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Abstract 
Third order perturbed Heisenberg Hamiltonian was employed to find the energy of 
simple cubic ferromagnetic ultra-thin films with three layers. All the magnetic energy 
parameters such as spin exchange interaction, magnetic dipole interaction, second 
order magnetic anisotropy, fourth order magnetic anisotropy, applied magnetic field, 
demagnetization factor and stress induced anisotropy were included in the third order 
perturbed Heisenberg Hamiltonian. 3-D plots of stress induced anisotropy, out of plane 
magnetic field, demagnetization factor and spin exchange interaction are presented in 
this manuscript. Magnetic easy and hard directions were determined using these 3-D 
plots.  
Keywords: Spin, Third order perturbation, Heisenberg Hamiltonian, ferromagnetic thin 
films 

 
1. Introduction: 
                 Ferromagnetic films have been described using many different theoretical models. EuTe 
films with surface elastic stresses have been theoretically investigated using Heisenberg 
Hamiltonian [1]. Magnetostriction of dc magnetron sputtered FeTaN thin films has been 
theoretically explained using the theory of De Vries [2]. Magnetic layers of Ni on Cu have been 
theoretically studied using the Korringa-Kohn-Rostoker Green’s function method [3]. Electric and 
magnetic properties of multiferroic thin films have been theoretically investigated by modified 
Heisenberg and transverse Ising model using Green’s function technique [4]. The quasistatic 
magnetic hysteresis of ferromagnetic thin films grown on a vicinal substrate has been theoretically 
described by Monte Carlo simulations within a 2D model [5]. Structural and magnetic properties of 
two dimensional FeCo orders alloys deposited on W(110) substrates have been investigated using 
first principles band structure theory [6].  
 
              Heisenberg Hamiltonian was employed to solve the problems of magnetic thin films as 
summarized below. Ferromagnetic thin films have been previously studied using the Heisenberg 
Hamiltonian with spin exchange interaction, magnetic dipole interaction, applied magnetic field, 
second and fourth order magnetic anisotropy [7, 8, 9]. Magnetization reversal and domain structure 
in thin magnetic films have been theoretically investigated [10]. In-plane dipole coupling anisotropy 
of a square ferromagnetic Heisenberg monolayer has been described using Heisenberg Hamiltonian 
[11]. Effect of the interracial coupling on the magnetic ordering in ferro-antiferromagntic bilayers 
has been studied using Heisenberg Hamiltonian [12].  
 
           Previously strontium ferrite [13] and nickel ferrite [14] films were synthesized using 
sputtering by us. In addition, lithium mixed ferrite films were fabricated using pulsed laser 
deposition [15]. For all these films, the coercivity of film increased due to the stress induced 
anisotropy. The change of coercivity due to the stress induced anisotropy was qualitatively 
calculated for all these films. The calculated values of the change of coercivity agreed with the 
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experimentally found values. So the stress induced anisotropy plays a major role in magnetic thin 
fabrications. Previously the Heisenberg Hamiltonian was employed to investigate the second order 
perturbed energy of ultrathin ferromagnetic films [16], thick ferromagnetic films [17], unperturbed 
energy of spinel ferrite films [18], second order perturbed energy of thick ferromagnetic films [19], 
third order perturbed energy of thick spinel ferrite [20], third order perturbed energy of thin spinel 
ferrite [21], second order perturbed energy of spinel ferrite [22] and spin reorientation of barium 
ferrite [23].          
 
2. Model: 
Modified classical Heisenberg Hamiltonian with all the magnetic parameters is given as below. 
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            Here J is spin exchange interaction, ω is the strength of long range dipole interaction, θ is 
azimuthal angle of spin, )2(

mD  and )4(
mD  are second and fourth order anisotropy constants, inH  

and outH  are in plane and out of plane applied magnetic fields, sK  is stress induced anisotropy 
constant, n and m are spin plane indices, and N is total number of layers in film. When the stress 
applies normal to the film plane, the angle between mth spin and the stress is θm. Because the size 
of the unit cell of ferromagnetic structure is taken as one, rmn is taken as a fraction of the size of 
the unit cell of ferromagnetic structure. 
The total energy per unit spin can be deduced to the following equation. 
 

E(θ)= - ∑
=

−−− +Φ−−Φ−
N

nm
nmnmnmnmnmJZ

1,
)]cos(

4
3)cos()

4
[(

2
1 θθωθθω

 

          )cossincoscos( 4)4(

1

2)2(
moutminmm

N

m
mm HHDD θθθθ +++− ∑

=

 

                ∑∑
==

−−+
N

m
ms

N

nm
nm

d KN
11, 0

2sin)cos( θθθ
µ

                                                                                       (2) 

 

where m (or n) ) (,,Z n-m nmnm or θθφ − , N, Hin and Hout being indices of layers, number of nearest 
spin neighbors, constant arising from summation of dipole interactions, azimuthal angles of spins, 
total number of layers, in plane applied field and out of plane applied field, respectively. 
With some perturbation, above angles θm and θn measured with film normal can be expressed in 
forms of mm εθθ +=  and nn εθθ += , and above energy can be expanded up to the third order of  
ε as following. Here εm (or εn) is a small perturbation of the angle.    
 
E(θ)=E0+E(ε)+E(ε2)+E(ε3)                                                                                                        (3) 
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Here the elements of matrix C can be given as following, 
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In addition, third order can be expressed as the 
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Also βnm=βmn, implying that matrix β is symmetric. 
After substituting equations (8) and (6) in equation (3), total energy can be expressed as  
 

E(θ)=E0+ εα
. + εβεεε

 ...
2
1 2+C    

 
At the energetically favorable state, the derivative of above E(θ) with respect to ε will be zero. 
Using that condition, ε can be found. After substituting that ε in above equation of E(θ), following 
equation can be derived.  
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The total magnetic energy have been calculated only for three layers (N=3), and the equation have 
been proved under the assumption of D1

(2)=D2
(2) =D3

(2)and D1
(4)=D2

(4)=D3
(4). 

Following equation has been used to calculate the elements of matrix C+.  
 

N
ECC −=+ 1.           

                                                                                                    
Each element of matrix E is one, and C+ is a pseudo inverse.  
 
3. Results and discussion: 
            For ferromagnetic films with simple cubic structure, Z0=4, Z1=1, Z2=0 and  ,0336.90 =Φ  

3275.01 −=Φ  [7, 8, 9]. All the data are given here for film films with three layers (N=3). 
Previously, the third order perturbed Heisenberg Hamiltonian with only the magnetic exchange 
energy, second order anisotropy, and the stress induced anisotropy terms has been solved by us. 
Here all the seven magnetic energy terms will be considered. 

            Figure 1 shows the 3-D plot of 
ω
θ )(E  versus angle and 

ω
sK .  Magnetic easy directions are 

observed at 
ω

sK =11, 21, ----etc. Hard directions appear at 
ω

sK =7, 17, 27, -----etc. Two magnetic  
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Figure 1: 3-D plot of 
ω
θ )(E  versus angle and 

ω
sK . 

hard directions with different energies can be observed. Similarly two magnetic easy directions with 

different energies can be seen. The 
ω

sK  values at hard directions with higher energy and easy 

directions with lower energy are given here. Hard and easy directions can be observed at 8 and 4 

radians, respectively. Other parameters were kept at 10
0

====
ωµωωω
doutin NHHJ

, 30
)2(

=
ω
mD

 and 

20
)4(

=
ω
mD  for this simulation. Previously 3-D plot of energy versus Ks and angle was plotted for 

sc ferromagnetic films using third order perturbed Heisenberg Hamiltonian with few terms only 24. 
Compared to that graph, many peaks can be observed in this case due to the consideration of other 
terms. In addition, the shape of the graph was entirely different.    

             Figure 2 shows the 3-D plot of 
ω
θ )(E  versus angle and 

ω
outH

. Here other parameters were 

kept at 10
0

====
ωµωωω
dsin NKHJ , 30

)2(

=
ω
mD

 and 20
)4(

=
ω
mD  for this simulation. Magnetic easy 

directions can be observed at 
ω

outH =2, 7, 12, ---etc. Magnetic hard directions appear at 
ω

outH =1, 11, 

21, ---etc. In addition to these major magnetic easy and hard directions, some minor easy and hard 
directions can be observed. Hard and easy directions of magnetizations appear at 4 and 5.57 radians, 
respectively. Angle between easy and hard directions is 90 degrees in this case.  
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Figure 2: 3-D plot of 

ω
θ )(E  versus angle and 

ω
outH

. 

               

 Figure 3 shows the 3-D plot of 
ω
θ )(E  versus angle and 

ωµ0

dN . Other parameters were kept at 

10====
ωωωω

outsin HKHJ , 30
)2(

=
ω
mD

 and 20
)4(

=
ω
mD  for this simulation. Easy directions of 

magnetization can be observed at 
ωµ0

dN =1, 11, 21, ----etc. Hard directions of magnetization appear 

at 
ωµ0

dN =10, 20, 30, ----etc. 
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Figure 3: 3-D plot of 

ω
θ )(E  versus angle and 

ωµ0

dN . 

 

             Figure 4 indicates the 3-D plot of 
ω
θ )(E  versus angle and 

ω
J . Other parameters were kept at 

10
0

====
ωµωωω
doutsin NHKH , 30

)2(

=
ω
mD

 and 20
)4(

=
ω
mD  in this case. Easy directions can be 

observed at 
ω
J =10, 20, 30, ----etc. Magnetic hard directions appear at 

ω
J =1, 11, 21, ----etc. Hard 

and easy directions of magnetizations appear at 3 and 6 radians, respectively. 
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Figure 4: 3-D plot of 

ω
θ )(E  versus angle and 

ω
J . 

 
 
4. Conclusion: 

                Several magnetic easy and hard directions were found in the plots of 
ω

sK , 
ω

outH
 and 

ω
J . 

However, only few peaks were found in the plot of 
ωµ0

dN
. This may be related to the fact that 

ωµ0

dN contributes only a constant to the equation of total energy. According to figure 1, hard and 

easy directions can be observed at 8 and 4 radians, respectively. According to figure 2, hard and 
easy directions of magnetizations appear at 4 and 5.57 radians, respectively. Easy directions of 

magnetization can be observed at 
ωµ0

dN =1, 11, 21, ----etc and, hard directions of magnetization 

appear at 
ωµ0

dN =10, 20, 30, ----etc. Hard and easy directions of magnetizations appear at 3 and 6 

radians, respectively according to figure 4. The angle between easy and hard directions is 90 
degrees only according to figure 2. 
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