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Abstract 
By the concept of logical entropy of a directed graph we mean the logical entropy 

of graph partition into strongly connected components. Algorithms for working with 
graphs are fundamental for computer  science because many interesting computational 
problems are formulated in terms of graphs. Many algorithms that work with graphs 
begin with decomposition a graph into its strongly connected components. After 
decomposition such algorithms explore separately each one and then combine local 
solutions into global solution according to the structure of a graph. Partition a directed 
graph into strongly connected components has many applications in different areas. 
The notion of logical entropy, that is based on a partition logic, gives us the ability to 
compare different partitions of a graph into components. In this article we suggest an 
algorithm to compute the logical entropy of partition of a directed graph into strongly 
connected components. This algorithm is based on well-known one, which finds strongly 
connected components by using the Depth-First-Search twice. The algorithm presented 
here can be regarded as a new application of DFS. 
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I. INTRODUCTION 
David Ellerman developed the dual logic of partitions [1], defined the notion of logical 

entropy and describes its properties [2]. Let U be the finite non-empty universe. A partition  of U 
is a set of non-empty disjoint subsets of U whose union is U.  A distinction or dit of a partition is 
an ordered pair  of elements  that are in different blocks of the partition. The set of 
distinctions of a partition  is its dit set . 

 
David Ellerman defines the logical entropy  of a partition  as follows 

 
The partitions of U are partially ordered by refinement, which is the inclusion of dit sets. Let 

 be the diagonal of the . All the possible distinctions  are the dits of 1, that is the 
top. 

 
Thus, if we want  to be 1, we must define the logical entropy of the partition   in the 

following manner 
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II. LITERATURE REVIEW 
M. Behara and P. Nath [3] considered countable measurable partitions of a Lebesgue 

probability space. A partition  is called a refinement of , written as , if every element of  
is a disjoint union of elements of . Behara and Nath defined the entropy of order a of the partition 
that in a particular case is well-known Shannon’s entropy.  

D. A. Simovici and S. Jaroszewicz [4] link the notion of partition of a finite set to the notion 
of probability distribution. If  is a partition of A, then the probability distribution 
attached to  is , where  for . They consider the notion of 
entropy of a partition via the entropy of the corresponding probability distribution and present an 
axiomatization of a generalization of Shannon’s entropy starting from partitions of finite set. 

C. Cao, Y. Sui, and Y. Xia [5] define a graph  which represents the refinement relation 
between partitions of a non-empty universe U. The vertex of a graph is attached to the certain 
partitions and the edge connects a vertex to its refinement. According to the values of the 
information entropy of partitions a directed graph  is defined on . It is proved that 
entropy is non-decreasing  along the path from a vertex with the minimal entropy to one with the 
maximal entropy in . 

M. Dehmer and A. Mowshowitz [6] describe methods for measuring the entropy of graphs 
and demonstrate the wide applicability of entropy measures. It is mentioned that entropy measures 
play an important role in a variety of problem areas, including biology, chemistry, and sociology. 
 

III. AN ALGORITHM TO COMPUTE THE LOGICAL ENTROPY OF THE 
STRONGLY CONNECTED COMPONENTS 

We assume that the vertices of a directed graph  are . color, , d, and f are 
vectors of length n with components color[i],  [i],  d[i],   f[i],  i = 1, 2, … , n . 
In the CLRS [7] is given the algorithm to find strongly connected components of a directed graph: 
 

Strongly-Connected-Components(G) 
1. call DFS(G) to compute finishing times f[i] for each vertex . 
2. compute GT. 
3. call DFS(GT), but in the main loop of DFS, consider the  vertices in order of decreasing  f[i] (as 
computed in line 1). 
 

In order to compute the logical entropy of strongly connected components we continue the 
steps 1 – 3 given above, as follows. Note that the values of vectors , d, and f are considered as 
computed by the second call of DFS. 
 
Let csour be a new vector of strongly connected components sources 
m=0 
for i=1 to n 
      if   
           m = m+1 
           csour[m] = i 
Let csiz be a new vector of strongly connected components sizes 
            for i = 1 to m 
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      j = csour[i] 
     csiz[i] = (f[j] – d[j] + 1)/2 
sum = 0 
for i = 1 to m  1 
      for j = i+1 to m 
           sum = sum + csiz[i]  csiz[j]   
logicalEntropy = 2  sum / (n (n 1)) 
 
As an example, consider the folowing graph. 
 
 
 
 
 
 
 
 
 
 
 
 
A partirion  of the set of vertices   into strongly connected components 
is    

.  . 
Logical entropy: 

. 

 
IV. ANALYSIS OF THE SUPPLEMENTARY STEPS 
After execution of the steps 1 – 3 the depth-first forest is formed. According to the theorem 

22.16 in CLRS the Strongly-Connected-Components procedure correctly computes the strongly 
connected components of the directed graph G provided as its input. The vertices of the depth-first 
tree in GT that are rooted at i (i.e. at the vertex that has the property  ) form exactly one 
strongly connected component. Thus, at the end of the first  for  loop the value of the variable m 
gives the number of the strongly connected components of a graph G and the vector csour is filled 
with indices of the components sources in increasing order. 

During processing any depth-first tree DFS starts at source vertex and moves “deeper” in the 
graph whenever possible. In each step DFS explores edges out of the most recently discovered 
vertex. Once all of vertex i’s edges have been explored, search “backtracks” to explore edges 
heaving the vertex from whch i was reached. This process ends at source vetex. Every vertex j has 
been assigned a discovery time d[j] and a finishing time f[j]. The initial value of a time in DFS is 0. 
Before any assignment the value of a time increases by 1. At each  vertex j the time increases twice: 
before assignment to d[j] and before assignment to f[j]. Therefore, the number of vertices in given 
tree  is equal to  
(f[j] (d[j] 1))/2 assuming that j is a source vertex. Thus, at the end of the second  for loop  the 
vector csiz is fiiled with sizes of components in order of increasing indices.  

In order to compute the number of dits we start with first component and multiply the size of 
component by size of all succeeding components. At the end of the third  for  loop the value of 
variable sum gives a total sum of all such products. To get the correct number of dits we must 
double this sum for the sake of symmetry  (if a pair (u, v)  is a dit, then a pair (v, u) is a dit also). 

1 2 3 

4 5 6 

7 8 9 
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In last line we compute the logical entropy. 
 

V. COMPLEXITY OF SUPPLEMENTARY STEPS 
In the worst case every strongly connected component is a singleton. Therefore a value of the 

variable m is equal to n = . The first and the second for loops get executed n-times each. The 
total number of times the third and the fourth nested for loops get executed equals   

  Thus the complexity of the supplementary steps  in the 
worst case is . 
 

VI. CONCLUSION. 
The different notions of a graph entropy reflect different properties of graphs. Let us consider 

non-probabilistic notions of graph entropy. 
The automorhism group of a graph G = (V, E), denoted by Aut (G), is the set of all adjacency 

preserving bijections of V (see[8]). Let  be the collection of orbits of  Aut (G), 
suppose . The entropy or information content of G is given by the expression 
below: 

 . 

As mentioned in [8], this measure captures the symmetry structure of a graph. The lower the 
information content, the greater the symmetry. 

The logical entropy of the strongly connected components of a directed graph characterize the 
distingvishability of graph vertices. Zero logical entropy means that the graph is strongly connected, 
all vertices belong to the same component and are not distinguishable. If each vertex forms a 
distinct component, and hence every pair (u, v), u v is distinguishable, then the logical entropy 
equals 1.  

M. Dehmer and A. Mowshowitz [6] write that identification and classification of structural 
configurations in networks pose challenging problems for which entropy measures have proven 
useful. Further development of the theory of entropy measures and progress in designing efficient 
algotithms for computing entropy are needed to meet this challenge. 
        Given above algorithm can be considered as a step in this direction. It makes possible to 
compare directed graphs by means of distinguishability of vertices. 
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