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Abstract 

Haskell was created as a functional programming language and extended  later with 
possibilities to create additional functions for high level parallel programming. Kripke schemes 
are traditionally used in verification systems which use model checking with temporal (time) 
logic to describe the state of the program.  Temporal logic is a good solution for processing 
Kripke schemes for linear programs verification  but  for verification of  functional parallel 
programs it is inconvenient. P-logic used for parallel programing the Plover system  is more 
attractive however Kripke schemes  are more convenient for describing  states in parallel  
programs. 
In this research a tree of programs states is presented with Kripke schemes and is processed 
according to wave principle. Tree traversal is performed  according to P - logic principals 
instead of temporal logics used in model checking. 
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1. Introduction 
 
Model checking gives an opportunity to verify whether the given model of a parallel system 

with a finite number of states  satisfies its formal specifications defined in a language  of formal 
logic. 

Hardware and software specifications are usually developed in temporal logic, which is a 
special language to describe the behavior of a system in time.    

Nowadays, model checking for (temporal) logics is commonly accepted as one of the key 
methods in verification. A major limitation to the usefulness of model checking for verification 
purposes is the state space explosion problem. To solve this problem one employs symbolic 
methods [3] that work on process descriptions directly  an usually achieves better performance 
there.  

The system which has been reviewed in [1] is using the modal, fixpoint logic. It’s being 
performed elaboration of symbolic model checking and it’s being discussed how this algorithms 
should be parallelized however, for this reason is being used  Glasgow Parallel Haskell (GpH) and 
its performance on a cluster of workstations. 

The need for efficiency together with facing huge state spaces in relevant applications often 
leads to the use of logics with little expressive power for model checking tasks. This bears an 
obvious disadvantage: what if a desired correctness property is not expressible in this logic? This 
justifies the search for (as efficient as possible) decision procedures for logics with higher 
expressive power. 
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A great step on the expressivity ladder regarding temporal logics was made with the 
introduction of FLC, a fixpoint logic that extends the modal μ- calculus with an operator for 
sequential composition. This gives FLC the power to express non-regular properties like “on every 
path the number of a’s so far never exceeds the number of b’s” or “something holds on all paths at 
the same time”. 

P- logic [4] was used particularly for verification of Haskell language, It’s being  used by 
system of  “Plover” which  is an automated property-verifier for Haskell programs [5]. This tool, 
called Plover, is being developed as part of the Programmatic project, whose objective is to explore 
means of providing scientifically based certification of formally specified properties of computer 
programs. 

A Programatic certificate is a electronic document which is structured and provides tangible, 
auditable evidence that a source-code module has a specified property. 

Certificates are associated with program modules by encrypted links that resist forgery. Many 
forms of evidence can be accommodated. These can include the testimony of expert reviewers, 
results of testing, formal proofs of properties and software model checking. Different forms of 
evidence are supported by a variety of certificate servers, and may evoke varying degrees of trust in 
the certification provided. 

Plover is one of the Programatic certificate servers. It is intended to provide a degree of 
assurance based upon the soundness of automated reasoning in a formal logic. Ultimately, the 
quality of this reasoning depends upon the correctness of the Plover tool itself, thus may be less 
convincing than if it supplied a formal proof tree. On the other hand, the reasoning conducted by 
Plover is fully automated, and is thus obtained with far less user expertise and expenditure of effort 
than is required for proof construction with the aid of a theorem-proving assistant. Furthermore, 
Plover specifically implements reasoning in P-logic, which is the verification logic of Haskell 98, 
whereas few other available proof assistants directly support a verification logic so closely tied to a 
wide-spectrum programming language. 

From annotation [6] a new strategy called “strength induction” was described to support 
automatic checking of assumptions. 

Strength induction has been implemented in Plover, an automated property-verifier for 
Haskell programs that has been under development for the past three years as a component of the 
Programmatic project. In Programmatic, predicate definitions and property assertions written in P-
logic, a programming logic for Haskell, can be embedded in the text of a Haskell program module. 
Properties refine the type system of Haskell but cannot be verified by type-checking alone because 
a more powerful logical verifier is required. 

Plover codes the proof rules of P-logic, and additionally, embeds strategies and decision 
procedures for their application and discharge. It integrates a reduction system that implements a 
rewriting semantics for Haskell terms with a congruence-closure algorithm that supports reasoning 
with equality. 

Besides P-logic other examples of language-specific verification logics are ACL2 [7], a 
verification logic for Common Lisp, and Sparkle [8], a verifier for Clean 2.0. When assertions are 
formulated in a language-specific verification logic it is unnecessary to translate expressions and 
their asserted properties into another logical formalism, which may have a different type system, 
and with the attendant risk that errors may be introduced in the translation.  

The model checking is used not only for verification, but may be used for debugging 
Concurrent Haskell programs [9].    

Today, almost any larger software application is no longer a sequential program but an entire 
concurrent system made of a varying number of processes. These processes often share resources 
which must be adequately protected against concurrent access. Usually this is achieved by 
concentrating these actions  in critical sections which are protected by semaphores. If a semaphore 
uses a count, another process waiting for access is suspended until the semaphore is released. 
Combining two or more semaphores can easily lead to situations where a deadlock might occur. 
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The complex of temporal qualified - free formulas represents temporal logic LTL.  LTL 
formulas specifying assertions or other properties are verified at runtime. It is possible to 
dynamically add formulas at runtime, giving a degree of flexibility which is not available in static 
verification of source code. If the properties which falsifies a formula is detected at runtime, the 
debugger emits a warning and records the path leading to the violation. It is possible to dynamically 
add formulas at runtime, giving a degree of flexibility which is not available in static verification of 
source code. 

Sometimes for verification is being used several methods like testing, interactive proof, model 
checking at the same time [10]. 

Testing and model checking are used for debugging programs and specifications before a 
costly interactive proof attempt. During proof development, testing and model checking quickly 
eliminate false conjectures and generate counterexamples which help to correct them. With an 
interactive theorem prover it can be ensured that the correctness of the reduction of a top level 
problem to subproblems that can be tested or proved. The method can be demonstrated using our 
random testing tool and binary decision diagrams-based (BDDs) tautology checker, which are 
added to the Agda/Alfa interactive proof assistant for dependent type theory. In particular it can be 
applied techniques to the verification of Haskell programs. The first example verifies the BDD 
checker itself by testing its components. The second uses the tautology checker to verify bitonic sort 
together with a proof that the reduction of the problem to the checked form is correct. 

The modern realization of verification  as VeriFast [11] is considering industrial use  of 
software. In case on non existence of unlawful access to memory the orientation can occur, for 
example dividing on 0 or checking memory leakages. It’s being performed for Java and and C 
languages and according to this the industrial application is possible.  

Conclusion: For the verification of Haskell programs should be used the scheme of Kripke 
and P-logic instead of temporal logics, because the temporal logics doesn't work for competitive 
programming verification and it should be performed the transformation of model – checking. 

   
2. The issues of verification of verification Haskell’s parallel programs  
 
1. P - logic instead of temporal logic  
Strength induction has been implemented in Plover, an automated property-verifier for 

Haskell programs that has been under development for the past three years as a component of the 
Programatic project. In Programatic, predicate definitions and property assertions written in P-logic, 
a programming logic for Haskell, can be embedded in the text of a Haskell program module. 
Properties refine the type system of Haskell but cannot be verified by type-checking alone; a more 
powerful logical verifier is required. 

Plover codes the proof rules of P-logic, and additionally, embeds strategies and decision 
procedures for their application and discharge. It integrates a reduction system that implements a 
rewriting semantics for Haskell terms with a congruence-closure algorithm that supports reasoning 
with equality. 

 
2. Presentation of parallel programs by the Kripke schemes 
The parallel programs consist of several ordered processes (modules). Each of this processes 

works independently but in case  of  necessity of solving unified issue they are interacting with 
other processes by using common variables or by exchanging messages in the connection channels. 

For example, if we have two processes PR1 and PR2  which are performing in parallel and 
independently the simple operations of assignment: 

PR1:: 
A:=5; 
A:=B; 
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END 
    PR2:: 

B:=7; 
B:=A: 

    END 

Sounds question, for which values of A and B variables the execution of program will be 
stopped, if the initial values of A and B variables are equal to 0.  The attention should be paid that 
PR1 and PR2 have common variables. 

To answer this question is being used the principals of Model Checking  [12].  
Model Checking is one of most perspectives and nowadays widely used approach, the method 

for automatically adjustment and checking correctness of program. The stages of Model Checking 
can be described like:  

The stage of modeling - for the system which will be projected it’s necessary to create the 
abstract model of it (for example: the full system of transactions), for which it will be acceptable the 
instrumental verification  solutions for programs model. 

The stage of specification  - this issue consist from creating properties which should be 
included in the projecting system. Generally the specifications are being represented on the formal 
logic language. As a rule for hardware and software is being used dynamic logics, temporal logics 
and and their examples using the fixed points. 

  
3. Parallelism in Haskell 
The parallelism in Haskell represents the natural an reliable usage of  calculating cores with 

following properties: 

• The parallel programing id determined. This means that it’s possible to repair parallel 
program in parallel without execution. 

• The parallel program is a multilevel and declared, the have no direct connection with such a 
mechanisms as synchronization which is message.  

As more abstract the program is as it’s a simple to execute it on the parallel software. 
However it should be taken in account the quality of specification and dependence on data. 

 
The model of parallel programing  and the strategy of calculations 
Lazy evaluations is a mechanism, which is being used for calculating expressions. The idea is 

that the calculations are being performed when there is a necessity.  more precisely the calculation 
of arguments is being performed only in way and in time when it will be a strong necessity to reach 
a results. For example: after choosing first element of list the other part of the list is not necessary 
and it gives an opportunity to avoid in  HEAD (1 : ones)  impression the next  calculation of ones 
endless list. Generally we have the following property: in case of using  lazy calculations  the 
expressions are being evaluated according to that context in which they are being used.  

How to represent the “map” function, using the “Idea” which has following definition:  
map: :( a->b)->[a]->[b] 
map f []    =[] 
map f (x:xs)=f x : map f xs 

 
The lazy data structure which is been created for “map” function and in which is evident two 

“ideas”  can be written: 
map:: ( a->b)->[a]->[b] 
map f []       =[] 
map f (x:xs)=let  
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               x’  = f x 
               xs’ = map  f  xs             
             in  
               x’: xs’ 

The templates  for the defined  tail recursion code Haskell functions  

The templates for the defined  tail  recursion code  can be represented as [13-16]:  
f [ ] = g1 [ ]  
f ( x : xs ) = g2 ( g3 x ) ( g4 ( f ( g5 xs ) ) )   
g1, g2, g3, g4, g5 functions are depended on the program’s conditions:  
g1 –  is the function, to process empty list.  
g2 –  is the function, which combines the tail and the top of the list. 
g3 – the function, which processes the top of the list. 
g4 – is the function, which processes the recursion call for not empty list’s.   
g5 – is the function, which is processing the tail of not empty list for recursion call.  

It’s possible to represent for example function “last” which returns the last element from list 
with following example: 
last  :: [a] -> a  
last [x]         =  x 
last (_:xs)      =  last xs 
gl _ = error  
g2 a b = b  

g3 x = х  
g4 x = х  
g5 x = х 

 

The template of the list is being represented using the “idea”: 
ListTemplate  [ ] = g1 [ ]  
ListTemplate( x : xs ) = g2 ( g3 x ) ( g4 (ListTemplate( g5 xs ) ) 
)  
ListTemplate :: [a]->b 
ListTemplate []       =   [] 
ListTemplate (x:xs)= let  
                             x’  = g3  x 
                             x’’=g5 xs 
                             x’’’= ListTemplate ( x’’) 
                             xs’ =g4 (x’’’)   
                             in  
                             g2( x’: xs’)      
 

3. Conclusion 
Nowadays the most important is the issue of creation such as program code which can be 

processed in parallel on several cores of one processor or on several computers. Nowadays the 
computers with several cores are available for everyone,  but creation such an applied program 
which will effectively use several streams is still a big issue. 

Functional programming gives an opportunity noticeably simplify parallel programing. It’s 
happening because in functional program are memory areas which are being used by several 
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streams at the same time.  Each function works with data which has been received from it’s input. 
In spite of said before, the issue of effective dividing of calculations in different streams  still exist. 

In this research are given the main ideas which according to our opinion are the best for 
parallel programing in Haskell. Particularly we will use the schemes of Kripke an the P-logic.  
At the same time it’s being shown the representing of the templates of Haskell functions 
according to form which makes it possible to execute it on several cores.  
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