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Abstract 

Multilayer Perceptron (MLP) models have been developed to predict two-phase 
average void fraction and probability density function (PDF) of void fraction in 90o 
bends. The Artificial Neural Network (ANN) methodology was reported using MLP 
trained with 2 algorithms. Logarithmic sigmoid transfer function was used in a single 
hidden layer for both algorithms (Gradient descent (GDMV) and Levenberg-Marquardt 
(LM) algorithms). Both MLP models were optimised by varying the number of neurons 
in the hidden layer while monitoring the Mean Square Error (MSE). The performance 
of the models was evaluated using the Average Absolute Relative Error (AARE) and 
Cross Correlation Coefficient (R). Both MLP models developed for the prediction of 
average void faction before the bend performed excellently well. However, the MLP 
model trained with LM algorithm having 3 neurons in the hidden layer gave better 
performance. Similarly, the MLP model trained with LM algorithm, having 11 neurons 
in the hidden layer for the prediction of PDF of void fraction before the bend gave 
excellent prediction. Model performance for the MLP models after the bend gave poor 
generalisation property. However, the MLP model based on GDMV algorithm gave 
better prediction for predicting average void fraction and PDF of void fraction after the 
bend. It was concluded that MLP models may with some confidence be used to predict 
the average void fraction and the PDFs of void fraction observed before a vertical 90o 
bend. 
Keywords: 90o bend, air–silicone oil; void fraction; MLP; ANN; LM algorithm; GDMV 
algorithm; modelling. 

 
1. Introduction  
Two phase gas-liquid flows are both common and important in oil and gas production and 

flow lines of different configurations [2]. Two-phase flows are often conveyed through pipes of 
various configurations as well as pipe fittings such as bends [27]. According to [3] the presence of 
bends introduces secondary flows, redistribution of multiphase fractions, flow excursions, deviation 
in flow paths etc. The orientation of the connecting pipe make a difference in the flow patterns for 
reasons which include sharp deviation in flow path around bends and also because of the role 
played by gravity and density difference between the two fluids. Two important characteristics of 
two-phase flows around bends are highly fluctuating voids immediately after bends and changes in 
flow pattern. It is therefore imperative to develop a means for predicting flow characteristics. A 
method that has been successfully used for determining flow pattern is the probability density 
function (PDF) of void fraction. A number of modelling techniques have been employed in the past 
for void fraction and flow pattern prediction. The models are either empirical, mechanistic of 
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numerical. However, the application of Multilayer Perceptron Modelling (MLP), for the prediction 
of flow characteristics around bends has received little attention in the peer review literature. Most 
of the investigations have been restricted to experimental investigation: [2], [11] - [14], [17], and 
[25] address the issue of gas–liquid systems but most of the reported experiments are not extended 
to the application of MLP to predict such flows in bends.  

MLP modelling is a type of numerical modelling. Numerical modelling technique is a useful 
tool in visualising the dynamic behaviour of real systems. It has a unique advantage in that there is 
no limit to the complexity of problem it can solve [26]. MLP models are similar to ANN and are 
based on the concept of interconnected systems of simple-processing units [10]. 

1.1. The Back-propagation Algorithm 
In back-propagation algorithms the processing elements are arranged in layers, signals are 

sent forward while errors are propagated backwards. The layers consist of input, hidden and outputs 
layers. The number of processing elements in the input layer is defined by the number of 
independent input variables, while that of the hidden layer is determined by method of optimisation. 
There may be one or more intermediate hidden layers as illustrated in Figure 1. 

 

 
 

Figure 1: Schematic diagram of the ANN [24]. 
 
Generally MLP modelling similar to ANN use either supervised or unsupervised learning 

during the process of model training. The method used in back-propagation algorithm is supervised 
learning, which means that the user provides the algorithm with examples of the inputs and outputs 
for the network to compute, and then the error (difference between actual and expected results) is 
calculated. The concept of the back-propagation algorithm is to reduce this error, until the ANN 
learns the training data. The training usually begins with random weights (or user specified 
weights), and the goal is to adjust them so that the error will be minimal [10]. 

1.2. Two-phase flow in 90o bends 
A number of experimental and modelling studies have been carried out in the past for two 

phase gas-liquid flows in bends. Majority of these works were for air-water systems and very few 
used advanced instrumentation for their investigation. A Visual and experimental study for two-
phase flow through a transparent pipe 76-mm diameter was carried out by [14]. Their flow facility 
consisted of a vertical 90° bends of 305 and 610 mm radii of curvature. The investigation for 
limited to bubble and slug flow regimes for air-water flow. The goal was to interrogate the 
competitive effects of centrifugal and gravity forces on the ensuing flow distribution in bends. A 2D 
modelling study was carried out by [11] for flow around a vertical 90° bends. Model predictions 
from their work were compared results of experimental investigation of [14]. The results showed 
poor correlation between model predictions and experimental measurements. An extension of the 
2D model to a 3D model was carried out by [12] who obtained better model predictions for 
experimental measurements. [13] developed an improved 3-D numerical simulation, in which a 
substantially different solution algorithm, with an additional momentum term, was adopted. They 
applied the models to both air–water and gas–oil mixtures. The predicted simulation flow data gave 
better agreement with the experimental data compared to those obtained by the 2-D model in [11]. 
There was, however, a shortage of experimental data at the time for validation of their gas-oil 
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simulation. An experimental and numerical modelling study was carried out by [17] for air-water 
flow in a bend of 630 mm radius of curvature. The flow configuration was horizontal to vertical 
though the bend and the pipe were made of transparent acrylic material of internal diameter 100-
mm. Visual observations of the flow regime was done using  a 200 Hz digital camera and an auto-
regressive modelling method. They observed two flow regimes (Slug and churn flow) in the riser 
and three flow regimes (stratified, slug and enhanced slug) in the horizontal pipe section. The time 
dependent behaviour of two-phase flow was modelled by an in-house code named Solution Package 
for Hyperbolic Functions (SOPHY-2). In most of the tested data an excellent agreement was found 
between the experimental and modelling results. [2] used electrical capacitance tomography (ECT), 
high speed video and wire mesh sensor (WMS) to interrogate the effects of 90o bends on two-phase 
air–silicone oil flows. The downstream pipe was kept horizontally while the upstream pipe was 
vertical. The characteristic PDF of void fraction for various flow rates were used to identify the 
flow regime upstream and downstream of the bend. They observed bubble, stratified, slug and semi-
annular flows downstream of the vertical 90o bend whiles the flow patterns exhibited upstream of 
the bend was the same as for the horizontal 90o bend. [25] conducted an experimental study of the 
behaviour of two-phase air–water flow from the vertical to the horizontal through a 90o bend using 
conductance probes technique. Void fraction measurement was done using the conductance probes 
(3 upstream and 6 downstream of the bend). The characteristic PDF of void fraction, power spectral 
density (PSD) of the time series of cross sectional average void fraction and visual observations 
were used to characterize the flow behaviour. For the horizontal pipe, plug, slug and stratified wavy 
flow patterns were seen while slug and churn flows in the vertical pipe. 

1.3. Application of Artificial Neural Network (ANN) methodology to gas–liquid flows 
[15] used ANN to process signals measured using a conductivity probe with the aim of 

classifying them into various flow patterns. They used visual map identification to validate the 
results of ANN model predictions. The ANN predictions were in good agreement with results of 
visual identification. A comparative model study was carried out by [21] for the prediction of 
pressure loss in five venture scrubbers. They compared the results of ANN prediction with a 
number of other models and concluded that predictions of the ANN models were better within the 
range of data tested. [30] used adopted inputs, all representing the characteristics of PSD, in training 
a three-layered feed forward ANN for the prediction of flow pattern. The model predictions gave 
good agreement to the observed flow patterns. A comparative study of CFD and ANN was carried 
out by [4]. They used both CFD and ANN for the prediction of pressure drop in two phase gas-
liquid flows in 2-cm diameter, 6-m long pipe. The inputs to their ANN model were gas velocity, 
liquid velocity and tube inclination. Predictions from both models indicated that the CFD model 
performed better. [19] used ANN technique in predicting the pressure drop observed in three phase 
flow conditions. The resilient back-propagation algorithm was used to formulate the ANN model. 
This method gave correlation coefficients up to 98.82 %. [9] employed ANNs in characterizing 
observed flow pattern. The method was based upon an analysis of the PSD determined from the 
differential pressures measured within a horizontal pipe conveying. Over the range of data tested, 
model predictions were in good agreement with experimental data. Three different ANN algorithms 
were used by [24] to predict the observed void fractions and pressure drops for a two-phase flow in 
horizontal pipe. The model based on Levenberg Marquardt ANN algorithm with five processing 
elements gave the best prediction of void fraction and that based on back-propagation ANN 
algorithm with fifteen processing elements performed best for the prediction of pressure drop. 
Later, [22] applied a similar methodology for the prediction of flow regime of air–water flow in 
circular micro channels with reasonable success. [23] further applied ANNs in predicting frictional 
pressure drop in U-bends. Model predictions gave fairly accurate results of the frictional pressure 
drop across U-bends. Probabilistic Neural Network (PNN) was used by [16] for flow pattern 
identification. The range of gas and liquid superficial velocity tested were 0.0026-6.05 m/s and 
0.03-2.5 m/s respectively. Within this range they observed five different flow patterns. The 
accuracy of the PNN when it was used to predict flow patterns was as high as 95.6%. An attempt to 
predict flow patterns for two phase flow was done by [20]. They used three pairs of inputs (gas 
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velocity and liquid velocity, total pressure and liquid hold-up, Reynolds number for liquid and gas). 
The study was conducted in a horizontal pipe for four different flow regimes (Annular, Dispersed 
bubble, intermittent and stratified). Their model predicted over 80% of the flow patterns correctly 
and performed particularly well within the dispersed bubble region for all input pairs. In general the 
input pair of the natural logarithm of gas and liquid velocity gave better prediction. 

The above literature survey show that limited work has been done in the use of MLP, ANN 
methodology for the prediction of average void fraction and PDF of void fraction in 90o bends for 
two-phase flows through large diameter pipes. Most of the research has been centred on empirical 
and visualization techniques. Most of the works that use ANN methodology are those for pressure 
drop and flow pattern prediction. 

2. Experimental Methodology 
A summary of the experimental facility is provided in [1] and [2]. The experimental test 

section of the facility is made of a 67-mm internal diameter a transparent acrylic pipe of 6 m length.  
A vertical 90o bend with a radius of curvature 154 mm was maid of the straight pipe as shown 

in Figure 2. Downstream of the bend there is another straight pipe from which the air – silicone oil 
mixture enters a flexible pipe that takes it to the phase separator.  The behaviour of the air – silicone 
oil mixture was examined using WMS. This technology, described by [28], can image the dielectric 
components in the pipe flow phases by measuring rapidly and continually the capacitances of the 
passing flow across several crossing points in the mesh.  

The WMS was first placed at about 4.92 m (73 diameters) away from the mixing section. 
WMS was afterwards moved to a distance of about 0.21 m (3 diameters) after the bend. The 
experiments were all performed at an ambient laboratory temperature of 20±0.5 and a pressure of 1 
bar. 

 

Figure 2: 3-D geometry of the computational domain showing the measurement locations and 
instrumentation 

 
Table 1: Properties of the fluid at 1 bar and at the operating temperature of 5.020 ± oC 

Fluid Density (kgm-

3) 
Viscosity  (kgm-1s-1) Surface 

tension (Nm-1) 
Thermal 
conductivity (Wm-
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1K-1) 
Air 1.18 0.000018 0.02 0.1 
Silicone oil 900 0.00525 
 

The experimental data collected using WMS was time series void fractions for 38 
experimental data sets before the bend and 33 experimental data sets for after the bend scenario. 

The input parameters to the ANNs are the gas and liquid superficial velocities. Parameters 
like liquid and gas densities, liquid and gas viscosities, surface tension and thermal conductivity of 
liquid were not used in the formulation of the ANN model formulation as they were assumed to 
remain constant. The input parameters are summarised in Table 2. The output parameters are time 
averaged cross sectional area void fraction and PDF of void fraction. 

 
Table 2. Inlet flow rates (model inputs) 

 Before Bend After Bend 
USL 0.05 0.14 0.38 0.05 0.14 0.38 

USG 

0.047 0.047 0.047 0.047 0.047 0.061 
0.061 0.061 0.061 0.061 0.061 0.288 
0.288 0.288 0.288 0.288 0.288 0.344 
0.344 0.344 0.344 0.344 0.344 0.404 
0.404 0.404 0.404 0.404 0.404 0.544 
0.544 0.544 0.544 0.544 0.544 0.709 
0.709 0.709 0.709 0.709 0.709 1.891 
0.945 0.945 0.945 0.945 1.891 2.363 
1.418 1.418 1.418 1.418 2.363 2.836 
1.891 1.891 1.891 1.891 2.836 4.73 
2.363 2.363 2.363 2.363 4.73  
2.836 2.836 2.836 2.836   

 
3. Multilayer Perceptron Modelling (MLP) 
Two MLP codes that mimic Artificial Neural Networks (ANN) models were developed in this 

paper for the prediction of average void fraction and PDF of void fraction of gas-liquid flow in 90o 
bends. The MLP codes were developed in MATLAB and are based on the back-propagation 
algorithms (Gradient Descent (DC) and Levenberg-Marquardt (LM)). The model topography is 
such that each model consists of three layers (input, hidden and output layers). The transfer function 
used in the hidden layer is the logsigmoid (logsig) function given by Equation (1). 

  
                                               (1) 

 
Where w is the weight function and x represents the vector input (gas and liquid superficial 

velocities in this case). 
 
3.1. Gradient descent algorithm (GDMV) 
This is regarded as the simplest of all the back-propagation algorithms. It is a first order 

algorithm and employs the generalised delta rule and weights are updated using the formula; 
 

                                (2) 

                 (3) 
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where  is the step size. 
The gradient descent algorithm has a tendency to be slow in terms of convergence [29]. This 

slowness is often addressed by using a variable step size and a ‘momentum term’. When the 
momentum term is added to Equation (3) Equation (4) is obtained; 

 
                  (4) 

 
E is the error function,  is the weight matrix and  is the weight update for each iteration. The 
error function E, used for this work is Sum of Squares of error. Error here refers to the difference 
between the model output and experimental output. 

 
 

Figure 3: Gradient descent algorithm (with variable step size and momentum term) flowchart 
 

The target is to minimise the partial derivative in Equation (2) (i.e. the gradient of the error 
function) to zero. First order algorithms has the inherent disadvantage of being slow, but also has a 
unique advantage, in that the gradient term can be minimised to zero with sufficient amount of 
iterations.  

Figure 3 and 4 depict flow charts of the gradient descent and Levenberg-Marquardt 
algorithms respectively that were developed here. 
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3.2. Levenberg-Marquardt algorithm (LM) 
The Levenberg-Marquardt algorithm combines of Gauss-Newton algorithm (a second order 

algorithm) and gradient descent algorithm (a first order learning algorithm).  Generally, second 
order algorithm converges much faster than the first order algorithms. 

 

 
 

Figure 4: Levenberg-Marquardt algorithm flowchart 
 

 
The update rule of Levenberg–Marquardt algorithm can be presented as 
 

                   (5) 
Jk is the Jacobian matrix given by; 
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 Where e is given by  

 
where, μ is always positive, called combination coefficient and I is the identity matrix. 

As the combination of the steepest descent algorithm and the Gauss–Newton algorithm, the 
Levenberg–Marquardt algorithm switches between the two algorithms during the training process. 

 
3.3. MLP Model Optimization 
The optimisation process involves determining the network topology and weights that gives 

best model performance when tested using certain performance equations. It is important to 
determine the optimum number of neurons in the hidden layer. This optimum number depends on 
the number of input and output units, the number of training cases, the amount of noise in the 
targets, the complexity of the error function, the network architecture, and the training algorithm. In 
most cases according to [19], there is no straight forward method of determining the optimal 
number of hidden units without training using different numbers of hidden units and estimating the 
generalization error of each. 

In the present work, a single hidden layer with multiple neurons units is used as previous 
study by [24] showed that a single hidden layer with sufficient number of neurons performed 
satisfactorily well. The details of the concept of hidden layer can be found elsewhere, example in 
[18]. In the hidden layer the numbers of processing elements are optimized by varying the number 
from 1 to 25.The basic approach used in constructing the successful model was trial and error. The 
generalization error (cross validation error) of each inspected network design was visualized and 
monitored carefully through plotting the governing statistical parameters such as correlation 
coefficient, root mean squared errors, and average absolute relative error of each inspected 
topology. 

It is worthy of note that various network topology could be employed for MLP model 
development. However, the back-propagation network with feed-forward algorithm was chosen 
here as this has performed satisfactorily well in previous works such as [7], [8], [19], [24] and [30] 
among others. 

 
3.4. Objective Function and Performance of ANN 
The objective function provides the basis for performance evaluation and network algorithm 

selection. A suitable objective function which provides a good basis for numerical computation and 
attainment of set goals must be chosen. In this work, sum of squares of error is used as the objective 
function and it is given by equation (6). 

                         (6) 
The performance of the network is checked using the following parameters: Mean Squared 

Error (MSE), 
                (7) 

 
Average Absolute Relative Error (AARE) 

                  (8) 
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The AARE eliminates the possibility of obtaining negative values of relative error. The aim is 
to obtain values of AARE close to zero. 

Cross-correlation coefficient (R) 
                               (9) 

A value of R unity (1) means there is a perfect correlation between experimental and 
predicted results, while a value of R close to zero would indicate that there is little or no correlation 
between experimental and predicted data [24]. Thus models capable of predicting experimental data 
such that the value of R is close to one would be considered as good models. 

 
3.5. Developed MLP Algorithms Codes (program development) 
Data collection and partitioning, filtering and screening procedure, data randomization, pre-

processing, and post-processing were done before running the models. A total number of 38 data 
sets before the bend and 33 data sets after he bend were utilized for the purpose of this study for 
modelling ends. Input data are. 

 
The partitioning ratio of 4:1:1 is known to yield better training and testing results (but 

depends on the number of data set used for training). Other common partitioning ratios are 2:1:1 
and 3:1:1 [24]. For this work, a partitioning ratio of 3:1:1 was adopted. The training set is used to 
develop and adjust the weights in a network. The validation set is used to ensure the generalization 
of the developed model during the training phase, and the test set is used to examine the final 
performance of the model. The primary concerns are to ensure two things: (a) the training set 
contains enough data, and suitable data distributed evenly to cover the entire range of data, and (b) 
there is no unnecessary similarity between the data in different sets. The number of iterations for 
each model was initially put at 100,000 iterations but if performance does not improve much after 
10,000 iterations then training is stopped. 

The MLP models developed for the prediction of average void fraction before the bend based 
on gradient descent algorithm and PDF of void fraction after the bend based on Levenberg-
Marquardt algorithm are given in the appendix. 

 
 
4. RESULTS 
In this section results model optimization and performance of the developed MLP models are 

presented. 
 
4.1 Result of MLP model optimization  
Figure 4 is a plot of minimum cross-validation MSE against number of processing elements in 

the hidden layer of a selected MLP. The optimum network configuration is chosen as that which 
gives the least value of cross-validation MSE, which is the network configuration with the best 
generalisation capability. 
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Figure 5: Minimum cross-validation MSE versus number of processing elements in hidden layer for 

PDF of void fraction using Levenberg-Marquardt algorithm (before bend). 
Table 3 gives the optimum number of neurons in the hidden layer for each MLP model developed. 
All further analysis will be based on these optimal configurations. 
 

Table 3: Optimum number of neurons 
Algorithm Optimum number of processing elements 

Average void fraction PDF of void fraction 
GDMV (before bend) 2 4 
LM (before bend) 3 11 
GDMV (after bend) 16 4 
LM (after bend) 2 4 

 
4.1. Performance of the Optimum Network Configurations for Various MLP Codes 
Table 4 gives performance of the optimum network configurations for various MLP codes for 

training, validation and testing.  
 

Table 4: Performance of the optimum network configurations for various MLP codes developed 
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GDMV (before bend) MSE 9.2514 x 10-4 0.0284 7.4305 x 10-4 0.0957 7.8331 x 10-4 0.0270 
AARE 0.0265 0.7428 0.0939 3529.5 0.0388 8.7071 
R 0.9980 0.9390 0.9991 0.5317 0.9988 0.9255 

LM (before bend) MSE 4.1445 x 10-4 0.0089 0.0024 0.1065 0.0026 0.0279 
AARE 0.0157 0.6537 0.1590 1.3139 0.0274 0.7866 
R 0.9991 0.9743 0.9977 0.5486 0.9958 0.9342 

GDMV (after bend) MSE 0.0074 0.0686 0.1276 0.2646 0.0267 0.1801 
AARE 0.0567 0.9702 0.3362 32.9285 0.1961 1.5740 
R 0.9855 0.7532 0.1219 0.0808 0.9156 0.4507 

LM (after bend) MSE 0.1709 0.1605 0.1101 0.2731 0.1820 0.3227 
AARE 0.3062 1.0291 0.2622 1.0789 0.7013 2.7625 
R 0.5893 0.5841 0.7863 0.3482 0.9330 0.3458 

 
The performance results for the test set is of greater significance here as it gives an indication 

of the model’s ability to predict the parameters of interest, which is the network’s generalisation 
property. The Average Absolute Relative Error is used in selecting the best model, among the ones 
developed. Small values of AARE and values of correlation coefficient (R) close to unity (1) 
indicate good model performance [24]. The model chosen, from the models tested, for the 
prediction of average void fraction or PDF of void fraction before or after the bend is the one with 
the least value of AARE. 

 
4.2. Performance Analysis before Vertical 90o Bend 
Results of model performance before the bend are presented in this section. 
 
4.2.1 Performance of MLP models for the prediction of average void fraction before 

bend 
Result of Table 4 shows that both MLP algorithms developed for the prediction of average 

void fraction before the vertical 90o bend were good as seen from the small values of AARE and the 
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closeness of R to unity in both cases. However, the model based on the Levenberg-Marquardt 
algorithm is preferred since it has the smallest value of AARE. The Results for training and 
validation also showed that both MLP models performed satisfactorily, but only result of test data 
was used as bases for assessing model performance. Figures 6a and 6b show the variation of MSE 
with number of iterations for the two MLP models (Gradient descent and Levenberg-Marquardt 
algorithm) developed for the prediction of average void fraction before the bend. The plots show a 
decrease in the MSE with number of iteration, which is an indication of error convergence. Iteration 
is stopped after 10000 and 100 iterations respectively as there is no significant improvement after 
these points. 

It is important to note that besides closeness of model results to experimental data, the MSE 
curve for both validation and testing must follow similar pattern for the models to be reliable over 
the entire range of data set [24]. This is to eliminate the problem associated with poor data 
distribution and/or partitioning for training, validation and testing. It is also important to note that 
validation and testing data do not participate in the weight update process, though validation data is 
used to stop training when necessary to avoid over-fitting. The performance plots of Figures 6a and 
6b show similar trends for validation and testing, thus the models show good generalisation 
property and can be relied upon over the entire range of data set. 

 
 

Figure 6a (GDMV model): Variation of MSE with number of iterations for prediction of average 
void fraction before bend 

 
 

 
 

Figure 6b (LM model): Variation of MSE with number of iterations for prediction of average void 
fraction before bend 

 
Figures 7a and 7b are regression plots of test data for the two MLP models developed for the 
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prediction of average void fraction before the vertical 90o bend. The plots are linear with most of 
the points close to or directly on the line. Also the intercept of the line is close to zero and slope 
close to one, thus given an almost perfect correlation between experimental and predicted values of 
average void fraction before bend. These plots further justify the reliability of the proposed models. 

 
 

Figure 7a (GDMV model): Regression plot of test data before 90o bend for prediction of average 
void fraction. 

 

 
 
Figure 7b (LM model): Regression plot of test data before 90o bend for prediction of average void 

fraction. 
 

 
Figure 7c (GDMV model): Comparison between predicted and experimental void fraction for test 
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data before 90o. 
 

 
 
Figure 7d (LM model): Comparison between predicted and experimental void fraction for test data 

before 90o. 
 

Results of Figure 7 c and & d show that all the test data predicted by the GDMV model and 
LM model were with ± 15% and ± 10% of the experimental data respectively. This further confirms 
that the LM model performed better for the prediction of average void fraction before the bend.  

 
Table 5 gives a comparison between experimental and predicted average void fraction before 

the bend. The results showed that predictions for both models were close to experimental results 
especially at low liquid superficial velocities. 
 
 

Table 5: Comparison between experimental and predicted average void fraction of air/silicone oil 
two-phase flow before vertical 90o bend 

 
U SL U SG Experimental 

average void 
fraction 

GDMV model predicted average void fraction LM  
model predicted  
average 
 void fraction  

0.050 0.344     0.3806     0.3668     0.3789 
0.050 1.418     0.6592     0.6522     0.6249 
0.050 1.891     0.6990     0.7008     0.6759 
0.050 2.836     0.7591     0.7628     0.7665 
0.140 0.047     0.0910     0.1067     0.0954 
0.140 0.544     0.4225     0.4352     0.4250 
0.140 0.945     0.5315     0.5513     0.5409 
0.140 2.836     0.7389     0.7503     0.7739 
 
 
 

4.2.2. Performance of MLP models for the prediction of PDF of void fraction before 
bend 

Both MLP models developed for the prediction of PDF of void fraction after the bend also 
performed excellently. However, the model based on Levenberg-Marquardt algorithm is preferred 
since it has a smaller value of AARE. MSE plot (Figures 8a and 8b) also show a consistent pattern 
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for training, validation and testing. 

 
 

Figure 8a (GDMV model): Variation of MSE with number of iterations for prediction of PDF of 
void fraction before the bend 

 
 

 
 

Figure 8b (LM model): Variation of MSE with number of iterations for prediction of PDF of void 
fraction before the bend 

 
 

Regression plot for test data is shown in Figures 9a and 9b. These plots further validate the 
MLP models. 
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Figure 9a (GDMV model): Regression plot of test data before 90o bend for prediction of PDF of 
void fraction 

 

 
 

Figure 9b (LM model): Regression plot of test data before 90o bend for prediction of PDF of void 
fraction 

 
 

  
 

Figure 9c (GDMV model): Comparison between Predicted and Experimental PDF of void fraction 
before bend 

 
 

 
 

Figure 9d (LM model): Comparison between Predicted and Experimental PDF of void fraction 
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before bend 
 

Figures 9c and 9d show that both MLP models developed for the prediction of PDF of void 
fraction before the bend predicted over 90% of the data with ±5% of the experimental values with 
the model based on Levenberg-Marquardt algorithm again giving slightly better predictions. 

Figures 10a to 10h show comparisons (at various values of USG and USL) of the predicted 
PDF of void fraction before the bend with those from experimental data for MLP model based on 
the Levenberg-Marquardt algorithm. The results depicted show that the MLP model predicts the 
PDF of void fraction before the vertical 90o bend to a reasonable level of accuracy over a wide 
range of data set. 

 
 

Fig 10a (LM model): Comparison between Predicted and Experimental PDF of void fraction before 
bend for USL=0.05 m/s USG=0.344 m/s 

 

 
 
Fig 10b (LM model): Comparison between Predicted and Experimental PDF of void fraction before 

bend for USL=0.05 m/s USG=1.418 m/s 
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Fig 10c (LM model): Comparison between Predicted and Experimental PDF of void fraction before 

bend for USL=0.05 m/s USG=1.891 m/s 
 
 

 
 
Fig 10d (LM model): Comparison between Predicted and Experimental PDF of void fraction before 

bend for USL=0.05 m/s USG=2.836 m/s 
 

 
 
Fig 10e (LM model): Comparison between Predicted and Experimental PDF of void fraction before 

bend for USL=1.14 m/s USG=0.047 m/s 
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Fig 10f (LM model): Comparison between Predicted and Experimental PDF of void fraction before 
bend for USL=1.14 m/s USG=0.544 m/s 

 

 
 
Fig 10g (LM model): Comparison between Predicted and Experimental PDF of void fraction before 

bend for USL=1.14 m/s USG=0.945 m/s 
 

 
 
Fig 10h (LM model): Comparison between Predicted and Experimental PDF of void fraction before 

bend for USL=1.14 m/s USG=2.836 m/s 
 

Careful inspections of Figures 10a-h reveal that models predictions were particularly good in 
Figures 10a, 10, 10c, 10d, 10g and 10h. The results of Figures 10a, 10b, 10c, 10d, 10g and 10h 
show that the model can be used to classify flow pattern before the bend with great confidence. 

 
4.3. Performance Analysis Immediately after Vertical 90o Bend 
 
4.3.1 Performance of MLP models for the prediction of average void fraction after bend 
A first look at the results of Table 4 for test data set gives an indication of excellent model 

performance for both MLP algorithms developed for the prediction of average void fraction 
immediately after the vertical 90o bend as can be seen from the small values of AARE and the 
closeness of R to unity in both cases. However results from validation data set show that the values 
of R for both models were not close to unity. For an MLP model to be valid, both validation and 
testing performance curve must follow similar pattern. Figures 11a and 11b give the variation of 
MSE with number of iterations for the two MLP models developed for the prediction of average 
void fraction immediately after the bend. Figure 11a show a significant divergence in the patterns 
traced by the validation MSE and the testing MSE. The implication of this would be poor 
generalisation capability of the model. This significant divergence could be attributed to two things, 
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first; the flow immediately after the bend is not fully developed and second; poor data distribution 
and/or partitioning among training, validation and testing. Similar conclusion can be drawn from 
Figure 11b. Even though the divergence between the MSE plots for validation and testing is not 
well pronounced in this case there is still a significant difference in their patterns. 
 

 
 

Figure 11a (GDMV model): variation of MSE with number of iterations for prediction of average 
void fraction after bend. 

 

 
 

Figure 11b (LM model): variation of MSE with number of iterations for prediction of average void 
fraction after bend. 

 
Figures 12a and 12b are regression plots of test data for the two MLP models developed for 

the prediction of average void fraction immediately after the vertical 90o bend. These plots again 
suggest that the models give a good representation of the data. However Figures 13a and 13b, which 
represents the regression plots for the validation data sets, indicates that the models can only be 
useful for a limited range of data set. 
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Figure 12a (GDMV model): Regression plot of test data after 90o bend for prediction of average 
void fraction 

 

 
 

Figure 12b (LM model): Regression plot of test data after 90o bend for prediction of average void 
fraction 

 

 
 

Figure 13a (GDMV model): Regression plot of validation data after 90o bend for prediction of 
average void fraction 
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Figure 13a (LM model): Regression plot of validation data after 90o bend for prediction of average 

void fraction 
 

 
The model based on the gradient descent with momentum term and variable steps size gives a 

better performance when comparing the two MLP models based on their AARE. 
 
 
 

Table 6:  
Comparison between experimental and predicted average void fraction of air/silicone oil 

two-phase flow after vertical 90o bend 
U SL U SG Experiment

al average 
void 
fraction 

GDMV 
model 
predicted 
average 
void 
fraction 

LM model 
predicted 
average 
void 
fraction  

0.050 1.418 0.9941 0.9344     0.7807 

0.050 1.891 0.8941 0.9415     0.7807 

0.050 2.836 0.8857 0.7256     0.7807 

0.140 0.047 0.1274 0.1599     0.5033 

0.140 0.544 0.6032 0.5680     0.7776 

0.140 1.891 0.7728 1.0578     0.7807 

0.380 0.061 0.2289 0.3196     0.5033 

 
 
4.3.2. Performance of MLP models for the prediction of PDF of void fraction after bend 
Results of Table 4 shows that both MLP algorithms developed for the prediction of PDF of 

void fraction after the vertical 90o bend does not give a good representation of the testing and 
validation data sets. This is seen from fairly large values of AARE and the lack of closeness of R to 
unity in both cases. However, the model based on gradient descent algorithm is preferred since it 
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has a smaller value of AARE. Figures 14a and 14b give the variation of MSE with number of 
iterations for the two MLP models developed for the prediction of PDF of void fraction after the 
bend. The plots show a divergence in the performance function for validation and testing. This 
further highlights the lack of generality of the models. 
 

 
 

Figure 14a (GDMV model): Variation of MSE with number of iterations for prediction of PDF of 
void fraction after the bend. 

 

 
 
Figure 14b (LM model): Variation of MSE with number of iterations for prediction of PDF of void 

fraction after the bend. 
 

Figures 15a and 15b are regression plots for test data for the two MLP models developed for 
the prediction of PDF of void fraction immediately after the vertical 90o bend. Careful inspection 
show that the intercept of both curves are close to the origin, however a number of data points do 
not fall close to the line of best fit. The results further indicate the lack of reliability of the models in 
predicting the PDF of void fraction immediately after the vertical 90o bend. 
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Figure 15a (GDMV model): Regression plot of test data after 90o bend of gradient descent with 

momentum term and variable step size model for prediction of PDF of void fraction 
 

 
 

Figure 15b (LM model): Regression plot of test data after 90o bend of gradient descent with 
momentum term and variable step size model for prediction of PDF of void fraction 

 
Figures 16a to 16g give comparisons between predicted and experimental PDF of void 

fraction (at various values of USG and USL) for MLP model based on gradient descent algorithm. 
The results depicted show that the developed model predicts the PDF of void fraction for gas-liquid 
flow after vertical 90o bends only within limited range of data sets. 

 
 

Fig 16a (GDMV model): Comparison between Predicted and Experimental PDF of void fraction 
after bend for USL=0.05 m/s USG=1.418 m/s 
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Fig 16b (GDMV model): Comparison between Predicted and Experimental PDF of void fraction 

after bend for USL=0.05 m/s USG=1.891 m/s 
 

 
 

Fig 16c (GDMV model): Comparison between Predicted and Experimental PDF of void fraction 
after bend for USL=0.05 m/s USG=2.863 m/s 

 

 
 

Fig 16d (GDMV model): Comparison between Predicted and Experimental PDF of void fraction 
after bend for USL=0.14 m/s USG=0.047 m/s 

 

 
 

Fig 16e (GDMV model): Comparison between Predicted and Experimental PDF of void fraction 
after bend for USL=0.14 m/s USG=0.544 m/s 
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Fig 16f (GDMV model): Comparison between Predicted and Experimental PDF of void fraction 
after bend for USL=0.14 m/s USG=1.891 m/s 

 

 
 

Fig 16g (GDMV model): Comparison between Predicted and Experimental PDF of void fraction 
after bend for USL=0.38 m/s USG=0.061 m/s 

 
Careful inspections of Figures 16a-g show that the model prediction as depicted in Figures 

16d, 16e and 16f are good while model predictions as depicted in Figures 16a, 16b, 16c and 16g are 
not very good. These results indicate that the model can only be used to predict flow behaviour after 
the bend over a limited range of data. 

The lack of generality of the MLP models could be associated to two things; one is the fact 
that the flow is not fully developed and the other is poor data distribution/partitioning among 
training, validation and testing. The latter is taken care by data redistribution and the use of different 
partitioning ratio. The data was redistributed using interleaved indices in as opposed to random 
indices and the data partitioning ratio changed from 6:2:2 to 4:1:1. Similar results were obtained 
and the models still showed poor generalisation properties. 

 
4.4 Results of Data Interpolation/Extrapolation before 90o Bends 
The following liquid superficial velocities were used to test the best performing models at 

various gas superficial velocities.  
USL=0.02ms-1, USL =0.15 ms-1, USL =0.30 ms-1, USL =0.45 ms-1. 
 
Figure 17 gives a plot of predicted average void fraction against gas superficial velocity at 

liquid superficial velocities not covered by experiment. The plot patterns are in close conformity 
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with expected patterns especially at small and large gas superficial velocities. At intermediate gas 
superficial velocities the model predictions are not very accurate as can be seen in the crossing of 
lines. 
 

 
Figure 17: Plot of predicted average void fraction before bend against gas superficial velocities for 

various liquid superficial velocities different from those covered by experiment. 
Figures 18a to 18d are plots of predicted PDF of void fraction before bend against gas 

superficial velocities for various liquid superficial velocities different from those covered by 
experiment. 

 
 

Figure 18a: Plot of predicted PDF of void fraction before bend against gas superficial velocities for 
various liquid superficial velocities different from those covered by experiment (USL=0.02 ms-1) 
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Figure 18b: Plot of predicted PDF of void fraction before bend against gas superficial velocities for 
various liquid superficial velocities different from those covered by experiment (USL =0.15 ms-1) 

 

 
 
Figure 18c: Plot of predicted PDF of void fraction before bend against gas superficial velocities for 
various liquid superficial velocities different from those covered by experiment (USL =0.30 ms-1) 

 

 
 
Figure 18d: Plot of predicted PDF of void fraction before bend against gas superficial velocities for 
various liquid superficial velocities different from those covered by experiment (USL =0.45 ms-1) 

 
Plot patterns of Figures 18a to 18d follow expected patterns of PDF of void fraction as gas 

and liquid superficial velocities changes. This patterns show the changes in flow characteristics 
from bubbly flow to churn flow as gas superficial velocities increases. 

 
5. Conclusions 
In this work, Multilayer Perceptron Modelling (MLP) models have been developed to predict 

two-phase average void fraction and PDF of void fraction in 90o bends. The experiment data were 
from experiments performed in earlier work in a flow domain of 6 m long vertical pipe with a 67 
mm internal diameter connected to a 2 m long flow-line via a vertical 90o bend (bend radius of 154 
mm) at various liquid and gas superficial velocities.  

Model optimization was carried out by varying network configuration while monitoring the 
generalisation error (cross validation error). The developed models were trained using feed-forward 
approach. A comparison of the results obtained from model predictions and experiments both 
before and after the vertical 90o bend has been successfully carried. 

The models developed for the prediction of average void fraction and PDF of void fraction 
before the bend performed very well. However, the AARE confirmed that the best model for 
prediction of average void fraction before bend is the MLP model trained with Levenberg-
Marquardt algorithm in the hidden and output layer with, having three (3) neurons in the hidden 



GESJ: Computer Science and Telecommunications 2016|No.4(50) 
ISSN 1512-1232 

 

    36 

layer. The values of AARE and R for this MLP model are 0.0274 and 0.9958 respectively. The 
AARE also confirmed that the best model for prediction of PDF of void fraction before the bend is 
the MLP model trained with Levenberg-Marquardt algorithm in the hidden and output layer, having 
eleven (11) neurons in the hidden layer. The values of AARE and R for this MLP model are 0.7866 
and 0.9342 respectively. 

The models proposed for the prediction of average void fraction and PDF of void fraction 
after the bend showed weak generalisation properties. However, the MLP model based on gradient 
descent algorithm gave better performance for predicting average void fraction after the bend, with 
AARE and R values of 0.1961 and 0.9156 respectively. Also, the MLP model based on gradient 
descent algorithm having four (4) neurons in the hidden layer performed best for the prediction of 
PDF of void fraction after the bend. The values of AARE and R for this MLP model are 1.5740 and 
0.4507 respectively. 

The results show that MLP models are effective in predicting average void fraction and PDF 
of void fraction before the bend but are not effective for predicting after the bend scenario because 
the flow is not fully developed.  Similarly the modified empirical model showed good results for 
prediction before the bend but could not predict average void fraction after the bend. 
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APPENDIX 

%MODEL THAT USES LEVENBERG MARQUADT ALGORITHM 
  
%This a program written by Paul Onubi Ayegba with the aim of developing a 
%numerical model capable of predicting the average void fraction of 
silicon 
%air misture flowing in a 90 degree bend of 67 mm internal diameter. This 
  
% NOTE THE PROGRAM CAN BE RUN BY SIMPLY CLICKING THE GREEN ARROW ON THE 
% TOOL BAR ABOVE, BUT THERE ARE MANY USER VARIABLES E.G. NUMBER OF 
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% ITERATIONS, ACCEPTABLE ERROR LIMIT ETC WHICH YOU MAY WISH TO ALTER 
  
%NOTE THE PROGRAM MAY RUN FOR AS LONG AS A FEW MINUTES TO AS MUCH AS A 
FEW 
%HOURS DEPENDING ON THE NUMBER OF ITERATIONS YOU CHOOSE 
  
%intial program seeks to mimic the Artificial Neural Network model which 
%employs similar algorithm, that is Levenberg–Marquardt algorithm, 
%employing backpropagation technique. The structure of the function  
%(sigmoid function/linear function) used is also similar to that used by  
%ANN. The model, here, developed gave very good agreement with 
experimental 
%data, though it required more number of iterations compared to the ANN 
model. 
%One of the main objectives is to replace this function (sigmoid 
function/linear function) 
%with some existing mechanistic models (mechanistic models/Linear 
%functions) and compare results of models developed. 
% p is a matrix of input variable in this case gas and liquid superficial 
% velocities. This is a user input and may be changed as the required by 
problem. 
p=[0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.14 0.14 
0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.38 0.38 0.38 
0.38 0.38 0.38 0.38 0.38 0.38 0.38 0.38 0.38 0.38;0.047 0.061 0.288 0.344 
0.404 0.544 0.709 0.945 1.418 1.891 2.363 2.836 0.047 0.061 0.288 0.344 
0.404 0.544 0.709 0.945 1.418 1.891 2.363 2.836 4.73 0.047 0.061 0.288 
0.344 0.404 0.544 0.709 0.945 1.418 1.891 2.363 2.836 4.73]; 
% for optimal behaviour it is necessary to remove constant rows as they 
do 
% not contribute to model optimization rather they may result in poorly 
% scaled matrix whose determinants close to singularity. in this case all 
% rows that are constant or rows which have maximum range less or equal 
to 
% 0.01 is romoved. 
[p PS]=removeconstantrows(p,0.01); 
  
%The algorithm can be made more efficient if we perform some 
preprocessing  
%operations. The operation employed here scale the input and outputs to 
%fall within the range [-1 1]. 
[pn, ps]=mapminmax(p); 
x=numel(pn(:,1)); %Number of input parameter(in this case liquid and gas 
velocities) 
z=numel(pn(1,:)); %Number of input patterns 
pn(x+1,:)=ones(1,z); 
[pt,pv,pts,trainInd,valInd,testInd] = dividerand(p,0.6,0.2,0.2); 
[ptn,pvn,ptsn] = divideind(pn,trainInd,valInd,testInd); 
zt=numel(pt(1,:)); 
ztv=numel(pv(1,:)); 
zts=numel(pts(1,:)); 
  
%OUTPUT 
eL_005=[0.127858878 0.142017541 0.357683154 0.380600243 0.407763152 
0.471174376 0.500041818 0.568779025 0.659248509 0.698963155 0.728148425 
0.759148473]; 
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eL_014=[0.090956304 0.105694861 0.307511372 0.333432331 0.354319881 
0.422505167 0.473094667 0.531520114 0.636547444 0.688847949 0.721594917 
0.738922184 0.824985470]; 
eL_038=[0.049916006 0.064464705 0.247366456 0.270821176 0.290103160 
0.368996198 0.418661835 0.478407434 0.558563925 0.615894456 0.662988627 
0.709819272 0.776042882]; 
t=[eL_005 eL_014 eL_038]; 
[t TS]=removeconstantrows(t); 
  
%The algorithm can be made more efficient if we perform some 
preprocessing  
%operations. The operation employed here scale the input and outputs to 
%fall within the range [-1 1]. 
  
[tn, ts]=mapminmax(t); 
[tt,tv,tts] = divideind(t,trainInd,valInd,testInd); 
[ttn,tvn,ttsn] = divideind(tn,trainInd,valInd,testInd); 
% s is the number of neuron (simple processing units), This is a user 
% variable, the number of neurons can between 1 and infinity until the 
best 
% performance is obtained. For the purpose of understanding this may be 
% taken as that configuration (number of neurons in the hidden layer in 
% this case) that gives the smallest value of minimum mean square error 
% 'mse'. 
s=3; 
l=0; 
%The program is developed for a two layer network(one hidden layer of  
%variable number of neurons and one output layer whose number of neurons  
%is determined by the output matrix supplied. Also the neurons in the  
%hidden layer is designed to have a 'sigmoid transfer function' that is 
% a function of the form 'Y1=(1./(1+exp(sum(-w.*pn)+b1))' where w and b1 
are 
%weight and bias matrices and pn is the normalized of preprocessed inputs 
%and the output layer is a linear function of the form Y2= sum(v*Y1)+b2. 
%This configuration has proven very effective for most problems of 
function 
%fitting. The summation of output from the hidden layer is the input to 
the 
% output layer Thus the function takes the following basic form for each  
%neuron. Note the value of the weights and biases in each neuron are not  
%usually the same. 
y=numel(t(:,1)); %Number of output parameter (in this case grouped 
frequencies void fraction) 
yt=numel(tt); 
yv=numel(tv); 
yts=numel(tts); 
bin=0.01:0.01:1; 
bin=bin'; 
syms v w p1 L % helps us in finding the the partial derivative of the 
function with respect to the symbolic variables 
pr=x;  % pr number of non-constant input variables p 
ws=rands(s,pr+1); % Input weight matrix, normalized random values are 
used 
Ls=1;  % Layer weight matrix, normalized random values are used 
vs=rands(y,s+1);  % Layer weight matrix, normalized random values are 
used 
wsR(:,:,1)=ws; 



GESJ: Computer Science and Telecommunications 2016|No.4(50) 
ISSN 1512-1232 

 

    40 

vsR(:,:,1)=vs; 
f=v*(1/(1+exp(-L*(w*p1)))); 
ftn1=(1./(1+exp(-Ls*(ws*ptn)))); 
ftn1(s+1,:)=ones(1,zt); 
ftn=vs*ftn1; 
fvn1=(1./(1+exp(-Ls*(ws*pvn)))); 
fvn1(s+1,:)=ones(1,ztv); 
fvn=vs*fvn1; 
ftsn1=(1./(1+exp(-Ls*(ws*ptsn)))); 
ftsn1(s+1,:)=ones(1,zts); 
ftsn=vs*ftsn1; 
  
%fw=diff(f,w);% Derivative of the function with respect to layer bias w 
%Matlab generates fw=v*((Ls*p1)./(exp(Ls*(w*p1+b1))*(1/exp(Ls*(w*p1+b1)) 
+ 1)^2)) this must 
%be rearranged for ease of matrix operation 
  
%The Levenberg–Marquardt algorithm will be used in a backpropagation  
%fashion in determining the weights and bias and it takes the form 
%w(k+1)=w(k)–(JT(k)*J(k)+ mu*I)^-1 *J(k)*e(k) 
%The choice of Levenberg–Marquardt algorithm will be given in the 
%literature. If mu is small the algorithm becomes Gauss Newton alorithm 
and 
%if mu is very large the algoritm becomes steepest descent alorithm. 
mu=0.001; %initial value of mu. 
r=(ttn-ftn); %error residual, difference between model output and 
expected output 
rv=(tvn-fvn); 
rts=(ttsn-ftsn); 
d=r.^2; 
dv=rv.^2; 
dts=rts.^2; 
%mean square error is used as the performance function and the target of 
%0.0000001 is used, but it can be varied by user. 
mse(1)=sum(sum(d),2)/yt; 
msev(1)=sum(sum(dv),2)/yv; 
msets(1)=sum(sum(dts),2)/yts; 
         
for k=1:20000;  % k is the number of iterations, this can be varied by 
user 
    if ((mse(k)>=0.0000001) && (mu<=1*10^10)); 
        %fw=v*((L*p1)./(exp(L*(w*p1)).*(1./exp(L*(w*p1)) + 1)^2)); 
        aw=(Ls./(exp(Ls*(ws*ptn)).*(1./exp(Ls*(ws*ptn)) + 1).^2)); 
        m=0; 
        for Q=1:x+1; 
            for q=1:s; 
                m=m+1; 
                fwa(q,:,Q)=ptn(Q,:).*aw(q,:); 
                fwb=vs(:,q)*fwa(q,:,Q); 
                fwb=fwb'; 
                for n=1:y; 
                    fwc(n*zt-zt+1:n*zt,m)=fwb(:,n); 
                end 
            end 
        end 
        for n=1:y; 
            r1=r'; 
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            R(n*zt-zt+1:n*zt,1)=r1(:,n); 
        end 
        fw=fwc; 
        fv1=1./(1./exp(Ls*ws*ptn) + 1); 
        fv1(s+1,:)=ones(1,zt); 
        fvb=0*eye(zt*y,y); 
        for Q=1:s+1; 
            fva=fv1(Q,:)'; 
            for q=1:y; 
            fvb((q-1)*zt+1:q*zt,q,Q)=fva; 
            end 
        end 
        fv=fvb(:,:); 
        J=[fw fv]; 
        JT=J'; 
        H=JT*J; 
        HD=(JT*J+mu*diag(diag(H))); 
        T(k)=rcond(HD); 
        G(k)=norm(JT); 
        if (T(k)>=0.00000000000001) && (G(k)>=1e-10); 
                HinvJT=HD\JT; 
                a=HinvJT*R; 
                n=0; 
                for q=1:x+1 
                    n=n+1; 
                ws(:,q)=ws(:,q)+a(n*s-s+1:n*s,1); 
                end 
                for q=1:s+1 
                vs(:,q)=vs(:,q)+a(n*s+(q-1)*y+1:n*s+q*y,1); 
                end 
                ftn1=(1./(1+exp(-Ls*(ws*ptn)))); 
                ftn1(s+1,:)=ones(1,zt); 
                ftn=vs*ftn1; 
                r1=(ttn-ftn); 
                d=r1.^2; 
                mse(k+1)=sum(sum(d),2)/yt; 
                if  mse(k+1)>=mse(k); 
                    for j=1:5; 
                        n=0; 
                        for q=1:x+1 
                            n=n+1; 
                            ws(:,q)=ws(:,q)-a(n*s-s+1:n*s,1); 
                        end 
                        for q=1:s+1 
                            vs(:,q)=vs(:,q)-a(n*s+(q-
1)*y+1:n*s+q*y,1); 
                        end 
                        mu=mu*10; 
                        HD=(JT*J+mu*diag(diag(H))); 
                        T(k)=rcond(HD); 
                        G(k)=norm(JT); 
                        if (T(k)>=0.00000000000001) && (G(k)>=1e-
10); 
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                            HinvJT=HD\JT; 
                            a=HinvJT*R; 
                            n=0; 
                            for q=1:x+1 
                                n=n+1; 
                                ws(:,q)=ws(:,q)+a(n*s-s+1:n*s,1); 
                            end 
                            for q=1:s+1 
                                vs(:,q)=vs(:,q)+a(n*s+(q-
1)*y+1:n*s+q*y,1); 
                            end 
                            ftn1=(1./(1+exp(-Ls*(ws*ptn)))); 
                            ftn1(s+1,:)=ones(1,zt); 
                            ftn=vs*ftn1; 
                            r=(ttn-ftn); 
                            d=r.^2; 
                            mse(k+1)=sum(sum(d),2)/yt; 
                            if ((j>=5) || (mse(k+1)<mse(k))) 
                            break 
                            end 
                        else 
                        break 
                        end 
                    end 
                else 
                    mu=mu/10; 
                    r=r1; 
                end 
        else 
        break 
        end 
        wsR(:,:,k+1)=ws; 
        vsR(:,:,k+1)=vs; 
        %Test 
            ftsn1=(1./(1+exp(-Ls*(ws*ptsn)))); 
            ftsn1(s+1,:)=ones(1,zts); 
            ftsn=vs*ftsn1; 
            rts=(ttsn-ftsn); 
            dts=rts.^2; 
            msets(k+1)=sum(sum(dts),2)/yts; 
             
        %Validation 
            fvn1=(1./(1+exp(-Ls*(ws*pvn)))); 
            fvn1(s+1,:)=ones(1,ztv); 
            fvn=vs*fvn1; 
            rv=(tvn-fvn); 
            dv=rv.^2; 
            msev(k+1)=sum(sum(dv),2)/yv; 
            if msev(k+1)>=msev(k); 
                l=l+1; 
                if l==5; 
                    break 
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                end 
            else 
                l=0; 
            end 
    else 
        break 
    end 
  
end 
if l>=5; 
    ws=wsR(:,:,k-4); 
    vs=vsR(:,:,k-4); 
end 
ftn1=(1./(1+exp(-Ls*(ws*ptn)))); 
ftn1(s+1,:)=ones(1,zt); 
ftn=vs*ftn1; 
fvn1=(1./(1+exp(-Ls*(ws*pvn)))); 
fvn1(s+1,:)=ones(1,ztv); 
fvn=vs*fvn1; 
ftsn1=(1./(1+exp(-Ls*(ws*ptsn)))); 
ftsn1(s+1,:)=ones(1,zts); 
ftsn=vs*ftsn1; 
t=removeconstantrows('reverse',t,TS); 
tt_exp=removeconstantrows('reverse',tt,TS); 
tv_exp=removeconstantrows('reverse',tv,TS); 
tts_exp=removeconstantrows('reverse',tts,TS); 
t_exp=t; 
fft = mapminmax('reverse',ftn,ts); 
ffv = mapminmax('reverse',fvn,ts); 
ffts = mapminmax('reverse',ftsn,ts); 
tt_model=removeconstantrows('reverse',fft,TS); 
tv_model=removeconstantrows('reverse',ffv,TS); 
tts_model=removeconstantrows('reverse',ffts,TS); 
p=removeconstantrows('reverse',p,PS); 
pt=removeconstantrows('reverse',pt,PS); 
pv=removeconstantrows('reverse',pv,PS); 
pts=removeconstantrows('reverse',pts,PS); 
mse_minimum_train=min(mse) 
mse_minimum_val=min(msev) 
mse_minimum_test=min(msets) 
number_iteration=k 
  
% PERFORMANCE ANALYSIS 
%Cross Correlation coefficient 
%R=C(i,j)/(C(i,i)C(j,j))^1/2 
%Training 
Avt_exp=mean(mean(tt_exp,2)); 
Avt_model=mean(mean(tt_model,2)); 
Nmt=(sum(sum((tt_model-Avt_model).*(tt_exp-Avt_exp)),2)); 
Dnt=((sum(sum((tt_model-Avt_model).^2),2)).*(sum(sum((tt_exp-
Avt_exp).^2),2))); 
Rtrain=Nmt/sqrt(Dnt); 
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%Validation 
Avv_exp=mean(mean(tv_exp,2)); 
Avv_model=mean(mean(tv_model,2)); 
Nmv=(sum(sum((tv_model-Avv_model).*(tv_exp-Avv_exp)),2)); 
Dnv=((sum(sum((tv_model-Avv_model).^2),2)).*(sum(sum((tv_exp-
Avv_exp).^2),2))); 
Rvalidation=Nmv/sqrt(Dnv); 
%Testing 
Avts_exp=mean(mean(tts_exp,2)); 
Avts_model=mean(mean(tts_model,2)); 
Nmts=(sum(sum((tts_model-Avts_model).*(tts_exp-Avts_exp)),2)); 
Dnts=((sum(sum((tts_model-Avts_model).^2),2)).*(sum(sum((tts_exp-
Avts_exp).^2),2))); 
Rtest=Nmts/sqrt(Dnts); 
  
%Average absolute relative error (AARE) 
%AARE=(1/N)*sum(absolute(model output-exp value)/exp value)); 
AT=abs((tt_model-tt_exp)./tt_exp); 
AAREtrain=(1/yt)*sum(sum(AT),2); 
AV=abs((tv_model-tv_exp)./tv_exp); 
AAREvalidation=(1/yv)*sum(sum(AV),2); 
ATS=abs((tts_model-tts_exp)./tts_exp); 
AAREtest=(1/yts)*sum(sum(ATS),2); 
  
%PLOTS 
plot(tt_exp,tt_model,'*') 
xlabel('experimantal average void fraction') 
ylabel('MLP model average void fraction') 
legend('Training') 
title('Gradient Descent with adaptive step and momentum term') 
figure 
plot(tv_exp,tv_model,'*') 
xlabel('experimantal average void fraction') 
ylabel('MLP model average void fraction') 
legend('Validation') 
title('Gradient Descent with adaptive step and momentum term') 
figure 
plot(tts_exp,tts_model,'*') 
xlabel('Void fraction (Experimental)') 
ylabel('Void fraction (Predicted)') 
hold on 
x1=[0,1]; 
y1=[0,1]; 
x2=[0.05*1,1]; 
y2=[0,0.95*1]; 
x3=[0,1]; 
y3=[0.05*1,1.05*1]; 
plot(x1,y1,x2,y2,'--',x3,y3,'--') 
figure 
u=1:k+1; 
plot(u,mse,u,msev,u,msets) 
xlabel('Number of iterations') 
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ylabel('Mean Square Error MSE') 
legend('Training','Validation','Testing') 
title('Gradient Descent with adaptive step and momentum term 
performance plot') 
%MODEL THAT USES GRADIENT DESCENT ALGORITHM WITH VARIABLE STEP 
%SIZE AND MOMENTUM TERM 
  
%This a program written by the autor with the aim of developing a 
%numerical model capable of predicting the PDF of void fraction of 
silicon 
%air mixture flowing in a 90 degree bend of 67 mm internal 
diameter. This 
  
% NOTE THE PROGRAM CAN BE RUN BY SIMPLY CLICKING THE GREEN ARROW 
ON THE 
% TOOL BAR ABOVE, BUT THERE ARE MANY USER VARIABLES E.G. NUMBER OF 
% ITERATIONS, ACCEPTABLE ERROR LIMIT ETC WHICH YOU MAY WISH TO 
ALTER 
  
%NOTE THE PROGRAM MAY RUN FOR AS LONG AS A FEW MINUTES TO AS MUCH 
AS A FEW 
%HOURS DEPENDING ON THE NUMBER OF ITERATIONS AND MODEL TOPOGRAPHY 
  
%intial program seeks to mimic the Artificial Neural Network model 
which 
%employs similar algorithm, that is gradient descent algorithm 
with variable step size and momentum term, 
%employing backpropagation technique. The structure of the 
function  
%(sigmoid function/linear function) used is also similar to that 
used by  
%ANN. 
  
%INPUTS 
% p is a matrix of input variable in this case gas and liquid 
superficial 
% velocities. This is a user input and may be changed as the 
required by problem. 
p=[0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 
0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.38 0.38 
0.38 0.38 0.38 0.38 0.38 0.38 0.38 0.38;0.047 0.061 0.288 0.344 
0.404 0.544 0.709 0.945 1.418 1.891 2.363 2.836 0.047 0.061 0.288 
0.344 0.404 0.544 0.709 1.891 2.363 2.836 4.73 0.061 0.288 0.344 
0.404 0.544 0.709 0.945 1.891 2.836 4.73]; 
% for optimal behaviour it is necessary to remove constant rows as 
they do 
% not contribute to model optimization rather they may result in 
poorly 
% scaled matrix whose determinants close to singularity. in this 
case all 
% rows that are constant or rows which have maximum range less or 
equal to 
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% 0.01 is romoved. 
[p PS]=removeconstantrows(p,0.01); 
  
%The algorithm can be made more efficient if we perform some 
preprocessing  
%operations. The operation employed here scale the input and 
outputs to 
%fall within the range [-1 1]. 
[pn, ps]=mapminmax(p); 
x=numel(pn(:,1)); %Number of input parameter(in this case liquid 
and gas velocities) 
z=numel(pn(1,:)); %Number of input patterns 
pn(x+1,:)=ones(1,z); 
[pt,pv,pts,trainInd,valInd,testInd] = dividerand(p,6,2,2); 
[ptn,pvn,ptsn] = divideind(pn,trainInd,valInd,testInd); 
zt=numel(ptn(1,:)); 
ztv=numel(pvn(1,:)); 
zts=numel(ptsn(1,:)); 
  
%OUTPUTS 
f1=[0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   
0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   
0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   3   
15  13  43  150 212 1067    3003    3552    4672    6750    7462    
6076    5604    6322    5322    4764    3088    1293    672 277 80  
0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   
0   0   0   0   0   0   0   0   0   0   0   0]'; 
f2=[0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   
0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   
0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   15  
334 746 1257    2859    3838    4518    4469    4182    4364    
5170    5137    4740    4176    3383    3261    3191    2238    
1121    821 353 111 58  60  38  0   0   0   0   0   0   0   0   0   
0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   
0]'; 
f3=[0   0   0   0   0   0   0   0   0   0   0   0   0   0   3   20  
29  59  168 187 252 390 603 721 779 789 819 936 1119    1107    
1029    1186    1309    1285    1176    1277    1364    1469    
1490    1521    1493    1460    1461    1440    1547    1507    
1370    1393    1299    1367    1254    1205    1236    1181    
1185    1251    1241    1322    1371    1345    1195    946 1141    
1286    1107    1334    1459    1017    716 763 709 558 144 50  0   
0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   
0   0   0   0   0   0   0   0]'; 
f4=[0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   
0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   
0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   
0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   
0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   1   42  
102 76  138 256 262 329 437 576 545 957 1150    1398    1670    
1957    3668    46876]'; 
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f5=[0   0   0   0   0   0   0   0   0   3   8   2   3   16  24  24  
67  99  123 175 184 194 269 347 452 433 521 654 703 614 597 632 
620 584 656 673 857 960 995 924 1036    1117    1188    1109    
1158    1166    1142    1131    1235    1298    1427    1609    
1451    1476    1384    1230    1258    1298    1136    1122    
1235    1232    1261    1292    1482    1685    2018    2026    
1882    2022    1783    1298    953 869 1084    600 275 59  0   0   
0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   
0   0   0]'; 
f6=[0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   
0   8   34  39  64  49  46  48  42  33  48  63  83  102 96  91  78  
111 111 102 115 123 139 148 240 255 217 255 226 235 276 306 335 
417 497 486 518 549 692 807 861 837 836 780 847 1230    1235    
1213    1368    1468    1537    1465    1447    1479    1377    
1684    2133    2075    2200    2420    2278    2896    3645    
4344    3898    2695    2053    1166    560 177 93  56  3   0   0   
0   0   0   0   0   0   0   0   0]'; 
f7=[0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   
0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   3   7   
7   6   5   4   3   10  7   8   9   9   14  18  48  54  59  74  59  
41  51  98  166 197 194 147 159 201 257 394 471 582 676 569 577 
678 728 749 845 982 1143    1360    1415    1513    1520    1630    
2103    2442    2564    3021    3774    4375    6013    7180    
4548    2257    1655    1811    747 195 8   0   0   0   0   0   0   
0   0]'; 
f8=[0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   
0   0   0   0   0   0   0   0   0   0   0   0   0   0   1   6   11  
4   10  5   14  19  18  15  18  17  20  18  13  24  25  34  54  54  
81  168 217 284 252 237 266 334 404 556 663 741 759 748 838 1093    
1300    1420    1394    1496    1776    1757    1760    1732    
1998    2227    1978    2035    2629    3476    3863    3948    
4096    5023    4065    1903    1228    644 376 157 92  46  0   0   
0   0   0   0   0   0]'; 
f9=[0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   
0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   
0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   
0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   
0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   
0   0   0   0   0   0   0   9   6   41  74  152 228 460 2812    
56658]'; 
f10=[0  0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   
0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   
0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   
0   0   0   0   0   0   0   0   0   0   0   1   3   4   3   12  17  
15  28  49  68  88  106 156 212 289 331 455 564 665 865 1106    
1444    1895    2029    2551    3057    4106    4885    4811    
5702    5600    3998    3563    4433    3173    2661    1364    
131 0]'; 
f11=[0  0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   
0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   
0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   
0   0   0   1   0   1   1   2   3   5   1   11  13  15  8   16  22  
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25  41  51  73  86  118 152 217 297 336 446 523 719 937 1099    
1359    1628    1831    2090    2778    3721    4205    5075    
5869    6370    6138    5947    4663    1707    879 580 381 0]'; 
f12=[0  0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   
0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   
0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   
1   0   0   5   11  3   2   8   6   9   14  21  20  28  34  35  56  
84  89  103 118 157 207 226 275 294 423 534 622 693 878 1166    
1431    1760    2051    2470    3095    3878    5403    5858    
5737    6468    6894    5381    2453    762 451 225 1   0]'; 
  
f40=[0  0   0   0   0   0   99  408 1304    3668    7049    10363   
12165   10140   6672    3956    2330    1236    550 363 130 7   0   
0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   
0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   
0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   
0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   
0   0   0   0   0   0   0   0   0]'; 
f41=[0  0   0   0   7   51  41  81  286 828 2716    6602    9819    
10594   8433    5791    3840    3053    2631    1986    1584    
1024    512 315 147 90  9   0   0   0   0   0   0   0   0   0   0   
0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   
0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   
0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   
0   0   0   0   0   0   0   0   0   0   0   0]'; 
f42=[0  0   0   0   0   0   0   0   1   27  53  117 188 304 371 
580 995 1258    1472    1653    1675    1674    1906    1830    
1955    2076    2081    1999    1913    1865    1746    1756    
1720    1539    1569    1601    1505    1666    1708    1705    
1721    1728    1652    1558    1339    1276    1145    1060    
904 695 578 565 636 517 466 437 355 365 217 175 165 60  53  46  52  
47  43  41  36  0   0   0   0   0   0   0   0   0   0   0   0   0   
0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   
0]'; 
f43=[0  0   0   0   0   0   0   0   1   6   20  29  60  73  176 
298 491 576 633 703 901 1174    1266    1513    1729    1808    
1753    1753    1706    1747    1646    1635    1646    1502    
1441    1460    1550    1590    1533    1553    1578    1696    
1701    1702    1681    1689    1511    1724    1736    1605    
1486    1311    1166    952 963 777 638 419 445 325 275 161 137 
171 162 146 98  71  47  23  17  14  41  0   0   0   0   0   0   0   
0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   
0   0   0]'; 
f44=[0  0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   
0   0   2   12  40  51  51  95  148 147 161 179 188 251 307 411 
417 611 737 744 810 991 1079    1373    1454    1411    1449    
1431    1515    1475    1596    1682    1702    1487    1554    
1814    1810    1737    1746    1731    1733    1637    1818    
1841    1778    1656    1592    1722    1836    1727    1733    
1369    1235    840 731 743 456 482 427 231 160 89  35  46  91  33  
0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   
0]'; 
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f45=[0  0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   
0   0   0   3   6   11  15  38  36  47  60  79  155 243 318 301 
303 301 408 479 488 540 544 590 634 657 706 766 802 802 868 889 
911 916 1046    1047    1156    1149    1185    1210    1152    
1291    1494    1545    1543    1720    1926    1951    2069    
1983    2199    2337    2358    2387    2489    2244    1931    
1842    1485    1115    967 603 550 439 329 286 261 131 64  38  2   
0   0   0   0   0   0   0   0   0   0   0   0   0]'; 
f46=[0  0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   
2   8   15  19  22  32  36  52  49  59  84  110 124 164 167 172 
172 183 178 209 212 229 269 306 327 291 400 384 465 478 579 618 
696 661 703 694 733 790 810 912 969 1005    1128    1274    1341    
1387    1537    1627    1783    1911    2134    2194    2328    
2617    2914    2782    2615    2824    2627    2489    1988    
1627    1349    1037    773 509 417 320 239 141 43  52  45  0   0   
0   0   0   0   0   0   0   0   0]'; 
f49=[0  0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   
0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   
0   0   0   0   2   0   3   6   7   6   11  14  17  23  20  36  44  
54  79  121 134 152 186 217 227 279 321 386 474 533 615 653 779 
943 1032    1171    1311    1484    1615    1773    2167    2350    
2578    2856    3069    2975    3406    3519    3984    3630    
4015    3599    2956    2291    1191    686 229 115 96  0   0   0   
0   0   0   0   0]'; 
f50=[0  0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   
0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   
0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   
0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   
0   0   0   0   0   0   0   0   0   0   0   0   10  13  19  36  57  
89  124 195 292 478 690 972 1223    1564    2072    2369    2877    
3442    5004    11317   27597]'; 
f51=[0  0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   
0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   
0   0   0   2   1   0   0   2   0   2   1   2   2   7   9   8   15  
18  9   24  34  35  54  44  53  49  94  121 123 150 189 241 266 
380 416 589 654 793 898 1004    1153    1408    1579    1877    
2056    2323    2616    2960    3199    3502    3661    3791    
4241    4272    3908    3698    3267    1990    1257    792 356 
237 8   0   0   0   0]'; 
f52=[0  0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   
0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   
0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   
0   0   0   0   0   0   1   0   0   6   5   9   11  17  23  33  47  
72  65  91  125 142 201 270 341 456 624 814 1095    1332    1596    
1972    2390    2948    3370    4127    4990    5991    6186    
6465    5534    4590    2540    1178    459 278 46  0   0   0]'; 
  
f67=[0  0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   
0   2   57  653 3532    11098   18704   15447   7425    2673    
669 165 15  0   0   0   0   0   0   0   0   0   0   0   0   0   0   
0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   
0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   
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0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   
0   0   0   0   0   0]'; 
f68=[0  0   0   0   0   0   0   0   0   0   0   0   2   13  15  37  
82  134 208 315 483 707 963 1195    1325    1427    1629    1790    
2150    2319    2475    2621    2693    2654    2471    2421    
2340    2088    2076    1899    1660    1322    1324    1359    
1453    1492    1365    1558    1533    1509    1374    1293    
1169    1078    793 559 398 249 172 134 86  21  7   0   0   0   0   
0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   
0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0]'; 
f69=[0  0   0   0   0   0   0   0   0   0   0   0   0   7   16  26  
69  141 252 356 478 634 826 1094    1173    1215    1295    1335    
1452    1595    1635    1654    1798    1879    2042    1884    
1853    1855    1828    1753    1650    1637    1729    1746    
1736    1621    1578    1633    1641    1599    1680    1734    
1592    1492    1362    1131    1002    873 836 663 465 326 223 
153 60  61  46  26  0   0   0   0   0   0   0   0   0   0   0   0   
0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   
0   0   0]'; 
f70=[0  0   0   0   0   0   0   0   0   0   0   0   1   6   25  37  
55  74  136 225 297 480 752 889 1021    1192    1266    1241    
1264    1285    1377    1424    1509    1568    1494    1484    
1498    1490    1509    1422    1461    1662    1714    1702    
1624    1767    1575    1679    1628    1621    1599    1624    
1656    1538    1609    1555    1541    1554    1371    1282    
1006    701 634 483 339 208 148 65  50  12  10  1   0   0   0   0   
0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   
0   0   0   0   0   0   0]'; 
f71=[0  0   0   0   0   0   0   0   0   0   0   0   0   0   0   6   
8   13  45  92  144 241 343 446 578 633 766 810 871 880 965 917 
984 996 907 910 986 1059    1017    926 989 963 967 991 1079    
1133    1174    1139    1251    1287    1239    1246    1388    
1588    1632    1739    1820    1856    1920    1850    1858    
1858    1943    1946    1874    1596    1446    1378    1212    
930 571 499 251 146 63  45  15  3   3   5   4   0   0   0   0   0   
0   0   0   0   0   0   0   0   0   0   0   0   0   0]'; 
f72=[0  0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   
0   2   9   7   17  45  102 194 259 417 543 670 781 803 871 951 
868 819 828 868 821 804 771 828 790 768 826 748 693 746 883 963 
1032    955 1087    1084    1080    1237    1216    1304    1325    
1518    1409    1484    1546    1640    1801    1887    2090    
2155    2169    2373    2122    2090    1842    1470    1276    
961 580 435 253 135 65  53  39  30  2   0   0   0   0   0   0   0   
0   0   0   0   0   0   0   0   0   0]'; 
f73=[0  0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   
0   0   0   2   5   5   13  20  54  127 168 231 306 410 582 649 
699 728 746 690 705 766 697 672 667 672 696 700 676 682 626 699 
668 717 672 748 926 941 1039    1128    1144    1311    1397    
1459    1520    1622    1726    1994    2104    2114    2281    
2227    2265    2362    2196    2085    1931    1715    1425    
1461    1197    1050    614 323 216 121 35  7   6   0   0   0   0   
0   0   0   0   0   0   0   0   0   0   0]'; 
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f75=[0  0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   
0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   
0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   
0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   
0   0   0   0   0   0   0   0   0   0   0   0   1   17  53  137 
230 304 488 660 930 1279    1665    2010    2508    2793    3100    
3369    3786    4327    5319    10986   16478]'; 
f77=[0  0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   
0   0   0   0   0   0   0   0   0   0   0   1   2   3   0   3   0   
0   3   2   1   2   5   2   8   10  6   9   8   18  29  23  25  29  
51  63  70  95  110 164 138 207 270 339 393 486 510 720 808 921 
1053    1201    1287    1381    1507    1582    1842    1957    
2113    2324    2493    2676    2801    2908    3122    3369    
3452    3490    3475    3254    2557    2192    1475    930 393 65  
7   0   0   0   0   0   0   0]'; 
f78=[0  0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   
0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   0   
0   0   0   0   0   0   0   0   0   0   0   0   1   1   0   0   2   
3   2   8   5   5   5   7   11  9   15  27  30  42  55  80  85  
136 172 253 286 363 467 610 794 980 1160    1522    1875    2207    
2655    2958    3306    3594    3851    4050    4354    4553    
4680    4731    4109    3197    1940    868 336 39  1   0   0   0   
0]'; 
  
% t is a matrix of experimental outputs, in this case the 
experimental out 
% is average void fraction this is a user input and may be changed 
as 
% required. 
t=[f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12 f40 f41 f42 f43 f44 f45 
f46 f49 f50 f51 f52 f67 f68 f69 f70 f71 f72 f73 f75 f77 f78]; 
[t TS]=removeconstantrows(t); 
  
%The algorithm can be made more efficient if we perform some 
preprocessing  
%operations. The operation employed here scale the input and 
outputs to 
%fall within the range [-1 1]. 
  
[tn, ts]=mapminmax(t); 
[tt,tv,tts] = divideind(t,trainInd,valInd,testInd); 
[ttn,tvn,ttsn] = divideind(tn,trainInd,valInd,testInd); 
% s is the number of neuron (simple processing units), This is a 
user 
% variable, the number of neurons can between 1 and infinity until 
the best 
% performance is obtained. For the purpose of understanding this 
may be 
% taken as that configuration (number of neurons in the hidden 
layer in 
% this case) that gives the smallest value of minimum mean square 
error 
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% 'mse'. 
s=4; 
l=0; 
%The program is developed for a two layer network(one hidden layer 
of  
%variable number of neurons and one output layer whose number of 
neurons  
%is determined by the output matrix supplied. Also the neurons in 
the  
%hidden layer is designed to have a 'sigmoid transfer function' 
that is 
% a function of the form 'Y1=(1./(1+exp(sum(-w.*pn)+b1))' where w 
and b1 are 
%weight and bias matrices and pn is the normalized of preprocessed 
inputs 
%and the output layer is a linear function of the form Y2= 
sum(v*Y1)+b2. 
%This configuration has proven very effective for most problems of 
function 
%fitting. The summation of output from the hidden layer is the 
input to the 
% output layer Thus the function takes the following basic form 
for each  
%neuron. Note the value of the weights and biases in each neuron 
are not  
%usually the same. 
y=numel(t(:,1)); %Number of output parameter (in this case grouped 
frequencies void fraction) 
yt=numel(tt); 
yv=numel(tv); 
yts=numel(tts); 
syms v w p1 L % helps us in finding the the partial derivative of 
the function with respect to the symbolic variables 
pr=x;  % pr number of non-constant input variables p 
ws=rands(s,pr+1); % Input weight matrix, normalized random values 
are used 
Ls=1;  % Layer weight matrix, normalized random values are used 
vs=rands(y,s+1);  % Layer weight matrix, normalized random values 
are used 
wsR(:,:,1)=ws; 
vsR(:,:,1)=vs; 
f=v*(1/(1+exp(-L*(w*p1)))); 
ftn1=(1./(1+exp(-Ls*(ws*ptn)))); 
ftn1(s+1,:)=ones(1,zt); 
ftn=vs*ftn1; 
fvn1=(1./(1+exp(-Ls*(ws*pvn)))); 
fvn1(s+1,:)=ones(1,ztv); 
fvn=vs*fvn1; 
ftsn1=(1./(1+exp(-Ls*(ws*ptsn)))); 
ftsn1(s+1,:)=ones(1,zts); 
ftsn=vs*ftsn1; 
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%The gradient descent algorithm with momentum term and variable 
step size  
%will be used in a backpropagation fashion in determining the 
weights and  
%bias and it takes the form w(k+1)=w(k)+Lr*g(k)*e(k)+ mc*w(k-1) 
  
mc=0.9; 
Lr=0.01; %initial value of Lr. 
r=(ttn-ftn); %error residual, difference between model output and 
expected output 
rv=(tvn-fvn); 
rts=(ttsn-ftsn); 
d=r.^2; 
dv=rv.^2; 
dts=rts.^2; 
%mean square error is used as the performance function and the 
target of 
%0.0000001 is used, but it can be varied by user. 
mse(1)=sum(sum(d),2)/yt; 
msev(1)=sum(sum(dv),2)/yv; 
msets(1)=sum(sum(dts),2)/yts; 
         
for k=1;  % k is the number of iterations, this can be varied by 
user 
    if ((mse(k)>=0.0000001) && (Lr<=1*10^10)); 
        %fw=v*((L*p1)./(exp(L*(w*p1)).*(1./exp(L*(w*p1)) + 1)^2)); 
        aw=(Ls./(exp(Ls*(ws*ptn)).*(1./exp(Ls*(ws*ptn)) + 1).^2)); 
        vr=vs'*r; 
        m=0; 
        for Q=1:x+1; 
            for q=1:s; 
                m=m+1; 
                fwa(q,:,Q)=ptn(Q,:).*aw(q,:); 
                fwb(q,Q)=fwa(q,:,Q)*vr(q,:)'; 
            end 
        end 
        fw=fwb; 
        fv=1./(1./exp(Ls*ws*ptn) + 1); 
        fv(s+1,:)=ones(1,zt); 
        J2=fv; 
        JT2=J2'; 
        G1(k)=norm(fw); 
        G2(k)=norm(JT2); 
            if (G1(k)>=1e-10) && (G2(k)>=1e-10);     
                a1=Lr*fw; 
                a2=Lr*r*JT2; 
                ws=ws+a1; 
                vs=vs+a2; 
                ftn1=(1./(1+exp(-Ls*(ws*ptn)))); 
                ftn1(s+1,:)=ones(1,zt); 
                ftn=vs*ftn1; 
                r1=(ttn-ftn); 
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                d=r1.^2; 
                mse(k+1)=sum(sum(d),2)/yt; 
                if  mse(k+1)>=1.04*mse(k); 
                        ws=ws-a1; 
                        vs=vs-a2; 
                        Lr=0.7*Lr; 
                        a1=Lr*fw; 
                        a2=Lr*r*JT2; 
                        ws=ws+a1; 
                        vs=vs+a2; 
                        ftn1=(1./(1+exp(-Ls*(ws*ptn)))); 
                        ftn1(s+1,:)=ones(1,zt); 
                        ftn=vs*ftn1; 
                        r=(ttn-ftn); 
                        d=r.^2; 
                        mse(k+1)=sum(sum(d),2)/yt; 
                else 
                    Lr=Lr*1.05; 
                    r=r1; 
                end 
            else 
                break 
            end 
        wsR(:,:,k+1)=ws; 
        vsR(:,:,k+1)=vs; 
        %Test 
            ftsn1=(1./(1+exp(-Ls*(ws*ptsn)))); 
            ftsn1(s+1,:)=ones(1,zts); 
            ftsn=vs*ftsn1; 
            rts=(ttsn-ftsn); 
            dts=rts.^2; 
            msets(k+1)=sum(sum(dts),2)/yts; 
             
            %Validation 
            fvn1=(1./(1+exp(-Ls*(ws*pvn)))); 
            fvn1(s+1,:)=ones(1,ztv); 
            fvn=vs*fvn1; 
            rv=(tvn-fvn); 
            dv=rv.^2; 
            msev(k+1)=sum(sum(dv),2)/yv; 
            if msev(k+1)>=msev(k); 
                l=l+1; 
                if l==5; 
                    break 
                end 
            else 
                l=0; 
            end 
    else 
        break 
    end 
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end 
         
for k=2:100000;  % k is the number of iterations, this can be 
varied by user 
    if ((mse(k)>=0.0000001) && (Lr<=1*10^10)); 
        %fw=v*((L*p1)./(exp(L*(w*p1)).*(1./exp(L*(w*p1)) + 1)^2)); 
        aw=(Ls./(exp(Ls*(ws*ptn)).*(1./exp(Ls*(ws*ptn)) + 1).^2)); 
        vr=vs'*r; 
        m=0; 
        for Q=1:x+1; 
            for q=1:s; 
                m=m+1; 
                fwa(q,:,Q)=ptn(Q,:).*aw(q,:); 
                fwb(q,Q)=fwa(q,:,Q)*vr(q,:)'; 
            end 
        end 
        fw=fwb; 
        fv=1./(1./exp(Ls*ws*ptn) + 1); 
        fv(s+1,:)=ones(1,zt); 
        J2=fv; 
        JT2=J2'; 
        G1(k)=norm(fw); 
        G2(k)=norm(JT2); 
            if (G1(k)>=1e-10) && (G2(k)>=1e-10);     
                a1R=a1; 
                a2R=a2; 
                a1=Lr*fw; 
                a2=Lr*r*JT2; 
                ws=ws+a1+mc*a1R; 
                vs=vs+a2+mc*a2R; 
                ftn1=(1./(1+exp(-Ls*(ws*ptn)))); 
                ftn1(s+1,:)=ones(1,zt); 
                ftn=vs*ftn1; 
                r1=(ttn-ftn); 
                d=r1.^2; 
                mse(k+1)=sum(sum(d),2)/yt; 
                if  mse(k+1)>=1.04*mse(k); 
                        ws=ws-a1-mc*a1R; 
                        vs=vs-a2-mc*a2R; 
                        Lr=0.7*Lr; 
                        a1=Lr*fw; 
                        a2=Lr*r*JT2; 
                        ws=ws+a1+mc*a1R; 
                        vs=vs+a2+mc*a2R; 
                        ftn1=(1./(1+exp(-Ls*(ws*ptn)))); 
                        ftn1(s+1,:)=ones(1,zt); 
                        ftn=vs*ftn1; 
                        r=(ttn-ftn); 
                        d=r.^2; 
                        mse(k+1)=sum(sum(d),2)/yt; 
                else 
                    Lr=Lr*1.05; 
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                    r=r1; 
                end 
            else 
                break 
            end 
        wsR(:,:,k+1)=ws; 
        vsR(:,:,k+1)=vs; 
        %Test 
            ftsn1=(1./(1+exp(-Ls*(ws*ptsn)))); 
            ftsn1(s+1,:)=ones(1,zts); 
            ftsn=vs*ftsn1; 
            rts=(ttsn-ftsn); 
            dts=rts.^2; 
            msets(k+1)=sum(sum(dts),2)/yts; 
             
            %Validation 
            fvn1=(1./(1+exp(-Ls*(ws*pvn)))); 
            fvn1(s+1,:)=ones(1,ztv); 
            fvn=vs*fvn1; 
            rv=(tvn-fvn); 
            dv=rv.^2; 
            msev(k+1)=sum(sum(dv),2)/yv; 
            if msev(k+1)>=msev(k); 
                l=l+1; 
                if l==5; 
                    break 
                end 
            else 
                l=0; 
            end 
    else 
        break 
    end 
  
end 
if l>=5; 
    ws=wsR(:,:,k-4); 
    vs=vsR(:,:,k-4); 
end 
ftn1=(1./(1+exp(-Ls*(ws*ptn)))); 
ftn1(s+1,:)=ones(1,zt); 
ftn=vs*ftn1; 
fvn1=(1./(1+exp(-Ls*(ws*pvn)))); 
fvn1(s+1,:)=ones(1,ztv); 
fvn=vs*fvn1; 
ftsn1=(1./(1+exp(-Ls*(ws*ptsn)))); 
ftsn1(s+1,:)=ones(1,zts); 
ftsn=vs*ftsn1; 
t=removeconstantrows('reverse',t,TS); 
tt_exp=removeconstantrows('reverse',tt,TS); 
tv_exp=removeconstantrows('reverse',tv,TS); 
tts_exp=removeconstantrows('reverse',tts,TS); 
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t_exp=t; 
fft = mapminmax('reverse',ftn,ts); 
ffv = mapminmax('reverse',fvn,ts); 
ffts = mapminmax('reverse',ftsn,ts); 
tt_model=removeconstantrows('reverse',fft,TS); 
tv_model=removeconstantrows('reverse',ffv,TS); 
tts_model=removeconstantrows('reverse',ffts,TS); 
p=removeconstantrows('reverse',p,PS); 
pt=removeconstantrows('reverse',pt,PS); 
pv=removeconstantrows('reverse',pv,PS); 
pts=removeconstantrows('reverse',pts,PS); 
mse_minimum_train=min(mse) 
mse_minimum_val=min(msev) 
mse_minimum_test=min(msets) 
number_iteration=k 
  
% PERFORMANCE ANALYSIS 
%Cross Correlation coefficient 
%R=C(i,j)/(C(i,i)C(j,j))^1/2 
%Training 
Avt_exp=mean(mean(tt_exp,2)); 
Avt_model=mean(mean(tt_model,2)); 
Nmt=(sum(sum((tt_model-Avt_model).*(tt_exp-Avt_exp)),2)); 
Dnt=((sum(sum((tt_model-Avt_model).^2),2)).*(sum(sum((tt_exp-
Avt_exp).^2),2))); 
Rtrain=Nmt/sqrt(Dnt); 
%Validation 
Avv_exp=mean(mean(tv_exp,2)); 
Avv_model=mean(mean(tv_model,2)); 
Nmv=(sum(sum((tv_model-Avv_model).*(tv_exp-Avv_exp)),2)); 
Dnv=((sum(sum((tv_model-Avv_model).^2),2)).*(sum(sum((tv_exp-
Avv_exp).^2),2))); 
Rvalidation=Nmv/sqrt(Dnv); 
%Testing 
Avts_exp=mean(mean(tts_exp,2)); 
Avts_model=mean(mean(tts_model,2)); 
Nmts=(sum(sum((tts_model-Avts_model).*(tts_exp-Avts_exp)),2)); 
Dnts=((sum(sum((tts_model-Avts_model).^2),2)).*(sum(sum((tts_exp-
Avts_exp).^2),2))); 
Rtest=Nmts/sqrt(Dnts); 
  
%Average absolute relative error (AARE) 
%AARE=(1/N)*sum(absolute(model output-exp value)/exp value)); 
AT=abs((tt-fft)./fft); 
AAREtrain=(1/yt)*sum(sum(AT),2); 
AV=abs((tv-ffv)./ffv); 
AAREvalidation=(1/yv)*sum(sum(AV),2); 
ATS=abs((tts-ffts)./ffts); 
AAREtest=(1/yts)*sum(sum(ATS),2); 
  
%PLOTS 
plot(tt_exp,tt_model,'*') 
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xlabel('experimantal average void fraction') 
ylabel('MLP model average void fraction') 
legend('Training') 
title('Gradient Descent with adaptive step and momentum term') 
figure 
plot(tv_exp,tv_model,'*') 
xlabel('experimantal average void fraction') 
ylabel('MLP model average void fraction') 
legend('Validation') 
title('Gradient Descent with adaptive step and momentum term') 
figure 
plot(tts_exp,tts_model,'*') 
xlabel('experimantal average void fraction') 
ylabel('MLP model average void fraction') 
legend('Testing') 
title('Gradient Descent with adaptive step and momentum term') 
figure 
u=1:k+1; 
plot(u,mse,u,msev,u,msets) 
xlabel('Number of iterations') 
ylabel('Mean Square Error MSE') 
legend('Training','Validation','Testing') 
title('Gradient Descent with adaptive step and momentum term 
performance plot') 
  
bin=0.01:0.01:1; 
bin=bin'; 
%Train 
%for i=0:18; 
%comparetrain(:,2*i+1:2*i+2)=[tt_exp(:,i+1) tt_model(:,i+1)]; 
%end 
%comparetrain; 
  
%PDF=comparetrain/60440; 
%for u=0:numel(PDF(1,:))/2-1 
 %   figure 
%plot(bin',PDF(:,2*u+1),bin',PDF(:,2*u+2),'--') 
%xlabel('void fraction') 
%ylabel('PDF') 
%legend('Experimental','GDMV MLP MODEL') 
%title('Probabilty Density Function') 
%end 
  
%Validation 
%for i=0:6; 
%comparevalidation(:,2*i+1:2*i+2)=[tv_exp(:,i+1) tv_model(:,i+1)]; 
%end 
%comparevalidation; 
  
%PDF=comparevalidation/60440; 
%for u=0:numel(PDF(1,:))/2-1 
 %   figure 
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%plot(bin',PDF(:,2*u+1),bin',PDF(:,2*u+2),'--') 
%xlabel('void fraction') 
%ylabel('PDF') 
%legend('Experimental','GDMV MLP MODEL') 
%title('Probabilty Density Function') 
%end 
  
%Test 
for i=0:6; 
comparetest(:,2*i+1:2*i+2)=[tts_exp(:,i+1) tts_model(:,i+1)]; 
end 
comparetest; 
  
PDF=comparetest/60440; 
for u=0:numel(PDF(1,:))/2-1 
    figure 
plot(bin',PDF(:,2*u+1),bin',PDF(:,2*u+2),'--') 
xlabel('void fraction') 
ylabel('PDF') 
legend('Experimental','GDMV MLP MODEL') 
title('Probabilty Density Function') 
end 
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