
GESJ: Computer Science and Telecommunications 2016|No.4(50)
ISSN 1512-1232

 9

Development of Multilayer Perceptron Models for Predicting Average Void

Fraction and PDF of void Fraction in a Vertical 90o Bend for Air–Silicone Oil
Flow

1 Mukhtar Abdulkadir, 2 Paul Onubi Ayegba

1Mukhtar Abdulkadir, Manufacturing Engineering Research Division, Faculty of Engineering, University of

Nottingham University Park, Nottingham, NG7 2RD, United Kingdom. Chemical Engineering Department, Federal
University of Technology, Minna, Nigeria. Petroleum Engineering Department, African University of Science and

Technology (AUST), Abuja, Nigeria, City
*2National Environmental Standards and Regulations Enforcement Agency, North-west zonal Headquarters, Kano,

Nigeria. Chemical Engineering Department, Ahmadu Bello University, Zaria, Nigeria
Email: paulsnow4christ@gmail.com

Abstract

Multilayer Perceptron (MLP) models have been developed to predict two-phase
average void fraction and probability density function (PDF) of void fraction in 90o
bends. The Artificial Neural Network (ANN) methodology was reported using MLP
trained with 2 algorithms. Logarithmic sigmoid transfer function was used in a single
hidden layer for both algorithms (Gradient descent (GDMV) and Levenberg-Marquardt
(LM) algorithms). Both MLP models were optimised by varying the number of neurons
in the hidden layer while monitoring the Mean Square Error (MSE). The performance
of the models was evaluated using the Average Absolute Relative Error (AARE) and
Cross Correlation Coefficient (R). Both MLP models developed for the prediction of
average void faction before the bend performed excellently well. However, the MLP
model trained with LM algorithm having 3 neurons in the hidden layer gave better
performance. Similarly, the MLP model trained with LM algorithm, having 11 neurons
in the hidden layer for the prediction of PDF of void fraction before the bend gave
excellent prediction. Model performance for the MLP models after the bend gave poor
generalisation property. However, the MLP model based on GDMV algorithm gave
better prediction for predicting average void fraction and PDF of void fraction after the
bend. It was concluded that MLP models may with some confidence be used to predict
the average void fraction and the PDFs of void fraction observed before a vertical 90o
bend.
Keywords: 90o bend, air–silicone oil; void fraction; MLP; ANN; LM algorithm; GDMV
algorithm; modelling.

1. Introduction
Two phase gas-liquid flows are both common and important in oil and gas production and

flow lines of different configurations [2]. Two-phase flows are often conveyed through pipes of
various configurations as well as pipe fittings such as bends [27]. According to [3] the presence of
bends introduces secondary flows, redistribution of multiphase fractions, flow excursions, deviation
in flow paths etc. The orientation of the connecting pipe make a difference in the flow patterns for
reasons which include sharp deviation in flow path around bends and also because of the role
played by gravity and density difference between the two fluids. Two important characteristics of
two-phase flows around bends are highly fluctuating voids immediately after bends and changes in
flow pattern. It is therefore imperative to develop a means for predicting flow characteristics. A
method that has been successfully used for determining flow pattern is the probability density
function (PDF) of void fraction. A number of modelling techniques have been employed in the past
for void fraction and flow pattern prediction. The models are either empirical, mechanistic of

mailto:paulsnow4christ@gmail.com

GESJ: Computer Science and Telecommunications 2016|No.4(50)
ISSN 1512-1232

 10

numerical. However, the application of Multilayer Perceptron Modelling (MLP), for the prediction
of flow characteristics around bends has received little attention in the peer review literature. Most
of the investigations have been restricted to experimental investigation: [2], [11] - [14], [17], and
[25] address the issue of gas–liquid systems but most of the reported experiments are not extended
to the application of MLP to predict such flows in bends.

MLP modelling is a type of numerical modelling. Numerical modelling technique is a useful
tool in visualising the dynamic behaviour of real systems. It has a unique advantage in that there is
no limit to the complexity of problem it can solve [26]. MLP models are similar to ANN and are
based on the concept of interconnected systems of simple-processing units [10].

1.1. The Back-propagation Algorithm
In back-propagation algorithms the processing elements are arranged in layers, signals are

sent forward while errors are propagated backwards. The layers consist of input, hidden and outputs
layers. The number of processing elements in the input layer is defined by the number of
independent input variables, while that of the hidden layer is determined by method of optimisation.
There may be one or more intermediate hidden layers as illustrated in Figure 1.

Figure 1: Schematic diagram of the ANN [24].

Generally MLP modelling similar to ANN use either supervised or unsupervised learning

during the process of model training. The method used in back-propagation algorithm is supervised
learning, which means that the user provides the algorithm with examples of the inputs and outputs
for the network to compute, and then the error (difference between actual and expected results) is
calculated. The concept of the back-propagation algorithm is to reduce this error, until the ANN
learns the training data. The training usually begins with random weights (or user specified
weights), and the goal is to adjust them so that the error will be minimal [10].

1.2. Two-phase flow in 90o bends
A number of experimental and modelling studies have been carried out in the past for two

phase gas-liquid flows in bends. Majority of these works were for air-water systems and very few
used advanced instrumentation for their investigation. A Visual and experimental study for two-
phase flow through a transparent pipe 76-mm diameter was carried out by [14]. Their flow facility
consisted of a vertical 90° bends of 305 and 610 mm radii of curvature. The investigation for
limited to bubble and slug flow regimes for air-water flow. The goal was to interrogate the
competitive effects of centrifugal and gravity forces on the ensuing flow distribution in bends. A 2D
modelling study was carried out by [11] for flow around a vertical 90° bends. Model predictions
from their work were compared results of experimental investigation of [14]. The results showed
poor correlation between model predictions and experimental measurements. An extension of the
2D model to a 3D model was carried out by [12] who obtained better model predictions for
experimental measurements. [13] developed an improved 3-D numerical simulation, in which a
substantially different solution algorithm, with an additional momentum term, was adopted. They
applied the models to both air–water and gas–oil mixtures. The predicted simulation flow data gave
better agreement with the experimental data compared to those obtained by the 2-D model in [11].
There was, however, a shortage of experimental data at the time for validation of their gas-oil

GESJ: Computer Science and Telecommunications 2016|No.4(50)
ISSN 1512-1232

 11

simulation. An experimental and numerical modelling study was carried out by [17] for air-water
flow in a bend of 630 mm radius of curvature. The flow configuration was horizontal to vertical
though the bend and the pipe were made of transparent acrylic material of internal diameter 100-
mm. Visual observations of the flow regime was done using a 200 Hz digital camera and an auto-
regressive modelling method. They observed two flow regimes (Slug and churn flow) in the riser
and three flow regimes (stratified, slug and enhanced slug) in the horizontal pipe section. The time
dependent behaviour of two-phase flow was modelled by an in-house code named Solution Package
for Hyperbolic Functions (SOPHY-2). In most of the tested data an excellent agreement was found
between the experimental and modelling results. [2] used electrical capacitance tomography (ECT),
high speed video and wire mesh sensor (WMS) to interrogate the effects of 90o bends on two-phase
air–silicone oil flows. The downstream pipe was kept horizontally while the upstream pipe was
vertical. The characteristic PDF of void fraction for various flow rates were used to identify the
flow regime upstream and downstream of the bend. They observed bubble, stratified, slug and semi-
annular flows downstream of the vertical 90o bend whiles the flow patterns exhibited upstream of
the bend was the same as for the horizontal 90o bend. [25] conducted an experimental study of the
behaviour of two-phase air–water flow from the vertical to the horizontal through a 90o bend using
conductance probes technique. Void fraction measurement was done using the conductance probes
(3 upstream and 6 downstream of the bend). The characteristic PDF of void fraction, power spectral
density (PSD) of the time series of cross sectional average void fraction and visual observations
were used to characterize the flow behaviour. For the horizontal pipe, plug, slug and stratified wavy
flow patterns were seen while slug and churn flows in the vertical pipe.

1.3. Application of Artificial Neural Network (ANN) methodology to gas–liquid flows
[15] used ANN to process signals measured using a conductivity probe with the aim of

classifying them into various flow patterns. They used visual map identification to validate the
results of ANN model predictions. The ANN predictions were in good agreement with results of
visual identification. A comparative model study was carried out by [21] for the prediction of
pressure loss in five venture scrubbers. They compared the results of ANN prediction with a
number of other models and concluded that predictions of the ANN models were better within the
range of data tested. [30] used adopted inputs, all representing the characteristics of PSD, in training
a three-layered feed forward ANN for the prediction of flow pattern. The model predictions gave
good agreement to the observed flow patterns. A comparative study of CFD and ANN was carried
out by [4]. They used both CFD and ANN for the prediction of pressure drop in two phase gas-
liquid flows in 2-cm diameter, 6-m long pipe. The inputs to their ANN model were gas velocity,
liquid velocity and tube inclination. Predictions from both models indicated that the CFD model
performed better. [19] used ANN technique in predicting the pressure drop observed in three phase
flow conditions. The resilient back-propagation algorithm was used to formulate the ANN model.
This method gave correlation coefficients up to 98.82 %. [9] employed ANNs in characterizing
observed flow pattern. The method was based upon an analysis of the PSD determined from the
differential pressures measured within a horizontal pipe conveying. Over the range of data tested,
model predictions were in good agreement with experimental data. Three different ANN algorithms
were used by [24] to predict the observed void fractions and pressure drops for a two-phase flow in
horizontal pipe. The model based on Levenberg Marquardt ANN algorithm with five processing
elements gave the best prediction of void fraction and that based on back-propagation ANN
algorithm with fifteen processing elements performed best for the prediction of pressure drop.
Later, [22] applied a similar methodology for the prediction of flow regime of air–water flow in
circular micro channels with reasonable success. [23] further applied ANNs in predicting frictional
pressure drop in U-bends. Model predictions gave fairly accurate results of the frictional pressure
drop across U-bends. Probabilistic Neural Network (PNN) was used by [16] for flow pattern
identification. The range of gas and liquid superficial velocity tested were 0.0026-6.05 m/s and
0.03-2.5 m/s respectively. Within this range they observed five different flow patterns. The
accuracy of the PNN when it was used to predict flow patterns was as high as 95.6%. An attempt to
predict flow patterns for two phase flow was done by [20]. They used three pairs of inputs (gas

GESJ: Computer Science and Telecommunications 2016|No.4(50)
ISSN 1512-1232

 12

velocity and liquid velocity, total pressure and liquid hold-up, Reynolds number for liquid and gas).
The study was conducted in a horizontal pipe for four different flow regimes (Annular, Dispersed
bubble, intermittent and stratified). Their model predicted over 80% of the flow patterns correctly
and performed particularly well within the dispersed bubble region for all input pairs. In general the
input pair of the natural logarithm of gas and liquid velocity gave better prediction.

The above literature survey show that limited work has been done in the use of MLP, ANN
methodology for the prediction of average void fraction and PDF of void fraction in 90o bends for
two-phase flows through large diameter pipes. Most of the research has been centred on empirical
and visualization techniques. Most of the works that use ANN methodology are those for pressure
drop and flow pattern prediction.

2. Experimental Methodology
A summary of the experimental facility is provided in [1] and [2]. The experimental test

section of the facility is made of a 67-mm internal diameter a transparent acrylic pipe of 6 m length.
A vertical 90o bend with a radius of curvature 154 mm was maid of the straight pipe as shown

in Figure 2. Downstream of the bend there is another straight pipe from which the air – silicone oil
mixture enters a flexible pipe that takes it to the phase separator. The behaviour of the air – silicone
oil mixture was examined using WMS. This technology, described by [28], can image the dielectric
components in the pipe flow phases by measuring rapidly and continually the capacitances of the
passing flow across several crossing points in the mesh.

The WMS was first placed at about 4.92 m (73 diameters) away from the mixing section.
WMS was afterwards moved to a distance of about 0.21 m (3 diameters) after the bend. The
experiments were all performed at an ambient laboratory temperature of 20±0.5 and a pressure of 1
bar.

Figure 2: 3-D geometry of the computational domain showing the measurement locations and
instrumentation

Table 1: Properties of the fluid at 1 bar and at the operating temperature of 5.020 ± oC

Fluid Density (kgm-

3)
Viscosity (kgm-1s-1) Surface

tension (Nm-1)
Thermal
conductivity (Wm-

GESJ: Computer Science and Telecommunications 2016|No.4(50)
ISSN 1512-1232

 13

1K-1)
Air 1.18 0.000018 0.02 0.1
Silicone oil 900 0.00525

The experimental data collected using WMS was time series void fractions for 38
experimental data sets before the bend and 33 experimental data sets for after the bend scenario.

The input parameters to the ANNs are the gas and liquid superficial velocities. Parameters
like liquid and gas densities, liquid and gas viscosities, surface tension and thermal conductivity of
liquid were not used in the formulation of the ANN model formulation as they were assumed to
remain constant. The input parameters are summarised in Table 2. The output parameters are time
averaged cross sectional area void fraction and PDF of void fraction.

Table 2. Inlet flow rates (model inputs)

 Before Bend After Bend
USL 0.05 0.14 0.38 0.05 0.14 0.38

USG

0.047 0.047 0.047 0.047 0.047 0.061
0.061 0.061 0.061 0.061 0.061 0.288
0.288 0.288 0.288 0.288 0.288 0.344
0.344 0.344 0.344 0.344 0.344 0.404
0.404 0.404 0.404 0.404 0.404 0.544
0.544 0.544 0.544 0.544 0.544 0.709
0.709 0.709 0.709 0.709 0.709 1.891
0.945 0.945 0.945 0.945 1.891 2.363
1.418 1.418 1.418 1.418 2.363 2.836
1.891 1.891 1.891 1.891 2.836 4.73
2.363 2.363 2.363 2.363 4.73
2.836 2.836 2.836 2.836

3. Multilayer Perceptron Modelling (MLP)
Two MLP codes that mimic Artificial Neural Networks (ANN) models were developed in this

paper for the prediction of average void fraction and PDF of void fraction of gas-liquid flow in 90o
bends. The MLP codes were developed in MATLAB and are based on the back-propagation
algorithms (Gradient Descent (DC) and Levenberg-Marquardt (LM)). The model topography is
such that each model consists of three layers (input, hidden and output layers). The transfer function
used in the hidden layer is the logsigmoid (logsig) function given by Equation (1).

 (1)

Where w is the weight function and x represents the vector input (gas and liquid superficial

velocities in this case).

3.1. Gradient descent algorithm (GDMV)
This is regarded as the simplest of all the back-propagation algorithms. It is a first order

algorithm and employs the generalised delta rule and weights are updated using the formula;

 (2)

 (3)

GESJ: Computer Science and Telecommunications 2016|No.4(50)
ISSN 1512-1232

 14

where is the step size.
The gradient descent algorithm has a tendency to be slow in terms of convergence [29]. This

slowness is often addressed by using a variable step size and a ‘momentum term’. When the
momentum term is added to Equation (3) Equation (4) is obtained;

 (4)

E is the error function, is the weight matrix and is the weight update for each iteration. The
error function E, used for this work is Sum of Squares of error. Error here refers to the difference
between the model output and experimental output.

Figure 3: Gradient descent algorithm (with variable step size and momentum term) flowchart

The target is to minimise the partial derivative in Equation (2) (i.e. the gradient of the error
function) to zero. First order algorithms has the inherent disadvantage of being slow, but also has a
unique advantage, in that the gradient term can be minimised to zero with sufficient amount of
iterations.

Figure 3 and 4 depict flow charts of the gradient descent and Levenberg-Marquardt
algorithms respectively that were developed here.

GESJ: Computer Science and Telecommunications 2016|No.4(50)
ISSN 1512-1232

 15

3.2. Levenberg-Marquardt algorithm (LM)
The Levenberg-Marquardt algorithm combines of Gauss-Newton algorithm (a second order

algorithm) and gradient descent algorithm (a first order learning algorithm). Generally, second
order algorithm converges much faster than the first order algorithms.

Figure 4: Levenberg-Marquardt algorithm flowchart

The update rule of Levenberg–Marquardt algorithm can be presented as

 (5)
Jk is the Jacobian matrix given by;

GESJ: Computer Science and Telecommunications 2016|No.4(50)
ISSN 1512-1232

 16

 Where e is given by

where, μ is always positive, called combination coefficient and I is the identity matrix.

As the combination of the steepest descent algorithm and the Gauss–Newton algorithm, the
Levenberg–Marquardt algorithm switches between the two algorithms during the training process.

3.3. MLP Model Optimization
The optimisation process involves determining the network topology and weights that gives

best model performance when tested using certain performance equations. It is important to
determine the optimum number of neurons in the hidden layer. This optimum number depends on
the number of input and output units, the number of training cases, the amount of noise in the
targets, the complexity of the error function, the network architecture, and the training algorithm. In
most cases according to [19], there is no straight forward method of determining the optimal
number of hidden units without training using different numbers of hidden units and estimating the
generalization error of each.

In the present work, a single hidden layer with multiple neurons units is used as previous
study by [24] showed that a single hidden layer with sufficient number of neurons performed
satisfactorily well. The details of the concept of hidden layer can be found elsewhere, example in
[18]. In the hidden layer the numbers of processing elements are optimized by varying the number
from 1 to 25.The basic approach used in constructing the successful model was trial and error. The
generalization error (cross validation error) of each inspected network design was visualized and
monitored carefully through plotting the governing statistical parameters such as correlation
coefficient, root mean squared errors, and average absolute relative error of each inspected
topology.

It is worthy of note that various network topology could be employed for MLP model
development. However, the back-propagation network with feed-forward algorithm was chosen
here as this has performed satisfactorily well in previous works such as [7], [8], [19], [24] and [30]
among others.

3.4. Objective Function and Performance of ANN
The objective function provides the basis for performance evaluation and network algorithm

selection. A suitable objective function which provides a good basis for numerical computation and
attainment of set goals must be chosen. In this work, sum of squares of error is used as the objective
function and it is given by equation (6).

 (6)
The performance of the network is checked using the following parameters: Mean Squared

Error (MSE),
 (7)

Average Absolute Relative Error (AARE)

 (8)

GESJ: Computer Science and Telecommunications 2016|No.4(50)
ISSN 1512-1232

 17

The AARE eliminates the possibility of obtaining negative values of relative error. The aim is
to obtain values of AARE close to zero.

Cross-correlation coefficient (R)
 (9)

A value of R unity (1) means there is a perfect correlation between experimental and
predicted results, while a value of R close to zero would indicate that there is little or no correlation
between experimental and predicted data [24]. Thus models capable of predicting experimental data
such that the value of R is close to one would be considered as good models.

3.5. Developed MLP Algorithms Codes (program development)
Data collection and partitioning, filtering and screening procedure, data randomization, pre-

processing, and post-processing were done before running the models. A total number of 38 data
sets before the bend and 33 data sets after he bend were utilized for the purpose of this study for
modelling ends. Input data are.

The partitioning ratio of 4:1:1 is known to yield better training and testing results (but

depends on the number of data set used for training). Other common partitioning ratios are 2:1:1
and 3:1:1 [24]. For this work, a partitioning ratio of 3:1:1 was adopted. The training set is used to
develop and adjust the weights in a network. The validation set is used to ensure the generalization
of the developed model during the training phase, and the test set is used to examine the final
performance of the model. The primary concerns are to ensure two things: (a) the training set
contains enough data, and suitable data distributed evenly to cover the entire range of data, and (b)
there is no unnecessary similarity between the data in different sets. The number of iterations for
each model was initially put at 100,000 iterations but if performance does not improve much after
10,000 iterations then training is stopped.

The MLP models developed for the prediction of average void fraction before the bend based
on gradient descent algorithm and PDF of void fraction after the bend based on Levenberg-
Marquardt algorithm are given in the appendix.

4. RESULTS
In this section results model optimization and performance of the developed MLP models are

presented.

4.1 Result of MLP model optimization
Figure 4 is a plot of minimum cross-validation MSE against number of processing elements in

the hidden layer of a selected MLP. The optimum network configuration is chosen as that which
gives the least value of cross-validation MSE, which is the network configuration with the best
generalisation capability.

GESJ: Computer Science and Telecommunications 2016|No.4(50)
ISSN 1512-1232

 18

Figure 5: Minimum cross-validation MSE versus number of processing elements in hidden layer for

PDF of void fraction using Levenberg-Marquardt algorithm (before bend).
Table 3 gives the optimum number of neurons in the hidden layer for each MLP model developed.
All further analysis will be based on these optimal configurations.

Table 3: Optimum number of neurons
Algorithm Optimum number of processing elements

Average void fraction PDF of void fraction
GDMV (before bend) 2 4
LM (before bend) 3 11
GDMV (after bend) 16 4
LM (after bend) 2 4

4.1. Performance of the Optimum Network Configurations for Various MLP Codes
Table 4 gives performance of the optimum network configurations for various MLP codes for

training, validation and testing.

Table 4: Performance of the optimum network configurations for various MLP codes developed

A
lg

or
ith

m

Pe
rfo

rm
an

ce
 Training Validation Testing

A
ve

ra
ge

vo

id

fra
ct

io
n

PD
F

of

vo
id

fra

ct
io

n
A

ve
ra

ge

vo
id

fra

ct
io

n

PD
F

of

vo
id

fra

ct
io

n

A
ve

ra
ge

vo

id

fra
ct

io
n

PD
F

of

vo
id

fra

ct
io

n

GDMV (before bend) MSE 9.2514 x 10-4 0.0284 7.4305 x 10-4 0.0957 7.8331 x 10-4 0.0270
AARE 0.0265 0.7428 0.0939 3529.5 0.0388 8.7071
R 0.9980 0.9390 0.9991 0.5317 0.9988 0.9255

LM (before bend) MSE 4.1445 x 10-4 0.0089 0.0024 0.1065 0.0026 0.0279
AARE 0.0157 0.6537 0.1590 1.3139 0.0274 0.7866
R 0.9991 0.9743 0.9977 0.5486 0.9958 0.9342

GDMV (after bend) MSE 0.0074 0.0686 0.1276 0.2646 0.0267 0.1801
AARE 0.0567 0.9702 0.3362 32.9285 0.1961 1.5740
R 0.9855 0.7532 0.1219 0.0808 0.9156 0.4507

LM (after bend) MSE 0.1709 0.1605 0.1101 0.2731 0.1820 0.3227
AARE 0.3062 1.0291 0.2622 1.0789 0.7013 2.7625
R 0.5893 0.5841 0.7863 0.3482 0.9330 0.3458

The performance results for the test set is of greater significance here as it gives an indication

of the model’s ability to predict the parameters of interest, which is the network’s generalisation
property. The Average Absolute Relative Error is used in selecting the best model, among the ones
developed. Small values of AARE and values of correlation coefficient (R) close to unity (1)
indicate good model performance [24]. The model chosen, from the models tested, for the
prediction of average void fraction or PDF of void fraction before or after the bend is the one with
the least value of AARE.

4.2. Performance Analysis before Vertical 90o Bend
Results of model performance before the bend are presented in this section.

4.2.1 Performance of MLP models for the prediction of average void fraction before

bend
Result of Table 4 shows that both MLP algorithms developed for the prediction of average

void fraction before the vertical 90o bend were good as seen from the small values of AARE and the

GESJ: Computer Science and Telecommunications 2016|No.4(50)
ISSN 1512-1232

 19

closeness of R to unity in both cases. However, the model based on the Levenberg-Marquardt
algorithm is preferred since it has the smallest value of AARE. The Results for training and
validation also showed that both MLP models performed satisfactorily, but only result of test data
was used as bases for assessing model performance. Figures 6a and 6b show the variation of MSE
with number of iterations for the two MLP models (Gradient descent and Levenberg-Marquardt
algorithm) developed for the prediction of average void fraction before the bend. The plots show a
decrease in the MSE with number of iteration, which is an indication of error convergence. Iteration
is stopped after 10000 and 100 iterations respectively as there is no significant improvement after
these points.

It is important to note that besides closeness of model results to experimental data, the MSE
curve for both validation and testing must follow similar pattern for the models to be reliable over
the entire range of data set [24]. This is to eliminate the problem associated with poor data
distribution and/or partitioning for training, validation and testing. It is also important to note that
validation and testing data do not participate in the weight update process, though validation data is
used to stop training when necessary to avoid over-fitting. The performance plots of Figures 6a and
6b show similar trends for validation and testing, thus the models show good generalisation
property and can be relied upon over the entire range of data set.

Figure 6a (GDMV model): Variation of MSE with number of iterations for prediction of average
void fraction before bend

Figure 6b (LM model): Variation of MSE with number of iterations for prediction of average void
fraction before bend

Figures 7a and 7b are regression plots of test data for the two MLP models developed for the

GESJ: Computer Science and Telecommunications 2016|No.4(50)
ISSN 1512-1232

 20

prediction of average void fraction before the vertical 90o bend. The plots are linear with most of
the points close to or directly on the line. Also the intercept of the line is close to zero and slope
close to one, thus given an almost perfect correlation between experimental and predicted values of
average void fraction before bend. These plots further justify the reliability of the proposed models.

Figure 7a (GDMV model): Regression plot of test data before 90o bend for prediction of average
void fraction.

Figure 7b (LM model): Regression plot of test data before 90o bend for prediction of average void

fraction.

Figure 7c (GDMV model): Comparison between predicted and experimental void fraction for test

GESJ: Computer Science and Telecommunications 2016|No.4(50)
ISSN 1512-1232

 21

data before 90o.

Figure 7d (LM model): Comparison between predicted and experimental void fraction for test data

before 90o.

Results of Figure 7 c and & d show that all the test data predicted by the GDMV model and
LM model were with ± 15% and ± 10% of the experimental data respectively. This further confirms
that the LM model performed better for the prediction of average void fraction before the bend.

Table 5 gives a comparison between experimental and predicted average void fraction before

the bend. The results showed that predictions for both models were close to experimental results
especially at low liquid superficial velocities.

Table 5: Comparison between experimental and predicted average void fraction of air/silicone oil
two-phase flow before vertical 90o bend

U SL U SG Experimental

average void
fraction

GDMV model predicted average void fraction LM
model predicted
average
 void fraction

0.050 0.344 0.3806 0.3668 0.3789
0.050 1.418 0.6592 0.6522 0.6249
0.050 1.891 0.6990 0.7008 0.6759
0.050 2.836 0.7591 0.7628 0.7665
0.140 0.047 0.0910 0.1067 0.0954
0.140 0.544 0.4225 0.4352 0.4250
0.140 0.945 0.5315 0.5513 0.5409
0.140 2.836 0.7389 0.7503 0.7739

4.2.2. Performance of MLP models for the prediction of PDF of void fraction before
bend

Both MLP models developed for the prediction of PDF of void fraction after the bend also
performed excellently. However, the model based on Levenberg-Marquardt algorithm is preferred
since it has a smaller value of AARE. MSE plot (Figures 8a and 8b) also show a consistent pattern

GESJ: Computer Science and Telecommunications 2016|No.4(50)
ISSN 1512-1232

 22

for training, validation and testing.

Figure 8a (GDMV model): Variation of MSE with number of iterations for prediction of PDF of
void fraction before the bend

Figure 8b (LM model): Variation of MSE with number of iterations for prediction of PDF of void
fraction before the bend

Regression plot for test data is shown in Figures 9a and 9b. These plots further validate the
MLP models.

GESJ: Computer Science and Telecommunications 2016|No.4(50)
ISSN 1512-1232

 23

Figure 9a (GDMV model): Regression plot of test data before 90o bend for prediction of PDF of
void fraction

Figure 9b (LM model): Regression plot of test data before 90o bend for prediction of PDF of void
fraction

Figure 9c (GDMV model): Comparison between Predicted and Experimental PDF of void fraction
before bend

Figure 9d (LM model): Comparison between Predicted and Experimental PDF of void fraction

GESJ: Computer Science and Telecommunications 2016|No.4(50)
ISSN 1512-1232

 24

before bend

Figures 9c and 9d show that both MLP models developed for the prediction of PDF of void
fraction before the bend predicted over 90% of the data with ±5% of the experimental values with
the model based on Levenberg-Marquardt algorithm again giving slightly better predictions.

Figures 10a to 10h show comparisons (at various values of USG and USL) of the predicted
PDF of void fraction before the bend with those from experimental data for MLP model based on
the Levenberg-Marquardt algorithm. The results depicted show that the MLP model predicts the
PDF of void fraction before the vertical 90o bend to a reasonable level of accuracy over a wide
range of data set.

Fig 10a (LM model): Comparison between Predicted and Experimental PDF of void fraction before
bend for USL=0.05 m/s USG=0.344 m/s

Fig 10b (LM model): Comparison between Predicted and Experimental PDF of void fraction before

bend for USL=0.05 m/s USG=1.418 m/s

GESJ: Computer Science and Telecommunications 2016|No.4(50)
ISSN 1512-1232

 25

Fig 10c (LM model): Comparison between Predicted and Experimental PDF of void fraction before

bend for USL=0.05 m/s USG=1.891 m/s

Fig 10d (LM model): Comparison between Predicted and Experimental PDF of void fraction before

bend for USL=0.05 m/s USG=2.836 m/s

Fig 10e (LM model): Comparison between Predicted and Experimental PDF of void fraction before

bend for USL=1.14 m/s USG=0.047 m/s

GESJ: Computer Science and Telecommunications 2016|No.4(50)
ISSN 1512-1232

 26

Fig 10f (LM model): Comparison between Predicted and Experimental PDF of void fraction before
bend for USL=1.14 m/s USG=0.544 m/s

Fig 10g (LM model): Comparison between Predicted and Experimental PDF of void fraction before

bend for USL=1.14 m/s USG=0.945 m/s

Fig 10h (LM model): Comparison between Predicted and Experimental PDF of void fraction before

bend for USL=1.14 m/s USG=2.836 m/s

Careful inspections of Figures 10a-h reveal that models predictions were particularly good in
Figures 10a, 10, 10c, 10d, 10g and 10h. The results of Figures 10a, 10b, 10c, 10d, 10g and 10h
show that the model can be used to classify flow pattern before the bend with great confidence.

4.3. Performance Analysis Immediately after Vertical 90o Bend

4.3.1 Performance of MLP models for the prediction of average void fraction after bend
A first look at the results of Table 4 for test data set gives an indication of excellent model

performance for both MLP algorithms developed for the prediction of average void fraction
immediately after the vertical 90o bend as can be seen from the small values of AARE and the
closeness of R to unity in both cases. However results from validation data set show that the values
of R for both models were not close to unity. For an MLP model to be valid, both validation and
testing performance curve must follow similar pattern. Figures 11a and 11b give the variation of
MSE with number of iterations for the two MLP models developed for the prediction of average
void fraction immediately after the bend. Figure 11a show a significant divergence in the patterns
traced by the validation MSE and the testing MSE. The implication of this would be poor
generalisation capability of the model. This significant divergence could be attributed to two things,

GESJ: Computer Science and Telecommunications 2016|No.4(50)
ISSN 1512-1232

 27

first; the flow immediately after the bend is not fully developed and second; poor data distribution
and/or partitioning among training, validation and testing. Similar conclusion can be drawn from
Figure 11b. Even though the divergence between the MSE plots for validation and testing is not
well pronounced in this case there is still a significant difference in their patterns.

Figure 11a (GDMV model): variation of MSE with number of iterations for prediction of average
void fraction after bend.

Figure 11b (LM model): variation of MSE with number of iterations for prediction of average void
fraction after bend.

Figures 12a and 12b are regression plots of test data for the two MLP models developed for

the prediction of average void fraction immediately after the vertical 90o bend. These plots again
suggest that the models give a good representation of the data. However Figures 13a and 13b, which
represents the regression plots for the validation data sets, indicates that the models can only be
useful for a limited range of data set.

GESJ: Computer Science and Telecommunications 2016|No.4(50)
ISSN 1512-1232

 28

Figure 12a (GDMV model): Regression plot of test data after 90o bend for prediction of average
void fraction

Figure 12b (LM model): Regression plot of test data after 90o bend for prediction of average void
fraction

Figure 13a (GDMV model): Regression plot of validation data after 90o bend for prediction of
average void fraction

GESJ: Computer Science and Telecommunications 2016|No.4(50)
ISSN 1512-1232

 29

Figure 13a (LM model): Regression plot of validation data after 90o bend for prediction of average

void fraction

The model based on the gradient descent with momentum term and variable steps size gives a

better performance when comparing the two MLP models based on their AARE.

Table 6:
Comparison between experimental and predicted average void fraction of air/silicone oil

two-phase flow after vertical 90o bend
U SL U SG Experiment

al average
void
fraction

GDMV
model
predicted
average
void
fraction

LM model
predicted
average
void
fraction

0.050 1.418 0.9941 0.9344 0.7807

0.050 1.891 0.8941 0.9415 0.7807

0.050 2.836 0.8857 0.7256 0.7807

0.140 0.047 0.1274 0.1599 0.5033

0.140 0.544 0.6032 0.5680 0.7776

0.140 1.891 0.7728 1.0578 0.7807

0.380 0.061 0.2289 0.3196 0.5033

4.3.2. Performance of MLP models for the prediction of PDF of void fraction after bend
Results of Table 4 shows that both MLP algorithms developed for the prediction of PDF of

void fraction after the vertical 90o bend does not give a good representation of the testing and
validation data sets. This is seen from fairly large values of AARE and the lack of closeness of R to
unity in both cases. However, the model based on gradient descent algorithm is preferred since it

GESJ: Computer Science and Telecommunications 2016|No.4(50)
ISSN 1512-1232

 30

has a smaller value of AARE. Figures 14a and 14b give the variation of MSE with number of
iterations for the two MLP models developed for the prediction of PDF of void fraction after the
bend. The plots show a divergence in the performance function for validation and testing. This
further highlights the lack of generality of the models.

Figure 14a (GDMV model): Variation of MSE with number of iterations for prediction of PDF of
void fraction after the bend.

Figure 14b (LM model): Variation of MSE with number of iterations for prediction of PDF of void

fraction after the bend.

Figures 15a and 15b are regression plots for test data for the two MLP models developed for
the prediction of PDF of void fraction immediately after the vertical 90o bend. Careful inspection
show that the intercept of both curves are close to the origin, however a number of data points do
not fall close to the line of best fit. The results further indicate the lack of reliability of the models in
predicting the PDF of void fraction immediately after the vertical 90o bend.

GESJ: Computer Science and Telecommunications 2016|No.4(50)
ISSN 1512-1232

 31

Figure 15a (GDMV model): Regression plot of test data after 90o bend of gradient descent with

momentum term and variable step size model for prediction of PDF of void fraction

Figure 15b (LM model): Regression plot of test data after 90o bend of gradient descent with
momentum term and variable step size model for prediction of PDF of void fraction

Figures 16a to 16g give comparisons between predicted and experimental PDF of void

fraction (at various values of USG and USL) for MLP model based on gradient descent algorithm.
The results depicted show that the developed model predicts the PDF of void fraction for gas-liquid
flow after vertical 90o bends only within limited range of data sets.

Fig 16a (GDMV model): Comparison between Predicted and Experimental PDF of void fraction
after bend for USL=0.05 m/s USG=1.418 m/s

GESJ: Computer Science and Telecommunications 2016|No.4(50)
ISSN 1512-1232

 32

Fig 16b (GDMV model): Comparison between Predicted and Experimental PDF of void fraction

after bend for USL=0.05 m/s USG=1.891 m/s

Fig 16c (GDMV model): Comparison between Predicted and Experimental PDF of void fraction
after bend for USL=0.05 m/s USG=2.863 m/s

Fig 16d (GDMV model): Comparison between Predicted and Experimental PDF of void fraction
after bend for USL=0.14 m/s USG=0.047 m/s

Fig 16e (GDMV model): Comparison between Predicted and Experimental PDF of void fraction
after bend for USL=0.14 m/s USG=0.544 m/s

GESJ: Computer Science and Telecommunications 2016|No.4(50)
ISSN 1512-1232

 33

Fig 16f (GDMV model): Comparison between Predicted and Experimental PDF of void fraction
after bend for USL=0.14 m/s USG=1.891 m/s

Fig 16g (GDMV model): Comparison between Predicted and Experimental PDF of void fraction
after bend for USL=0.38 m/s USG=0.061 m/s

Careful inspections of Figures 16a-g show that the model prediction as depicted in Figures

16d, 16e and 16f are good while model predictions as depicted in Figures 16a, 16b, 16c and 16g are
not very good. These results indicate that the model can only be used to predict flow behaviour after
the bend over a limited range of data.

The lack of generality of the MLP models could be associated to two things; one is the fact
that the flow is not fully developed and the other is poor data distribution/partitioning among
training, validation and testing. The latter is taken care by data redistribution and the use of different
partitioning ratio. The data was redistributed using interleaved indices in as opposed to random
indices and the data partitioning ratio changed from 6:2:2 to 4:1:1. Similar results were obtained
and the models still showed poor generalisation properties.

4.4 Results of Data Interpolation/Extrapolation before 90o Bends
The following liquid superficial velocities were used to test the best performing models at

various gas superficial velocities.
USL=0.02ms-1, USL =0.15 ms-1, USL =0.30 ms-1, USL =0.45 ms-1.

Figure 17 gives a plot of predicted average void fraction against gas superficial velocity at

liquid superficial velocities not covered by experiment. The plot patterns are in close conformity

GESJ: Computer Science and Telecommunications 2016|No.4(50)
ISSN 1512-1232

 34

with expected patterns especially at small and large gas superficial velocities. At intermediate gas
superficial velocities the model predictions are not very accurate as can be seen in the crossing of
lines.

Figure 17: Plot of predicted average void fraction before bend against gas superficial velocities for

various liquid superficial velocities different from those covered by experiment.
Figures 18a to 18d are plots of predicted PDF of void fraction before bend against gas

superficial velocities for various liquid superficial velocities different from those covered by
experiment.

Figure 18a: Plot of predicted PDF of void fraction before bend against gas superficial velocities for
various liquid superficial velocities different from those covered by experiment (USL=0.02 ms-1)

GESJ: Computer Science and Telecommunications 2016|No.4(50)
ISSN 1512-1232

 35

Figure 18b: Plot of predicted PDF of void fraction before bend against gas superficial velocities for
various liquid superficial velocities different from those covered by experiment (USL =0.15 ms-1)

Figure 18c: Plot of predicted PDF of void fraction before bend against gas superficial velocities for
various liquid superficial velocities different from those covered by experiment (USL =0.30 ms-1)

Figure 18d: Plot of predicted PDF of void fraction before bend against gas superficial velocities for
various liquid superficial velocities different from those covered by experiment (USL =0.45 ms-1)

Plot patterns of Figures 18a to 18d follow expected patterns of PDF of void fraction as gas

and liquid superficial velocities changes. This patterns show the changes in flow characteristics
from bubbly flow to churn flow as gas superficial velocities increases.

5. Conclusions
In this work, Multilayer Perceptron Modelling (MLP) models have been developed to predict

two-phase average void fraction and PDF of void fraction in 90o bends. The experiment data were
from experiments performed in earlier work in a flow domain of 6 m long vertical pipe with a 67
mm internal diameter connected to a 2 m long flow-line via a vertical 90o bend (bend radius of 154
mm) at various liquid and gas superficial velocities.

Model optimization was carried out by varying network configuration while monitoring the
generalisation error (cross validation error). The developed models were trained using feed-forward
approach. A comparison of the results obtained from model predictions and experiments both
before and after the vertical 90o bend has been successfully carried.

The models developed for the prediction of average void fraction and PDF of void fraction
before the bend performed very well. However, the AARE confirmed that the best model for
prediction of average void fraction before bend is the MLP model trained with Levenberg-
Marquardt algorithm in the hidden and output layer with, having three (3) neurons in the hidden

GESJ: Computer Science and Telecommunications 2016|No.4(50)
ISSN 1512-1232

 36

layer. The values of AARE and R for this MLP model are 0.0274 and 0.9958 respectively. The
AARE also confirmed that the best model for prediction of PDF of void fraction before the bend is
the MLP model trained with Levenberg-Marquardt algorithm in the hidden and output layer, having
eleven (11) neurons in the hidden layer. The values of AARE and R for this MLP model are 0.7866
and 0.9342 respectively.

The models proposed for the prediction of average void fraction and PDF of void fraction
after the bend showed weak generalisation properties. However, the MLP model based on gradient
descent algorithm gave better performance for predicting average void fraction after the bend, with
AARE and R values of 0.1961 and 0.9156 respectively. Also, the MLP model based on gradient
descent algorithm having four (4) neurons in the hidden layer performed best for the prediction of
PDF of void fraction after the bend. The values of AARE and R for this MLP model are 1.5740 and
0.4507 respectively.

The results show that MLP models are effective in predicting average void fraction and PDF
of void fraction before the bend but are not effective for predicting after the bend scenario because
the flow is not fully developed. Similarly the modified empirical model showed good results for
prediction before the bend but could not predict average void fraction after the bend.

REFERENCES
[1] M. Abdulkadir, V. Hernandez-Perez, I. S. Lowndes, B. J. Azzopardi, and S. Dzomeku. Experimental

study of hydrodynamic behaviour of slug flow in a vertical riser. Chemical Engineering Science, 2013,
vol. 106, pp. 60-75.

[2] M. Abdulkadir, D. Zhao, S. Sharaf, L. Abdulkareem, I. S. Lowndes, and B. J. Azzopardi. Interrogating
the effect of 90o bends on air–silicone oil flows using advanced instrumentation. Chemical
Engineering Science 2011, vol. 66, pp. 2453 - 2467.

[3] M. Abdulkadir. Experimental and computational fluid dynamics (CFD) studies of gas–liquid flow in
bends. PhD Thesis, University of Nottingham, 2011.

[4] A. Asghar, R. Masoud, and A. Abdulaziz. CFD and artificial neural network modelling of two-phase
flow pressure drop. International Communications in Heat and Mass Transfer, 2009, vol. 36 No. 8, pp.
850-856.

[5] B. J. Azzopardi. Drops in annular two-phase flow. International Journal of Multiphase Flow, 1997,
vol. 23, pp. 1-53.

[6] B. J. Azzopardi, L. A. Abdulkareem, S. Sharaf, M. Abdulkadir, V. Hernandez-Perez, and A Ijioma.
Using tomography to interrogate gas-liquid flow. In: 28th UIT Heat Transfer Congress, Brescia, Italy,
21 - 23 June 2010.

[7] A. R. Bansal, J. Kanuffman, and R. R. Weitz,. Comparing the modelling performance of regression
and neural networks as data quality varies: A Business value approach. Journal of Management
Information Systems, 1993, vol. 10, pp. 11 – 32.

[8] E. Bernard and L. Wessels. Extrapolation and interpolation in Neural Network Classifiers. IEEE
Control Systems, 1992, vol. 12, pp. 50-53.

[9] Budi, S., Indarto, Deendarlianto and S. W. Thomas. The identification of gas–liquid co-current two
phase flow pattern in a horizontal pipe using the power spectral density and the artificial neural
network (ANN). Modern Applied Science 2012, vol. 6, pp. 56-67.

[10] G. Carlos. Artificial neural networks for beginners. Http://www.datajobs.com/data-science-
repo/Neural-Networks-for-Beginners. 2011, pp. 3-7.

[11] M. B. Carver. Numerical computation of phase separation in two fluid flow, 1984, ASME Paper No.
82-FE-2, Vol. 106/153.

[12] M. B. Carver and M. Salcudean. Three-dimensional numerical modelling of phase distribution of two-
fluid flow in elbows and return bends. Numerical Heat Transfer, 1986, vol. 10, pp. 229-251.

[13] I. R. Ellul and R. I. Issa. Prediction of the flow of interspersed gas and liquid phases through pipe
bends. Transaction of Institution of Chemical Engineers, 1987, vol. 65, pp. 84-96.

[14] G. C. Gardner and P. H. Neller, P.H. Phase distributions flow of an air-water mixture round bends and
past obstructions. Proceedings of Institution of Mechanical Engineers, 1969, vol. 184, pp. 93-101.

http://www.datajobs.com/data-science-repo/Neural-Networks-for-Beginners
http://www.datajobs.com/data-science-repo/Neural-Networks-for-Beginners

GESJ: Computer Science and Telecommunications 2016|No.4(50)
ISSN 1512-1232

 37

[15] L. Hernandez, J. E. Julia, S. Chiva, S. Paranjape and M. Ishii. Fast classification of two-phase flow
regimes based on conductivity signals and artificial neural networks. Measurement Science and
Technology, 2006, vol. 17.

[16] H. Karimi, M. R. Rahimi, J. Lashkarmanesh and S. Azizi. Prediction of flow pattern in vertical gas-
liquid two phase flow using pressure fluctuations and Artificial Neural Network. The 8th International
Chemical Engineering Congress and Exhibition (IChEC, 2014) Kish, Iran.

[17] H. J. W/ M. Legius, T. J. Narumo and H. E. A. van den Akker. Measurements on wave propagation
and bubble and slug velocities in concurrent upward two-phase flow. In: Celata, G.P., and Shah, R.K.
(Eds.), Two-Phase Flow Modelling and Experimentation, Rome, 1995, pp. 907-914.

[18] H. B. Mark, T.H. Martin, and B. D. Howard. Neural Network Toolbox (MATLAB User’s Guide,
R2012b). Release 2012b, pp. 20-30.

[19] A. A. Mohammed and M. D. Birol. Application of Resilient Back-Propagation Neural Networks for
generating a universal pressure drop model in pipelines. University of Khartoum Engineering Journal,
2011.

[20] A. Mustafa, E. Moustafa and A. Abdulsalam. Two phase flow regime identification using Artificial
Neural Network with non-linear normalization. 2nd International Conference on Fluid Flow, Heat and
Mass Transfer, Ottawa, Ontario, Canada, 2015, Paper No. 133.

[21] S. Nasseh, A. Mohebbi, Z. Jeirani and A. Sarrafi. Predicting pressure drop in venturi scrubber with
artificial neural networks. Journal of Hazardous Materials, 2007, vol. 143, pp. 144-149.

[22] B. Nirjhar and K. D. Sudip. Prediction of flow regime for air-water flow in circular micro channels
using ANN. Journal of Petroleum Science and Engineering, 2013, vol. 10, pp. 813-821.

[23] B. Nirjhar, K. D. Sudip and B. Manindra. Prediction of frictional pressure drop using Artificial Neural
Network for air-water flow through U-bends. International Conference on Computational Intelligence:
Modelleing techniques and Applications, 2013, vol. 10, pp. 242-252.

[24] B. Nirjhar and K. D. Sudip. Gas-non-Newtonian liquid flow through horizontal pipe–gas holdup and
pressure drop prediction using Multilayer Perceptron. American Journal of Fluid Dynamics, 2012, vol.
2,pp. 7-16.

[25] F. Saidj, R. Kibboua, A. Azzi, N. Ababou, B. J. Azzopardi. Experimental investigation of air-water
two-phase flow through vertical 90o bend. Experimental Thermal Fluid Science, 2014, vol. 57, pp.
226-234.

[26] K. Soetaert and P. M. J. Herman. A practical guide to ecological modelling, 2009. Sringer ISBN: 978-
1-4020-8623-6.

[27] K. B. Tarun and K. D. Sudip. Non-Newtonian pseudo-plastic liquid flow through small diameter
piping components. 2007, vol. 55, pp. 156-166

[28] S. Thiele, M. J. Da Silva, U. Hampel, L. Abdulkareem and B. J. Azzopardi. High-resolution oil-gas
two-phase flow measurement with a new capacitance wire-mesh tomography. In: 5th International
Symposium on Process Tomography, Poland, Zakopane, 25-26 August 2008.

[29] B. M. Wilamowski and H. Yu. Improved computation for Levenberg-Marquardt training. IEEE
Transaction on Neural Network, 2010, vol. 21, pp. 930-937.

[30] S. Zhigiang and Z. Hongjian. Neural networks approach for prediction of gas–liquid two-phase flow
pattern based on frequency domain analysis of vortex flow meter signals. Measurement Science and
Technology, 2008, vol. 19, pp. 1-8.

Number of Figures: 45
Number of Tables: 6

APPENDIX

%MODEL THAT USES LEVENBERG MARQUADT ALGORITHM

%This a program written by Paul Onubi Ayegba with the aim of developing a
%numerical model capable of predicting the average void fraction of
silicon
%air misture flowing in a 90 degree bend of 67 mm internal diameter. This

% NOTE THE PROGRAM CAN BE RUN BY SIMPLY CLICKING THE GREEN ARROW ON THE
% TOOL BAR ABOVE, BUT THERE ARE MANY USER VARIABLES E.G. NUMBER OF

GESJ: Computer Science and Telecommunications 2016|No.4(50)
ISSN 1512-1232

 38

% ITERATIONS, ACCEPTABLE ERROR LIMIT ETC WHICH YOU MAY WISH TO ALTER

%NOTE THE PROGRAM MAY RUN FOR AS LONG AS A FEW MINUTES TO AS MUCH AS A
FEW
%HOURS DEPENDING ON THE NUMBER OF ITERATIONS YOU CHOOSE

%intial program seeks to mimic the Artificial Neural Network model which
%employs similar algorithm, that is Levenberg–Marquardt algorithm,
%employing backpropagation technique. The structure of the function
%(sigmoid function/linear function) used is also similar to that used by
%ANN. The model, here, developed gave very good agreement with
experimental
%data, though it required more number of iterations compared to the ANN
model.
%One of the main objectives is to replace this function (sigmoid
function/linear function)
%with some existing mechanistic models (mechanistic models/Linear
%functions) and compare results of models developed.
% p is a matrix of input variable in this case gas and liquid superficial
% velocities. This is a user input and may be changed as the required by
problem.
p=[0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.14 0.14
0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.38 0.38 0.38
0.38 0.38 0.38 0.38 0.38 0.38 0.38 0.38 0.38 0.38;0.047 0.061 0.288 0.344
0.404 0.544 0.709 0.945 1.418 1.891 2.363 2.836 0.047 0.061 0.288 0.344
0.404 0.544 0.709 0.945 1.418 1.891 2.363 2.836 4.73 0.047 0.061 0.288
0.344 0.404 0.544 0.709 0.945 1.418 1.891 2.363 2.836 4.73];
% for optimal behaviour it is necessary to remove constant rows as they
do
% not contribute to model optimization rather they may result in poorly
% scaled matrix whose determinants close to singularity. in this case all
% rows that are constant or rows which have maximum range less or equal
to
% 0.01 is romoved.
[p PS]=removeconstantrows(p,0.01);

%The algorithm can be made more efficient if we perform some
preprocessing
%operations. The operation employed here scale the input and outputs to
%fall within the range [-1 1].
[pn, ps]=mapminmax(p);
x=numel(pn(:,1)); %Number of input parameter(in this case liquid and gas
velocities)
z=numel(pn(1,:)); %Number of input patterns
pn(x+1,:)=ones(1,z);
[pt,pv,pts,trainInd,valInd,testInd] = dividerand(p,0.6,0.2,0.2);
[ptn,pvn,ptsn] = divideind(pn,trainInd,valInd,testInd);
zt=numel(pt(1,:));
ztv=numel(pv(1,:));
zts=numel(pts(1,:));

%OUTPUT
eL_005=[0.127858878 0.142017541 0.357683154 0.380600243 0.407763152
0.471174376 0.500041818 0.568779025 0.659248509 0.698963155 0.728148425
0.759148473];

GESJ: Computer Science and Telecommunications 2016|No.4(50)
ISSN 1512-1232

 39

eL_014=[0.090956304 0.105694861 0.307511372 0.333432331 0.354319881
0.422505167 0.473094667 0.531520114 0.636547444 0.688847949 0.721594917
0.738922184 0.824985470];
eL_038=[0.049916006 0.064464705 0.247366456 0.270821176 0.290103160
0.368996198 0.418661835 0.478407434 0.558563925 0.615894456 0.662988627
0.709819272 0.776042882];
t=[eL_005 eL_014 eL_038];
[t TS]=removeconstantrows(t);

%The algorithm can be made more efficient if we perform some
preprocessing
%operations. The operation employed here scale the input and outputs to
%fall within the range [-1 1].

[tn, ts]=mapminmax(t);
[tt,tv,tts] = divideind(t,trainInd,valInd,testInd);
[ttn,tvn,ttsn] = divideind(tn,trainInd,valInd,testInd);
% s is the number of neuron (simple processing units), This is a user
% variable, the number of neurons can between 1 and infinity until the
best
% performance is obtained. For the purpose of understanding this may be
% taken as that configuration (number of neurons in the hidden layer in
% this case) that gives the smallest value of minimum mean square error
% 'mse'.
s=3;
l=0;
%The program is developed for a two layer network(one hidden layer of
%variable number of neurons and one output layer whose number of neurons
%is determined by the output matrix supplied. Also the neurons in the
%hidden layer is designed to have a 'sigmoid transfer function' that is
% a function of the form 'Y1=(1./(1+exp(sum(-w.*pn)+b1))' where w and b1
are
%weight and bias matrices and pn is the normalized of preprocessed inputs
%and the output layer is a linear function of the form Y2= sum(v*Y1)+b2.
%This configuration has proven very effective for most problems of
function
%fitting. The summation of output from the hidden layer is the input to
the
% output layer Thus the function takes the following basic form for each
%neuron. Note the value of the weights and biases in each neuron are not
%usually the same.
y=numel(t(:,1)); %Number of output parameter (in this case grouped
frequencies void fraction)
yt=numel(tt);
yv=numel(tv);
yts=numel(tts);
bin=0.01:0.01:1;
bin=bin';
syms v w p1 L % helps us in finding the the partial derivative of the
function with respect to the symbolic variables
pr=x; % pr number of non-constant input variables p
ws=rands(s,pr+1); % Input weight matrix, normalized random values are
used
Ls=1; % Layer weight matrix, normalized random values are used
vs=rands(y,s+1); % Layer weight matrix, normalized random values are
used
wsR(:,:,1)=ws;

GESJ: Computer Science and Telecommunications 2016|No.4(50)
ISSN 1512-1232

 40

vsR(:,:,1)=vs;
f=v*(1/(1+exp(-L*(w*p1))));
ftn1=(1./(1+exp(-Ls*(ws*ptn))));
ftn1(s+1,:)=ones(1,zt);
ftn=vs*ftn1;
fvn1=(1./(1+exp(-Ls*(ws*pvn))));
fvn1(s+1,:)=ones(1,ztv);
fvn=vs*fvn1;
ftsn1=(1./(1+exp(-Ls*(ws*ptsn))));
ftsn1(s+1,:)=ones(1,zts);
ftsn=vs*ftsn1;

%fw=diff(f,w);% Derivative of the function with respect to layer bias w
%Matlab generates fw=v*((Ls*p1)./(exp(Ls*(w*p1+b1))*(1/exp(Ls*(w*p1+b1))
+ 1)^2)) this must
%be rearranged for ease of matrix operation

%The Levenberg–Marquardt algorithm will be used in a backpropagation
%fashion in determining the weights and bias and it takes the form
%w(k+1)=w(k)–(JT(k)*J(k)+ mu*I)^-1 *J(k)*e(k)
%The choice of Levenberg–Marquardt algorithm will be given in the
%literature. If mu is small the algorithm becomes Gauss Newton alorithm
and
%if mu is very large the algoritm becomes steepest descent alorithm.
mu=0.001; %initial value of mu.
r=(ttn-ftn); %error residual, difference between model output and
expected output
rv=(tvn-fvn);
rts=(ttsn-ftsn);
d=r.^2;
dv=rv.^2;
dts=rts.^2;
%mean square error is used as the performance function and the target of
%0.0000001 is used, but it can be varied by user.
mse(1)=sum(sum(d),2)/yt;
msev(1)=sum(sum(dv),2)/yv;
msets(1)=sum(sum(dts),2)/yts;

for k=1:20000; % k is the number of iterations, this can be varied by
user
 if ((mse(k)>=0.0000001) && (mu<=1*10^10));
 %fw=v*((L*p1)./(exp(L*(w*p1)).*(1./exp(L*(w*p1)) + 1)^2));
 aw=(Ls./(exp(Ls*(ws*ptn)).*(1./exp(Ls*(ws*ptn)) + 1).^2));
 m=0;
 for Q=1:x+1;
 for q=1:s;
 m=m+1;
 fwa(q,:,Q)=ptn(Q,:).*aw(q,:);
 fwb=vs(:,q)*fwa(q,:,Q);
 fwb=fwb';
 for n=1:y;
 fwc(n*zt-zt+1:n*zt,m)=fwb(:,n);
 end
 end
 end
 for n=1:y;
 r1=r';

GESJ: Computer Science and Telecommunications 2016|No.4(50)
ISSN 1512-1232

 41

 R(n*zt-zt+1:n*zt,1)=r1(:,n);
 end
 fw=fwc;
 fv1=1./(1./exp(Ls*ws*ptn) + 1);
 fv1(s+1,:)=ones(1,zt);
 fvb=0*eye(zt*y,y);
 for Q=1:s+1;
 fva=fv1(Q,:)';
 for q=1:y;
 fvb((q-1)*zt+1:q*zt,q,Q)=fva;
 end
 end
 fv=fvb(:,:);
 J=[fw fv];
 JT=J';
 H=JT*J;
 HD=(JT*J+mu*diag(diag(H)));
 T(k)=rcond(HD);
 G(k)=norm(JT);
 if (T(k)>=0.00000000000001) && (G(k)>=1e-10);
 HinvJT=HD\JT;
 a=HinvJT*R;
 n=0;
 for q=1:x+1
 n=n+1;
 ws(:,q)=ws(:,q)+a(n*s-s+1:n*s,1);
 end
 for q=1:s+1
 vs(:,q)=vs(:,q)+a(n*s+(q-1)*y+1:n*s+q*y,1);
 end
 ftn1=(1./(1+exp(-Ls*(ws*ptn))));
 ftn1(s+1,:)=ones(1,zt);
 ftn=vs*ftn1;
 r1=(ttn-ftn);
 d=r1.^2;
 mse(k+1)=sum(sum(d),2)/yt;
 if mse(k+1)>=mse(k);
 for j=1:5;
 n=0;
 for q=1:x+1
 n=n+1;
 ws(:,q)=ws(:,q)-a(n*s-s+1:n*s,1);
 end
 for q=1:s+1
 vs(:,q)=vs(:,q)-a(n*s+(q-
1)*y+1:n*s+q*y,1);
 end
 mu=mu*10;
 HD=(JT*J+mu*diag(diag(H)));
 T(k)=rcond(HD);
 G(k)=norm(JT);
 if (T(k)>=0.00000000000001) && (G(k)>=1e-
10);

GESJ: Computer Science and Telecommunications 2016|No.4(50)
ISSN 1512-1232

 42

 HinvJT=HD\JT;
 a=HinvJT*R;
 n=0;
 for q=1:x+1
 n=n+1;
 ws(:,q)=ws(:,q)+a(n*s-s+1:n*s,1);
 end
 for q=1:s+1
 vs(:,q)=vs(:,q)+a(n*s+(q-
1)*y+1:n*s+q*y,1);
 end
 ftn1=(1./(1+exp(-Ls*(ws*ptn))));
 ftn1(s+1,:)=ones(1,zt);
 ftn=vs*ftn1;
 r=(ttn-ftn);
 d=r.^2;
 mse(k+1)=sum(sum(d),2)/yt;
 if ((j>=5) || (mse(k+1)<mse(k)))
 break
 end
 else
 break
 end
 end
 else
 mu=mu/10;
 r=r1;
 end
 else
 break
 end
 wsR(:,:,k+1)=ws;
 vsR(:,:,k+1)=vs;
 %Test
 ftsn1=(1./(1+exp(-Ls*(ws*ptsn))));
 ftsn1(s+1,:)=ones(1,zts);
 ftsn=vs*ftsn1;
 rts=(ttsn-ftsn);
 dts=rts.^2;
 msets(k+1)=sum(sum(dts),2)/yts;

 %Validation
 fvn1=(1./(1+exp(-Ls*(ws*pvn))));
 fvn1(s+1,:)=ones(1,ztv);
 fvn=vs*fvn1;
 rv=(tvn-fvn);
 dv=rv.^2;
 msev(k+1)=sum(sum(dv),2)/yv;
 if msev(k+1)>=msev(k);
 l=l+1;
 if l==5;
 break

GESJ: Computer Science and Telecommunications 2016|No.4(50)
ISSN 1512-1232

 43

 end
 else
 l=0;
 end
 else
 break
 end

end
if l>=5;
 ws=wsR(:,:,k-4);
 vs=vsR(:,:,k-4);
end
ftn1=(1./(1+exp(-Ls*(ws*ptn))));
ftn1(s+1,:)=ones(1,zt);
ftn=vs*ftn1;
fvn1=(1./(1+exp(-Ls*(ws*pvn))));
fvn1(s+1,:)=ones(1,ztv);
fvn=vs*fvn1;
ftsn1=(1./(1+exp(-Ls*(ws*ptsn))));
ftsn1(s+1,:)=ones(1,zts);
ftsn=vs*ftsn1;
t=removeconstantrows('reverse',t,TS);
tt_exp=removeconstantrows('reverse',tt,TS);
tv_exp=removeconstantrows('reverse',tv,TS);
tts_exp=removeconstantrows('reverse',tts,TS);
t_exp=t;
fft = mapminmax('reverse',ftn,ts);
ffv = mapminmax('reverse',fvn,ts);
ffts = mapminmax('reverse',ftsn,ts);
tt_model=removeconstantrows('reverse',fft,TS);
tv_model=removeconstantrows('reverse',ffv,TS);
tts_model=removeconstantrows('reverse',ffts,TS);
p=removeconstantrows('reverse',p,PS);
pt=removeconstantrows('reverse',pt,PS);
pv=removeconstantrows('reverse',pv,PS);
pts=removeconstantrows('reverse',pts,PS);
mse_minimum_train=min(mse)
mse_minimum_val=min(msev)
mse_minimum_test=min(msets)
number_iteration=k

% PERFORMANCE ANALYSIS
%Cross Correlation coefficient
%R=C(i,j)/(C(i,i)C(j,j))^1/2
%Training
Avt_exp=mean(mean(tt_exp,2));
Avt_model=mean(mean(tt_model,2));
Nmt=(sum(sum((tt_model-Avt_model).*(tt_exp-Avt_exp)),2));
Dnt=((sum(sum((tt_model-Avt_model).^2),2)).*(sum(sum((tt_exp-
Avt_exp).^2),2)));
Rtrain=Nmt/sqrt(Dnt);

GESJ: Computer Science and Telecommunications 2016|No.4(50)
ISSN 1512-1232

 44

%Validation
Avv_exp=mean(mean(tv_exp,2));
Avv_model=mean(mean(tv_model,2));
Nmv=(sum(sum((tv_model-Avv_model).*(tv_exp-Avv_exp)),2));
Dnv=((sum(sum((tv_model-Avv_model).^2),2)).*(sum(sum((tv_exp-
Avv_exp).^2),2)));
Rvalidation=Nmv/sqrt(Dnv);
%Testing
Avts_exp=mean(mean(tts_exp,2));
Avts_model=mean(mean(tts_model,2));
Nmts=(sum(sum((tts_model-Avts_model).*(tts_exp-Avts_exp)),2));
Dnts=((sum(sum((tts_model-Avts_model).^2),2)).*(sum(sum((tts_exp-
Avts_exp).^2),2)));
Rtest=Nmts/sqrt(Dnts);

%Average absolute relative error (AARE)
%AARE=(1/N)*sum(absolute(model output-exp value)/exp value));
AT=abs((tt_model-tt_exp)./tt_exp);
AAREtrain=(1/yt)*sum(sum(AT),2);
AV=abs((tv_model-tv_exp)./tv_exp);
AAREvalidation=(1/yv)*sum(sum(AV),2);
ATS=abs((tts_model-tts_exp)./tts_exp);
AAREtest=(1/yts)*sum(sum(ATS),2);

%PLOTS
plot(tt_exp,tt_model,'*')
xlabel('experimantal average void fraction')
ylabel('MLP model average void fraction')
legend('Training')
title('Gradient Descent with adaptive step and momentum term')
figure
plot(tv_exp,tv_model,'*')
xlabel('experimantal average void fraction')
ylabel('MLP model average void fraction')
legend('Validation')
title('Gradient Descent with adaptive step and momentum term')
figure
plot(tts_exp,tts_model,'*')
xlabel('Void fraction (Experimental)')
ylabel('Void fraction (Predicted)')
hold on
x1=[0,1];
y1=[0,1];
x2=[0.05*1,1];
y2=[0,0.95*1];
x3=[0,1];
y3=[0.05*1,1.05*1];
plot(x1,y1,x2,y2,'--',x3,y3,'--')
figure
u=1:k+1;
plot(u,mse,u,msev,u,msets)
xlabel('Number of iterations')

GESJ: Computer Science and Telecommunications 2016|No.4(50)
ISSN 1512-1232

 45

ylabel('Mean Square Error MSE')
legend('Training','Validation','Testing')
title('Gradient Descent with adaptive step and momentum term
performance plot')
%MODEL THAT USES GRADIENT DESCENT ALGORITHM WITH VARIABLE STEP
%SIZE AND MOMENTUM TERM

%This a program written by the autor with the aim of developing a
%numerical model capable of predicting the PDF of void fraction of
silicon
%air mixture flowing in a 90 degree bend of 67 mm internal
diameter. This

% NOTE THE PROGRAM CAN BE RUN BY SIMPLY CLICKING THE GREEN ARROW
ON THE
% TOOL BAR ABOVE, BUT THERE ARE MANY USER VARIABLES E.G. NUMBER OF
% ITERATIONS, ACCEPTABLE ERROR LIMIT ETC WHICH YOU MAY WISH TO
ALTER

%NOTE THE PROGRAM MAY RUN FOR AS LONG AS A FEW MINUTES TO AS MUCH
AS A FEW
%HOURS DEPENDING ON THE NUMBER OF ITERATIONS AND MODEL TOPOGRAPHY

%intial program seeks to mimic the Artificial Neural Network model
which
%employs similar algorithm, that is gradient descent algorithm
with variable step size and momentum term,
%employing backpropagation technique. The structure of the
function
%(sigmoid function/linear function) used is also similar to that
used by
%ANN.

%INPUTS
% p is a matrix of input variable in this case gas and liquid
superficial
% velocities. This is a user input and may be changed as the
required by problem.
p=[0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05
0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.14 0.38 0.38
0.38 0.38 0.38 0.38 0.38 0.38 0.38 0.38;0.047 0.061 0.288 0.344
0.404 0.544 0.709 0.945 1.418 1.891 2.363 2.836 0.047 0.061 0.288
0.344 0.404 0.544 0.709 1.891 2.363 2.836 4.73 0.061 0.288 0.344
0.404 0.544 0.709 0.945 1.891 2.836 4.73];
% for optimal behaviour it is necessary to remove constant rows as
they do
% not contribute to model optimization rather they may result in
poorly
% scaled matrix whose determinants close to singularity. in this
case all
% rows that are constant or rows which have maximum range less or
equal to

GESJ: Computer Science and Telecommunications 2016|No.4(50)
ISSN 1512-1232

 46

% 0.01 is romoved.
[p PS]=removeconstantrows(p,0.01);

%The algorithm can be made more efficient if we perform some
preprocessing
%operations. The operation employed here scale the input and
outputs to
%fall within the range [-1 1].
[pn, ps]=mapminmax(p);
x=numel(pn(:,1)); %Number of input parameter(in this case liquid
and gas velocities)
z=numel(pn(1,:)); %Number of input patterns
pn(x+1,:)=ones(1,z);
[pt,pv,pts,trainInd,valInd,testInd] = dividerand(p,6,2,2);
[ptn,pvn,ptsn] = divideind(pn,trainInd,valInd,testInd);
zt=numel(ptn(1,:));
ztv=numel(pvn(1,:));
zts=numel(ptsn(1,:));

%OUTPUTS
f1=[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3
15 13 43 150 212 1067 3003 3552 4672 6750 7462
6076 5604 6322 5322 4764 3088 1293 672 277 80
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0]';
f2=[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 15
334 746 1257 2859 3838 4518 4469 4182 4364
5170 5137 4740 4176 3383 3261 3191 2238
1121 821 353 111 58 60 38 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0]';
f3=[0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 20
29 59 168 187 252 390 603 721 779 789 819 936 1119 1107
1029 1186 1309 1285 1176 1277 1364 1469
1490 1521 1493 1460 1461 1440 1547 1507
1370 1393 1299 1367 1254 1205 1236 1181
1185 1251 1241 1322 1371 1345 1195 946 1141
1286 1107 1334 1459 1017 716 763 709 558 144 50 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0]';
f4=[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 42
102 76 138 256 262 329 437 576 545 957 1150 1398 1670
1957 3668 46876]';

GESJ: Computer Science and Telecommunications 2016|No.4(50)
ISSN 1512-1232

 47

f5=[0 0 0 0 0 0 0 0 0 3 8 2 3 16 24 24
67 99 123 175 184 194 269 347 452 433 521 654 703 614 597 632
620 584 656 673 857 960 995 924 1036 1117 1188 1109
1158 1166 1142 1131 1235 1298 1427 1609
1451 1476 1384 1230 1258 1298 1136 1122
1235 1232 1261 1292 1482 1685 2018 2026
1882 2022 1783 1298 953 869 1084 600 275 59 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0]';
f6=[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 8 34 39 64 49 46 48 42 33 48 63 83 102 96 91 78
111 111 102 115 123 139 148 240 255 217 255 226 235 276 306 335
417 497 486 518 549 692 807 861 837 836 780 847 1230 1235
1213 1368 1468 1537 1465 1447 1479 1377
1684 2133 2075 2200 2420 2278 2896 3645
4344 3898 2695 2053 1166 560 177 93 56 3 0 0
0 0 0 0 0 0 0 0 0]';
f7=[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 7
7 6 5 4 3 10 7 8 9 9 14 18 48 54 59 74 59
41 51 98 166 197 194 147 159 201 257 394 471 582 676 569 577
678 728 749 845 982 1143 1360 1415 1513 1520 1630
2103 2442 2564 3021 3774 4375 6013 7180
4548 2257 1655 1811 747 195 8 0 0 0 0 0 0
0 0]';
f8=[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 6 11
4 10 5 14 19 18 15 18 17 20 18 13 24 25 34 54 54
81 168 217 284 252 237 266 334 404 556 663 741 759 748 838 1093
1300 1420 1394 1496 1776 1757 1760 1732
1998 2227 1978 2035 2629 3476 3863 3948
4096 5023 4065 1903 1228 644 376 157 92 46 0 0
0 0 0 0 0 0]';
f9=[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 9 6 41 74 152 228 460 2812
56658]';
f10=[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 3 4 3 12 17
15 28 49 68 88 106 156 212 289 331 455 564 665 865 1106
1444 1895 2029 2551 3057 4106 4885 4811
5702 5600 3998 3563 4433 3173 2661 1364
131 0]';
f11=[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 1 1 2 3 5 1 11 13 15 8 16 22

GESJ: Computer Science and Telecommunications 2016|No.4(50)
ISSN 1512-1232

 48

25 41 51 73 86 118 152 217 297 336 446 523 719 937 1099
1359 1628 1831 2090 2778 3721 4205 5075
5869 6370 6138 5947 4663 1707 879 580 381 0]';
f12=[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 5 11 3 2 8 6 9 14 21 20 28 34 35 56
84 89 103 118 157 207 226 275 294 423 534 622 693 878 1166
1431 1760 2051 2470 3095 3878 5403 5858
5737 6468 6894 5381 2453 762 451 225 1 0]';

f40=[0 0 0 0 0 0 99 408 1304 3668 7049 10363
12165 10140 6672 3956 2330 1236 550 363 130 7 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0]';
f41=[0 0 0 0 7 51 41 81 286 828 2716 6602 9819
10594 8433 5791 3840 3053 2631 1986 1584
1024 512 315 147 90 9 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0]';
f42=[0 0 0 0 0 0 0 0 1 27 53 117 188 304 371
580 995 1258 1472 1653 1675 1674 1906 1830
1955 2076 2081 1999 1913 1865 1746 1756
1720 1539 1569 1601 1505 1666 1708 1705
1721 1728 1652 1558 1339 1276 1145 1060
904 695 578 565 636 517 466 437 355 365 217 175 165 60 53 46 52
47 43 41 36 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0]';
f43=[0 0 0 0 0 0 0 0 1 6 20 29 60 73 176
298 491 576 633 703 901 1174 1266 1513 1729 1808
1753 1753 1706 1747 1646 1635 1646 1502
1441 1460 1550 1590 1533 1553 1578 1696
1701 1702 1681 1689 1511 1724 1736 1605
1486 1311 1166 952 963 777 638 419 445 325 275 161 137
171 162 146 98 71 47 23 17 14 41 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0]';
f44=[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 2 12 40 51 51 95 148 147 161 179 188 251 307 411
417 611 737 744 810 991 1079 1373 1454 1411 1449
1431 1515 1475 1596 1682 1702 1487 1554
1814 1810 1737 1746 1731 1733 1637 1818
1841 1778 1656 1592 1722 1836 1727 1733
1369 1235 840 731 743 456 482 427 231 160 89 35 46 91 33
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0]';

GESJ: Computer Science and Telecommunications 2016|No.4(50)
ISSN 1512-1232

 49

f45=[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 3 6 11 15 38 36 47 60 79 155 243 318 301
303 301 408 479 488 540 544 590 634 657 706 766 802 802 868 889
911 916 1046 1047 1156 1149 1185 1210 1152
1291 1494 1545 1543 1720 1926 1951 2069
1983 2199 2337 2358 2387 2489 2244 1931
1842 1485 1115 967 603 550 439 329 286 261 131 64 38 2
0 0 0 0 0 0 0 0 0 0 0 0 0]';
f46=[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 8 15 19 22 32 36 52 49 59 84 110 124 164 167 172
172 183 178 209 212 229 269 306 327 291 400 384 465 478 579 618
696 661 703 694 733 790 810 912 969 1005 1128 1274 1341
1387 1537 1627 1783 1911 2134 2194 2328
2617 2914 2782 2615 2824 2627 2489 1988
1627 1349 1037 773 509 417 320 239 141 43 52 45 0 0
0 0 0 0 0 0 0 0 0]';
f49=[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 2 0 3 6 7 6 11 14 17 23 20 36 44
54 79 121 134 152 186 217 227 279 321 386 474 533 615 653 779
943 1032 1171 1311 1484 1615 1773 2167 2350
2578 2856 3069 2975 3406 3519 3984 3630
4015 3599 2956 2291 1191 686 229 115 96 0 0 0
0 0 0 0 0]';
f50=[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 10 13 19 36 57
89 124 195 292 478 690 972 1223 1564 2072 2369 2877
3442 5004 11317 27597]';
f51=[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 2 1 0 0 2 0 2 1 2 2 7 9 8 15
18 9 24 34 35 54 44 53 49 94 121 123 150 189 241 266
380 416 589 654 793 898 1004 1153 1408 1579 1877
2056 2323 2616 2960 3199 3502 3661 3791
4241 4272 3908 3698 3267 1990 1257 792 356
237 8 0 0 0 0]';
f52=[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 6 5 9 11 17 23 33 47
72 65 91 125 142 201 270 341 456 624 814 1095 1332 1596
1972 2390 2948 3370 4127 4990 5991 6186
6465 5534 4590 2540 1178 459 278 46 0 0 0]';

f67=[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 2 57 653 3532 11098 18704 15447 7425 2673
669 165 15 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

GESJ: Computer Science and Telecommunications 2016|No.4(50)
ISSN 1512-1232

 50

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0]';
f68=[0 0 0 0 0 0 0 0 0 0 0 0 2 13 15 37
82 134 208 315 483 707 963 1195 1325 1427 1629 1790
2150 2319 2475 2621 2693 2654 2471 2421
2340 2088 2076 1899 1660 1322 1324 1359
1453 1492 1365 1558 1533 1509 1374 1293
1169 1078 793 559 398 249 172 134 86 21 7 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]';
f69=[0 0 0 0 0 0 0 0 0 0 0 0 0 7 16 26
69 141 252 356 478 634 826 1094 1173 1215 1295 1335
1452 1595 1635 1654 1798 1879 2042 1884
1853 1855 1828 1753 1650 1637 1729 1746
1736 1621 1578 1633 1641 1599 1680 1734
1592 1492 1362 1131 1002 873 836 663 465 326 223
153 60 61 46 26 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0]';
f70=[0 0 0 0 0 0 0 0 0 0 0 0 1 6 25 37
55 74 136 225 297 480 752 889 1021 1192 1266 1241
1264 1285 1377 1424 1509 1568 1494 1484
1498 1490 1509 1422 1461 1662 1714 1702
1624 1767 1575 1679 1628 1621 1599 1624
1656 1538 1609 1555 1541 1554 1371 1282
1006 701 634 483 339 208 148 65 50 12 10 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0]';
f71=[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 6
8 13 45 92 144 241 343 446 578 633 766 810 871 880 965 917
984 996 907 910 986 1059 1017 926 989 963 967 991 1079
1133 1174 1139 1251 1287 1239 1246 1388
1588 1632 1739 1820 1856 1920 1850 1858
1858 1943 1946 1874 1596 1446 1378 1212
930 571 499 251 146 63 45 15 3 3 5 4 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0]';
f72=[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 2 9 7 17 45 102 194 259 417 543 670 781 803 871 951
868 819 828 868 821 804 771 828 790 768 826 748 693 746 883 963
1032 955 1087 1084 1080 1237 1216 1304 1325
1518 1409 1484 1546 1640 1801 1887 2090
2155 2169 2373 2122 2090 1842 1470 1276
961 580 435 253 135 65 53 39 30 2 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0]';
f73=[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 2 5 5 13 20 54 127 168 231 306 410 582 649
699 728 746 690 705 766 697 672 667 672 696 700 676 682 626 699
668 717 672 748 926 941 1039 1128 1144 1311 1397
1459 1520 1622 1726 1994 2104 2114 2281
2227 2265 2362 2196 2085 1931 1715 1425
1461 1197 1050 614 323 216 121 35 7 6 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0]';

GESJ: Computer Science and Telecommunications 2016|No.4(50)
ISSN 1512-1232

 51

f75=[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 17 53 137
230 304 488 660 930 1279 1665 2010 2508 2793 3100
3369 3786 4327 5319 10986 16478]';
f77=[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 2 3 0 3 0
0 3 2 1 2 5 2 8 10 6 9 8 18 29 23 25 29
51 63 70 95 110 164 138 207 270 339 393 486 510 720 808 921
1053 1201 1287 1381 1507 1582 1842 1957
2113 2324 2493 2676 2801 2908 3122 3369
3452 3490 3475 3254 2557 2192 1475 930 393 65
7 0 0 0 0 0 0 0]';
f78=[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 2
3 2 8 5 5 5 7 11 9 15 27 30 42 55 80 85
136 172 253 286 363 467 610 794 980 1160 1522 1875 2207
2655 2958 3306 3594 3851 4050 4354 4553
4680 4731 4109 3197 1940 868 336 39 1 0 0 0
0]';

% t is a matrix of experimental outputs, in this case the
experimental out
% is average void fraction this is a user input and may be changed
as
% required.
t=[f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12 f40 f41 f42 f43 f44 f45
f46 f49 f50 f51 f52 f67 f68 f69 f70 f71 f72 f73 f75 f77 f78];
[t TS]=removeconstantrows(t);

%The algorithm can be made more efficient if we perform some
preprocessing
%operations. The operation employed here scale the input and
outputs to
%fall within the range [-1 1].

[tn, ts]=mapminmax(t);
[tt,tv,tts] = divideind(t,trainInd,valInd,testInd);
[ttn,tvn,ttsn] = divideind(tn,trainInd,valInd,testInd);
% s is the number of neuron (simple processing units), This is a
user
% variable, the number of neurons can between 1 and infinity until
the best
% performance is obtained. For the purpose of understanding this
may be
% taken as that configuration (number of neurons in the hidden
layer in
% this case) that gives the smallest value of minimum mean square
error

GESJ: Computer Science and Telecommunications 2016|No.4(50)
ISSN 1512-1232

 52

% 'mse'.
s=4;
l=0;
%The program is developed for a two layer network(one hidden layer
of
%variable number of neurons and one output layer whose number of
neurons
%is determined by the output matrix supplied. Also the neurons in
the
%hidden layer is designed to have a 'sigmoid transfer function'
that is
% a function of the form 'Y1=(1./(1+exp(sum(-w.*pn)+b1))' where w
and b1 are
%weight and bias matrices and pn is the normalized of preprocessed
inputs
%and the output layer is a linear function of the form Y2=
sum(v*Y1)+b2.
%This configuration has proven very effective for most problems of
function
%fitting. The summation of output from the hidden layer is the
input to the
% output layer Thus the function takes the following basic form
for each
%neuron. Note the value of the weights and biases in each neuron
are not
%usually the same.
y=numel(t(:,1)); %Number of output parameter (in this case grouped
frequencies void fraction)
yt=numel(tt);
yv=numel(tv);
yts=numel(tts);
syms v w p1 L % helps us in finding the the partial derivative of
the function with respect to the symbolic variables
pr=x; % pr number of non-constant input variables p
ws=rands(s,pr+1); % Input weight matrix, normalized random values
are used
Ls=1; % Layer weight matrix, normalized random values are used
vs=rands(y,s+1); % Layer weight matrix, normalized random values
are used
wsR(:,:,1)=ws;
vsR(:,:,1)=vs;
f=v*(1/(1+exp(-L*(w*p1))));
ftn1=(1./(1+exp(-Ls*(ws*ptn))));
ftn1(s+1,:)=ones(1,zt);
ftn=vs*ftn1;
fvn1=(1./(1+exp(-Ls*(ws*pvn))));
fvn1(s+1,:)=ones(1,ztv);
fvn=vs*fvn1;
ftsn1=(1./(1+exp(-Ls*(ws*ptsn))));
ftsn1(s+1,:)=ones(1,zts);
ftsn=vs*ftsn1;

GESJ: Computer Science and Telecommunications 2016|No.4(50)
ISSN 1512-1232

 53

%The gradient descent algorithm with momentum term and variable
step size
%will be used in a backpropagation fashion in determining the
weights and
%bias and it takes the form w(k+1)=w(k)+Lr*g(k)*e(k)+ mc*w(k-1)

mc=0.9;
Lr=0.01; %initial value of Lr.
r=(ttn-ftn); %error residual, difference between model output and
expected output
rv=(tvn-fvn);
rts=(ttsn-ftsn);
d=r.^2;
dv=rv.^2;
dts=rts.^2;
%mean square error is used as the performance function and the
target of
%0.0000001 is used, but it can be varied by user.
mse(1)=sum(sum(d),2)/yt;
msev(1)=sum(sum(dv),2)/yv;
msets(1)=sum(sum(dts),2)/yts;

for k=1; % k is the number of iterations, this can be varied by
user
 if ((mse(k)>=0.0000001) && (Lr<=1*10^10));
 %fw=v*((L*p1)./(exp(L*(w*p1)).*(1./exp(L*(w*p1)) + 1)^2));
 aw=(Ls./(exp(Ls*(ws*ptn)).*(1./exp(Ls*(ws*ptn)) + 1).^2));
 vr=vs'*r;
 m=0;
 for Q=1:x+1;
 for q=1:s;
 m=m+1;
 fwa(q,:,Q)=ptn(Q,:).*aw(q,:);
 fwb(q,Q)=fwa(q,:,Q)*vr(q,:)';
 end
 end
 fw=fwb;
 fv=1./(1./exp(Ls*ws*ptn) + 1);
 fv(s+1,:)=ones(1,zt);
 J2=fv;
 JT2=J2';
 G1(k)=norm(fw);
 G2(k)=norm(JT2);
 if (G1(k)>=1e-10) && (G2(k)>=1e-10);
 a1=Lr*fw;
 a2=Lr*r*JT2;
 ws=ws+a1;
 vs=vs+a2;
 ftn1=(1./(1+exp(-Ls*(ws*ptn))));
 ftn1(s+1,:)=ones(1,zt);
 ftn=vs*ftn1;
 r1=(ttn-ftn);

GESJ: Computer Science and Telecommunications 2016|No.4(50)
ISSN 1512-1232

 54

 d=r1.^2;
 mse(k+1)=sum(sum(d),2)/yt;
 if mse(k+1)>=1.04*mse(k);
 ws=ws-a1;
 vs=vs-a2;
 Lr=0.7*Lr;
 a1=Lr*fw;
 a2=Lr*r*JT2;
 ws=ws+a1;
 vs=vs+a2;
 ftn1=(1./(1+exp(-Ls*(ws*ptn))));
 ftn1(s+1,:)=ones(1,zt);
 ftn=vs*ftn1;
 r=(ttn-ftn);
 d=r.^2;
 mse(k+1)=sum(sum(d),2)/yt;
 else
 Lr=Lr*1.05;
 r=r1;
 end
 else
 break
 end
 wsR(:,:,k+1)=ws;
 vsR(:,:,k+1)=vs;
 %Test
 ftsn1=(1./(1+exp(-Ls*(ws*ptsn))));
 ftsn1(s+1,:)=ones(1,zts);
 ftsn=vs*ftsn1;
 rts=(ttsn-ftsn);
 dts=rts.^2;
 msets(k+1)=sum(sum(dts),2)/yts;

 %Validation
 fvn1=(1./(1+exp(-Ls*(ws*pvn))));
 fvn1(s+1,:)=ones(1,ztv);
 fvn=vs*fvn1;
 rv=(tvn-fvn);
 dv=rv.^2;
 msev(k+1)=sum(sum(dv),2)/yv;
 if msev(k+1)>=msev(k);
 l=l+1;
 if l==5;
 break
 end
 else
 l=0;
 end
 else
 break
 end

GESJ: Computer Science and Telecommunications 2016|No.4(50)
ISSN 1512-1232

 55

end

for k=2:100000; % k is the number of iterations, this can be
varied by user
 if ((mse(k)>=0.0000001) && (Lr<=1*10^10));
 %fw=v*((L*p1)./(exp(L*(w*p1)).*(1./exp(L*(w*p1)) + 1)^2));
 aw=(Ls./(exp(Ls*(ws*ptn)).*(1./exp(Ls*(ws*ptn)) + 1).^2));
 vr=vs'*r;
 m=0;
 for Q=1:x+1;
 for q=1:s;
 m=m+1;
 fwa(q,:,Q)=ptn(Q,:).*aw(q,:);
 fwb(q,Q)=fwa(q,:,Q)*vr(q,:)';
 end
 end
 fw=fwb;
 fv=1./(1./exp(Ls*ws*ptn) + 1);
 fv(s+1,:)=ones(1,zt);
 J2=fv;
 JT2=J2';
 G1(k)=norm(fw);
 G2(k)=norm(JT2);
 if (G1(k)>=1e-10) && (G2(k)>=1e-10);
 a1R=a1;
 a2R=a2;
 a1=Lr*fw;
 a2=Lr*r*JT2;
 ws=ws+a1+mc*a1R;
 vs=vs+a2+mc*a2R;
 ftn1=(1./(1+exp(-Ls*(ws*ptn))));
 ftn1(s+1,:)=ones(1,zt);
 ftn=vs*ftn1;
 r1=(ttn-ftn);
 d=r1.^2;
 mse(k+1)=sum(sum(d),2)/yt;
 if mse(k+1)>=1.04*mse(k);
 ws=ws-a1-mc*a1R;
 vs=vs-a2-mc*a2R;
 Lr=0.7*Lr;
 a1=Lr*fw;
 a2=Lr*r*JT2;
 ws=ws+a1+mc*a1R;
 vs=vs+a2+mc*a2R;
 ftn1=(1./(1+exp(-Ls*(ws*ptn))));
 ftn1(s+1,:)=ones(1,zt);
 ftn=vs*ftn1;
 r=(ttn-ftn);
 d=r.^2;
 mse(k+1)=sum(sum(d),2)/yt;
 else
 Lr=Lr*1.05;

GESJ: Computer Science and Telecommunications 2016|No.4(50)
ISSN 1512-1232

 56

 r=r1;
 end
 else
 break
 end
 wsR(:,:,k+1)=ws;
 vsR(:,:,k+1)=vs;
 %Test
 ftsn1=(1./(1+exp(-Ls*(ws*ptsn))));
 ftsn1(s+1,:)=ones(1,zts);
 ftsn=vs*ftsn1;
 rts=(ttsn-ftsn);
 dts=rts.^2;
 msets(k+1)=sum(sum(dts),2)/yts;

 %Validation
 fvn1=(1./(1+exp(-Ls*(ws*pvn))));
 fvn1(s+1,:)=ones(1,ztv);
 fvn=vs*fvn1;
 rv=(tvn-fvn);
 dv=rv.^2;
 msev(k+1)=sum(sum(dv),2)/yv;
 if msev(k+1)>=msev(k);
 l=l+1;
 if l==5;
 break
 end
 else
 l=0;
 end
 else
 break
 end

end
if l>=5;
 ws=wsR(:,:,k-4);
 vs=vsR(:,:,k-4);
end
ftn1=(1./(1+exp(-Ls*(ws*ptn))));
ftn1(s+1,:)=ones(1,zt);
ftn=vs*ftn1;
fvn1=(1./(1+exp(-Ls*(ws*pvn))));
fvn1(s+1,:)=ones(1,ztv);
fvn=vs*fvn1;
ftsn1=(1./(1+exp(-Ls*(ws*ptsn))));
ftsn1(s+1,:)=ones(1,zts);
ftsn=vs*ftsn1;
t=removeconstantrows('reverse',t,TS);
tt_exp=removeconstantrows('reverse',tt,TS);
tv_exp=removeconstantrows('reverse',tv,TS);
tts_exp=removeconstantrows('reverse',tts,TS);

GESJ: Computer Science and Telecommunications 2016|No.4(50)
ISSN 1512-1232

 57

t_exp=t;
fft = mapminmax('reverse',ftn,ts);
ffv = mapminmax('reverse',fvn,ts);
ffts = mapminmax('reverse',ftsn,ts);
tt_model=removeconstantrows('reverse',fft,TS);
tv_model=removeconstantrows('reverse',ffv,TS);
tts_model=removeconstantrows('reverse',ffts,TS);
p=removeconstantrows('reverse',p,PS);
pt=removeconstantrows('reverse',pt,PS);
pv=removeconstantrows('reverse',pv,PS);
pts=removeconstantrows('reverse',pts,PS);
mse_minimum_train=min(mse)
mse_minimum_val=min(msev)
mse_minimum_test=min(msets)
number_iteration=k

% PERFORMANCE ANALYSIS
%Cross Correlation coefficient
%R=C(i,j)/(C(i,i)C(j,j))^1/2
%Training
Avt_exp=mean(mean(tt_exp,2));
Avt_model=mean(mean(tt_model,2));
Nmt=(sum(sum((tt_model-Avt_model).*(tt_exp-Avt_exp)),2));
Dnt=((sum(sum((tt_model-Avt_model).^2),2)).*(sum(sum((tt_exp-
Avt_exp).^2),2)));
Rtrain=Nmt/sqrt(Dnt);
%Validation
Avv_exp=mean(mean(tv_exp,2));
Avv_model=mean(mean(tv_model,2));
Nmv=(sum(sum((tv_model-Avv_model).*(tv_exp-Avv_exp)),2));
Dnv=((sum(sum((tv_model-Avv_model).^2),2)).*(sum(sum((tv_exp-
Avv_exp).^2),2)));
Rvalidation=Nmv/sqrt(Dnv);
%Testing
Avts_exp=mean(mean(tts_exp,2));
Avts_model=mean(mean(tts_model,2));
Nmts=(sum(sum((tts_model-Avts_model).*(tts_exp-Avts_exp)),2));
Dnts=((sum(sum((tts_model-Avts_model).^2),2)).*(sum(sum((tts_exp-
Avts_exp).^2),2)));
Rtest=Nmts/sqrt(Dnts);

%Average absolute relative error (AARE)
%AARE=(1/N)*sum(absolute(model output-exp value)/exp value));
AT=abs((tt-fft)./fft);
AAREtrain=(1/yt)*sum(sum(AT),2);
AV=abs((tv-ffv)./ffv);
AAREvalidation=(1/yv)*sum(sum(AV),2);
ATS=abs((tts-ffts)./ffts);
AAREtest=(1/yts)*sum(sum(ATS),2);

%PLOTS
plot(tt_exp,tt_model,'*')

GESJ: Computer Science and Telecommunications 2016|No.4(50)
ISSN 1512-1232

 58

xlabel('experimantal average void fraction')
ylabel('MLP model average void fraction')
legend('Training')
title('Gradient Descent with adaptive step and momentum term')
figure
plot(tv_exp,tv_model,'*')
xlabel('experimantal average void fraction')
ylabel('MLP model average void fraction')
legend('Validation')
title('Gradient Descent with adaptive step and momentum term')
figure
plot(tts_exp,tts_model,'*')
xlabel('experimantal average void fraction')
ylabel('MLP model average void fraction')
legend('Testing')
title('Gradient Descent with adaptive step and momentum term')
figure
u=1:k+1;
plot(u,mse,u,msev,u,msets)
xlabel('Number of iterations')
ylabel('Mean Square Error MSE')
legend('Training','Validation','Testing')
title('Gradient Descent with adaptive step and momentum term
performance plot')

bin=0.01:0.01:1;
bin=bin';
%Train
%for i=0:18;
%comparetrain(:,2*i+1:2*i+2)=[tt_exp(:,i+1) tt_model(:,i+1)];
%end
%comparetrain;

%PDF=comparetrain/60440;
%for u=0:numel(PDF(1,:))/2-1
 % figure
%plot(bin',PDF(:,2*u+1),bin',PDF(:,2*u+2),'--')
%xlabel('void fraction')
%ylabel('PDF')
%legend('Experimental','GDMV MLP MODEL')
%title('Probabilty Density Function')
%end

%Validation
%for i=0:6;
%comparevalidation(:,2*i+1:2*i+2)=[tv_exp(:,i+1) tv_model(:,i+1)];
%end
%comparevalidation;

%PDF=comparevalidation/60440;
%for u=0:numel(PDF(1,:))/2-1
 % figure

GESJ: Computer Science and Telecommunications 2016|No.4(50)
ISSN 1512-1232

 59

%plot(bin',PDF(:,2*u+1),bin',PDF(:,2*u+2),'--')
%xlabel('void fraction')
%ylabel('PDF')
%legend('Experimental','GDMV MLP MODEL')
%title('Probabilty Density Function')
%end

%Test
for i=0:6;
comparetest(:,2*i+1:2*i+2)=[tts_exp(:,i+1) tts_model(:,i+1)];
end
comparetest;

PDF=comparetest/60440;
for u=0:numel(PDF(1,:))/2-1
 figure
plot(bin',PDF(:,2*u+1),bin',PDF(:,2*u+2),'--')
xlabel('void fraction')
ylabel('PDF')
legend('Experimental','GDMV MLP MODEL')
title('Probabilty Density Function')
end

 Article received: 2016-08-29

	3.4. Objective Function and Performance of ANN

