 
equivalent to partly decorated pentagonal Cairo lattice. Other limiting cases considered previously 
are: ∞→1J  , 02 →J and ∞→2J . 
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The model is exactly solvable in the more general case with higher spins included, not 
necessarily equal, at the intermediate locations between the central and corner spins. Also, the 
symmetry of the interactions could be avoided and one can introduce further neighbor interactions 
between spins in the first part of Fig. 1b. 
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