
GESJ: Computer Science and Telecommunications 2016|No.4(50)
ISSN 1512-1232

 93

PERFORMANCE EVALUATION OF LINUX AND MICROSOFT WINDOWS
OPERATING SYSTEMS ON CONFIGURED TUNNELS OF IPV6 AND IPV4

1OGUNLEYE G.O, 2Bankole B.

1Department of Computer Science, Federal University, Oye-Ekiti, Ekiti State, Nigeria

2Department of Computer Science, Redeemer’s University, Ede, Osun State, Nigeria

Abstract

The paper examined the background evolution of IPv4 and IPv6 and various
research works that have done in the area.

The study evaluates the performance of IPv4 and IPv6 on Microsoft operating
system and Linux operating system using two transition mechanisms. The performance
measurement is examined on two types of transmission protocols namely: TCP and also
UDP. The performance metrics used in the study are throughput, delay, jitter, CPU
utilization and they were used over a range of bytes. The result confirmed that Linux
performed effectively than its windows counterpart on configured tunnels of IPv4 and
IPv6.

Keywords: lPV4, IPV6, TCP, IP,Windows, LINUX

1.0 Introduction
In the last few decades, internet has grown extensively as a result of its worldwide use and

accessibility which has resulted into 1.5 trillion dollars worldwide economic benefits annually
(Atkinson et al, 2010). Consequently, there is a need to examine the various communications that
make up the internet so as to further enhance its use. A number of previous research works had
been done on the use of Internet Protocol version 4 (IPv4) and Internet Protocol version 6 (IPv6)
over different operating systems (Kolahi and Soorty, 2011); while some over cable networks (
Soorty and Sarkar, 2013).

According to Ogunde (2015), IP makes use of other supporting protocol like the:
• ARP (Address Resolution Protocol): this protocol is used to associate logical address

with a physical address.
• RARP (Reverse Address Resolution Protocol): this is a protocol that allows a host to

know its internet address when the physical address is known.
• ICMP (Internet Control Message Protocol): this is a protocol that allows the hosts and

gateways to send messages back to the sender on datagram problems encountered.
• IGMP (Internet Group Message Protocol): this is a protocol that is used to send group of

messages simultaneously to a group of recipients.

IPv6 is also called the next generation Internet Protocol. It was designed at first to provide
solution to IPv4’s inevitable and impending address exhaustion crisis (Lammle, 2013).

IPv 6 is arguably the IP protocol of choice, but transition from IPv4 internet to IPv6 promises
to be a long process as they are two completely separate protocols and it is impossible to switch the
entire internet to IPv6 at once. IPv4 host and routers will not be able to deal directly with IPv6
traffic and vice-versa, as IPv6 is not backward compatible with IPv4. Therefore, IPv4 and IPv6
coexist for a long time. Thus, this paper work looks into the transition performance evaluation and
inter-operation mechanisms of IPv4 and IPv6 on two operating systems.

GESJ: Computer Science and Telecommunications 2016|No.4(50)
ISSN 1512-1232

 94

To a great extent the internet primarily runs on IPv4, almost all communications involving the
internet depend on this protocol. The address structure is very important in understanding this
protocol. IPv4 addressing consists of four bytes with each byte containing eight bits. The whole
address space of IPv4 consists of 32bits i.e. 2^32 (4,294,967,296) distinct addresses. According to
Lammle (2013), IP version 4 consists of five groups of addresses which is shown table 1:

 Table 1: Groups of IPv4 addresses

Class Start End Comments
A 0.0.0.0 127.255.255.255 Address 0 is the default address while 127

has being reserved for Loopback (localhost).
 B 128.0.0.0 191.255.255.255 169.0.0.0 to 169.255.255.255 reserved

as APIPA addresses
 C 192.0.0.0 223.255.255.255
 D 224.0.0.0 239.255.255.255 Multicast Group.
 E 240.0.0.0 255.255.255.255 Reserved For Research/Testing

According to Grosse and Lakshman (2003), as the year goes by, there is frequent increase in

the number of hosts (devices) on the internet as a result of technological growth in countries with
very large populations who are gaining access to the internet which causes shortage in IPv4 address
space. This is the main reason why IPv6 is being developed and implemented and it is referred to as
the next generation Internet Protocol. It provides solution to the issue of address space and also
comes with better features.

This is known as latest version of the Internet Protocol that was developed to provide
solutions to IPv4 deficiencies. According to Green et al (2006), the development of IPv6 was aimed
at incorporating all the improvements and best features that were developed from the inception of
IPv4 (more than 20years) into a next–generation protocol to aid the rapid growth of internet
applications and communications. IPv6 is not just going to provide solutions to the address space
issues encountered in IPv4; it will also provide better features that can ensure a better performance
than IPv4. This newer version of Internet Protocol supports unicast, anycast and multicast
addresses. The addressing format of IPv4 and IPv6 varies, that of IPv4 is represented by dotted
decimal while that of IPv6 is in hexadecimal notation (Govil et al, 2007).

Network Address Translation (NAT) and Classless Inter-Domain Routing (CIDR) were used
to temporarily resolve address space limitation in IPv4 before the introduction of IPv6, and they
accept that hosts within a Local Area Network (LAN) and on other LANs around the world can
still use similar private IP address as hosts (Sotharith, 2010).

IPv6 has a better forwarding mechanism than IPv4 as a result of the 40 bytes fixed header that
enables routers forward IPv6 packets faster (Davies, 2008).

2.0 Related Works
This section discusses the previous research works that have been done.

2.1 TRANSITION MECHANISMS
Sotharith (2010) stated that IPv6 was designed in such a way that makes it backward

incompatible with IPv4 i.e. IPv4 hosts can transfer IPv4 packets to other IPv4 hosts and IPv6 hosts
can also send IPv6 packets to other IPv6 hosts. The ability for both protocols to be able to operate
when they coexist on the internet is an issue. In order to solve this issue, IPv4/IPv6 transition
mechanisms was designed by IETF (Internet Engineering Task Force) NGtrans to enable transition

GESJ: Computer Science and Telecommunications 2016|No.4(50)
ISSN 1512-1232

 95

period to progress without any problem. These mechanisms permit both IPv4 and IPv6 to exist
together on the internet which can last for many years.

Some of these mechanisms include:
• DUAL STACK: it is a type of transition mechanism that is straightforward and simple to

configure. In this mechanism, both IPv4 and IPv6 are enabled on a single network interface
card. An IPv6/IPv4 node is a device enabled with both IPv6 and IPv4. IPv6/IPv4 nodes can
operate with both IPv4 and IPv6 nodes using IPv4 and IPv6 packets respectively. Dual stack
mechanism requires both IP version 4 and version 6 addresses to be assigned manually
and/or automatically, using DHCP (Dynamic Host Configuration Protocol) to communicate
with both IPv4 and IPv6 nodes. The diagram in figure 1 shows the architecture of Dual IP
stack (Lewin et al, 2000):

Figure1: Dual IP Stack (source: Lewin et al, 2000)

CONFIGURED TUNNEL: This is a type of mechanism that allows more than one IPv6

network to interact across IPv4 routing infrastructure through a medium (tunnel). The entry point of
the tunnel is manually configured. IPv6 addresses are encapsulated with IPv4 packets in order to
ensure communication between IPv6 nodes on IPv4 network. The router at the endpoint of each
tunnel consists of two network interface cards with IPv6 addresses configured on the internal
network interface card and IPv4 addresses configured on the external network interface card. This is
shown in figure 2.

Figure 2: infrastructure of a configured tunnel network (source: Sotharith, 2010).

GESJ: Computer Science and Telecommunications 2016|No.4(50)
ISSN 1512-1232

 96

• 6TO4 TUNNELLING MECHANISM
This is a tunneling technology used to assign/allocate blocks of IPv6 addresses to IPv4
hosts, enabling router- router, host- router, router- host IPv6 unicast connectivity between
IPv6 sites and hosts across the IPv4 internet. The architecture of 6to4 address is shown in
figure 3:

Figure3: Architecture of 6to4 address (source: Davies, 2008)

On the arrival of IPv6 packets at 6to4 router, the process of encapsulation is triggered by
keeping IPv6 packet in IPv4 packet so that it can transmit across IPv4 internet infrastructure. The
Source and destination of IPv4 addresses are specified with IPv4 header and the body of IPv4
packet contain IPv6 header and payload as stated in RFC3056 T (2001).6to4 packet is travelling
across 6to4 tunneling established by 6to4 routers. As the encapsulated packet arrives at the
destination tunneling end-point, 6to4 router performs de-capsulation process by removing IPv4
header and forward IPv6 packet through to IPv6 node. Various Components perform different
functions in 6to4 tunneling mechanism. These components are:

• 6to4 host: this is the client computer and it cannot carry out 6to4 tunneling over IPv4
internet.

• 6to4 router: it can carry out 6to4 tunneling over the internet and also transferring
6to4 packet from 6to4 host in a site to another 6to4 host in another site across the
internet.

• 6to4 host/router: it can carry out tunneling with 6to4 host/routers, routers, and
relays, but it does not have the ability to forward packet.

• IPV4 OVER IPV6 TUNNELS: IPv6 network environment supports IPv4 over IPv6
tunnels, which includes:

• Generic Routing Encapsulation (GRE) IPv4 tunnel for IPv6: The traffic experienced
in IPv6 can be brought through the standard GRE tunneling technique (which is a
Cisco proprietary tunneling protocol and was created to give the administrations to
actualize any standard point-to-point encapsulation scheme) over the IPv4 GRE
tunnels. The tunnels convey IPv6 as the traveler protocol with the GRE as the bearer
protocol and IPv4 or IPv6 as the transport protocol. These tunnels are connections
between two points, and every connection has a different tunnel.

• GRE support over IPv6 transport: GRE has a protocol field that distinguishes the traveler
protocol. The tunnels permit IPv6 to be made a traveler protocol, which permits IPv6 traffic
to keep running over the same tunnel. In the event that GRE did not have a protocol field, it
is difficult to know whether the tunnel was conveying IPv6 packets. The GRE protocol field
makes it attractive to tunnel IPv6 inside GRE.

• NETWORK ADDRESS TRANSLATION-PROTOCOL TRANSLATION (NAT-PT):
this is a translation mechanism that functions as translator between IPv4 and IPv6 packets.
The main function is to IPv6 addresses to IPv4 addresses and also IPv4 addresses to IPv6

GESJ: Computer Science and Telecommunications 2016|No.4(50)
ISSN 1512-1232

 97

addresses. It allows IPv4 and IPv6 to exist on the same network together, when
implemented; it allows IPv4 network and IPv6 network to be able to communicate with one
another using a single NAT-PT server. The hosts of each IPs do not need to have dual stack
mode enabled but their networks must have its own DNS server. The diagram in figure 4
shows the implementation of NAT-PT network infrastructure:

Figure 4: infrastructure of NAT-PT network (source: Sotharith, 2010)

NAT-PT functions primarily to convert IPv4 packet to IPv6 packet. According to Lee et al
(2004) “The source address of IPv6 header is replaced by an IPv6 address from IPv4 address pool
and then the 96 bits prefix of destination IPv6 address is removed and last 4 bytes is used as IPv4
destination address”. NAT-PT goes about as an interpreter server that stores IPv4 worldwide
routable address pool. This pool is utilized to consequently dispense addresses to the IPv6 node
before the interpretation process begins crosswise over NAT-PT node. When the interpretation
process closes, IPv4 address task will end (Atwood et al, 2010). NAT-PT is the IPv4 and IPv6
packet interpreter that sits in the middle of IPv4 and IPv6 system and it makes an interpretation of
IPv4 packets to IPv6 packets and IPv6 packets to IPv4 packet.

2.2. PERFORMANCE MEASUREMENT TOOLS
There are different techniques that can be used to test performance of transition mechanism.

These techniques include: throughput, delay, CPU utilization and jitter.
1. Throughput: this is a very common technique that is used in evaluating the performance of a

network. It makes the amount of data transferred between two network hosts easier to know.
According to Blum (2003), “The throughput of a network represents the amount of network
bandwidth available for a network application at any given moment, across the network
links”. There are elements that can influence throughput execution, for example, the
restriction of equipment handling power and system blockage or bottleneck because of the
configuration of system topology. Megabits every second (Mbps) is the unit utilizes as a part
of throughput estimation.

2. Delay: it is the measure of time it takes a packet to navigate from source to destination".
Before measuring delay in an network, time synchronization in the middle of sender and
recipient is essential. Ensure that sender and recipient hubs have the very same time settings.

3. CPU Utilization: is the rate measure of PC's CPU asset taken amid the handling of an
application or an assignment. Higher rate of CPU Utilization demonstrates that the PC

GESJ: Computer Science and Telecommunications 2016|No.4(50)
ISSN 1512-1232

 98

ideally utilized CPU assets. This is not the situation, which ought to dependably be worried
about on the grounds that if a PC indicates higher CPU use however it produces higher
throughput, implies the PC utilizes most ideal assets as a part of request to deliver best
throughput result. In any case, if the PC produces lower throughput, which is a state of
concern, that equipment is not proficiently utilizing the CPU assets. In this examination
concentrate, all equipment requires to have indistinguishable detail so as to give consistency
between every hub.

4. Jitter: is the between bundle delay fluctuation; that is, the contrast between packet landing
and takeoff. Jitter is an imperative Quality of Service metric for voice and video
applications." when various packets send over the system, the distinctions in time that every
parcel touching base at the destination is known as jitter.

This metrics are however utilized in this study to evaluate the performance of ipv4 and ipv6
on windows and linux operating systems.

3.0 Materials and Methods
The experimental design, implementation and measurements used were conducted at the

Computer Laboratory of Redeemer’s University, which was obtained by using a simple
performance measuring tool (D-ITG).

 ALGORITHM FOR THROUGHPUT
//algorithm for D-ITG tool
//input: ITG commands (send,decode)
//output: throughput, delay, jitter, cpu utilization
CMD Commandprompt
DIR directory
{
get CMD1
set DIR= Tool_DIR;
Input(ITGRecev_command)
{
get CMD2
DIR=TOOL_DIR;
Input(ITGSend_command);
{
Get CMD3
Set DIR=Tool_DIR;
Input (itgdec _command)
Output (result)
}
}
}

The algorithm above explains the procedure involved in using the D-ITG performance tool.
The command prompt is opened and changed to the directory of where the D-ITG tool is saved,
then ITGRecv:is entered in order to be able to receive the packets on the client 2 system.

Open command prompt change the directory to the directory of where the D-ITG tool is
saved, then enter ITGSend –T transmission protocol –a ip address –c 100 –C packet size –t 15000\
-Lsender.log –x receiver.log. Open command prompt change the directory to the directory of where

GESJ: Computer Science and Telecommunications 2016|No.4(50)
ISSN 1512-1232

 99

the D-ITG tool is saved, then enter ITGDec receiver.log. This enables you to view the results from
client 1’s system.

3.1 CONFIGURED TUNNEL MECHANISM ON WINDOWS SERVER 2008
This section shows the experimental setup and configuration of configured tunnel on

Windows Server 2008. The batch script used is shown below:

ROUTER 1
• Create tunnel name boluwaji
#netshint ipv6 add v6v4tunnel “boluwaji” 10.1.1.1 10.1.1.2
• Add ipv6 address to tunnel interface
#netshint ipv6 add address “boluwaji” 2001:200:20:2::1
• Configure static routing
 #netshint ipv6 add route ::/0 “boluwaji” 2001:200:20:2::2
• Set packet forwarding
 #netshint ipv6 set int “boluwaji” forwarding=enable

ROUTER 2
• Create tunnel name boluwaji
#netshint ipv6 add v6v4tunnel “boluwaji” 10.1.1.2 10.1.1.1
• Add ipv6 address to tunnel interface
#netshint ipv6 add address “boluwaji” 2001:200:20:2::2
• Configure static routing
 #netshint ipv6 add route ::/0 “boluwaji” 2001:200:20:2::1

• Set packet forwarding
 #netshint ipv6 set int “boluwaji” forwarding=enable

3.2 6TO4 MECHANISM ON UBUNTU
This section shows the experimental setup and configuration of 6to4 mechanism on Ubuntu. The

batch script used is shown below:
Router 1:
• Set IPv6 packet forwarding

#sysctl –w net. Ipv6.conf.default.forwarding=1
• Add 6to4 tunnel endpoints

#ip tunnel add tun6to4 mode sit remote any local 10.1.1.1
#ip link set dev tun6to4 mtu 1472
• Add IPv6 to tunnel

#ip-6 addr add dev tun6to4 2001:200:20:2::1/64
• Configure static route

#ip-6 route add 2001::/16 dev tun6to4
#ip-6 route add::/0 via 2001:200:20:2::2 dev tun6to4 metric 1
Router 2:
• Set IPv6 packet forwarding

GESJ: Computer Science and Telecommunications 2016|No.4(50)
ISSN 1512-1232

 100

#sysctl –w net. Ipv6.conf.default.forwarding=1
• Add 6to4 tunnel endpoints

#ip tunnel add tun6to4 mode sit remote any local 10.1.1.2
#ip link set dev tun6to4 mtu 1472
• Add IPv6 to tunnel

#ip-6 addr add dev tun6to4 2001:200:20:2::2/64
• Configure static route

#ip-6 route add 2001::/16 dev tun6to4
#ip-6 route add::/0 via 2001:200:20:2::1 dev tun6to4 metric 1

NETWORK DESIGN
Four computers where used in conducting this experiment and this form the network

infrastructure. It contains two client nodes and two router nodes. The simulation involves two IPv6
LANs interconnected through a simulation of the internet (IPv4 network infrastructure) is contained
in the infrastructure.

This infrastructure contains a combination of Fast Ethernet and Gigabit network cards on the
computers used. This experimental design contains the use ofIPv4, IPv6 and IPv4/IPv6transition
mechanisms. Client 1 was configured as the D-ITG packet sender and Client 2 as the D-ITG packet
receiver.

GRAPHICAL USER INTERFACE

Figure 5: Graphical User Interface to display result

GESJ: Computer Science and Telecommunications 2016|No.4(50)
ISSN 1512-1232

 101

From this GUI, performance metric could be selected to view its table and graph.

Figure 6: Graphical User Interface to display result

From this GUI, it is easier to select the particular transmission protocol you want to view its
table and graph.

GESJ: Computer Science and Telecommunications 2016|No.4(50)
ISSN 1512-1232

 102

DATA ANALYSIS
The results obtained from the experiment conducted in the laboratory using configured tunnel

and 6to4 mechanisms, TCP and UDP as transmission protocols, and throughput, jitter, delay and
CPU utilization are as follows:

Figure 7: CONFIGURED TUNNEL TCP THROUGH PUT

Fig 7 shows the result obtained from the experiment performed in the lab. From the figure

above, it is observed that at time 640, 1280 and 1408 windows server 2008 had lesser amount of
throughput time when compared with Ubuntu but for all other packet sizes they had almost the
same amount of throughput time.

GESJ: Computer Science and Telecommunications 2016|No.4(50)
ISSN 1512-1232

 103

Figure 8: CONFIGURED TUNNEL TCP JITTER

Figure 8 shows the comparism of windows server 2008 and Ubuntu. From the figured above,

it is observed that at time 64, 128 and 256 windows server 2008 had lower jitter time compared to
Ubuntu but for all other packet sizes Ubuntu had lower jitter than windows server 2008 except at
time 384 , they were the same.

GESJ: Computer Science and Telecommunications 2016|No.4(50)
ISSN 1512-1232

 104

Figure 9: CONFIGURED TUNNEL TCP DELAY

Figure 9 shows the delay time experienced by both operating systems. At all packet sizes

Ubuntu had lower amount of delay time compared to Windows server 2008.

GESJ: Computer Science and Telecommunications 2016|No.4(50)
ISSN 1512-1232

 105

Figure 10:CONFIGURED TUNNEL TCP CPU UTILIZATION

Figure 10 shows the comparism of both operating systems using CPU utilization. From the

figure above, it is observed that at size 64 windows server 2008 had a lower percentage than CPU
utilization but for all other packet sizes Ubuntu had lower percentage for CPU utilization compared
to windows server 2008. And Ubuntu had no decimal values for all, its value.

GESJ: Computer Science and Telecommunications 2016|No.4(50)
ISSN 1512-1232

 106

Figure 11: CONFIGURED TUNNEL UDP THROUGHPUT

In Figure 11 both operating systems had close range of amount of time from size 64 to 1152,
at time 1280 and 1408 windows server 2008 had lower amount of throughput time with a difference
of 7.9 and 8.32 respectively.

GESJ: Computer Science and Telecommunications 2016|No.4(50)
ISSN 1512-1232

 107

Figure 12: CONFIGURED TUNNEL UDP JITTER

In figure 12, at time 64 windows server 2008 had a lower jitter time but at almost all other
packet sizes Ubuntu had lower amount of jitter time except at time 1408 with an higher time
difference of 0.03 than windows server 2008.

GESJ: Computer Science and Telecommunications 2016|No.4(50)
ISSN 1512-1232

 108

Figure 13: CONFIGURED TUNNEL UDP DELAY

In figure 13, windows server 2008 had lower amount of delay compared to Ubuntu for all

packet sizes used.

GESJ: Computer Science and Telecommunications 2016|No.4(50)
ISSN 1512-1232

 109

Figure 14: 6TO4 UDP DELAY

In figure 14, there was a very high difference between the delay experienced by windows

server 2008 and Ubuntu. Ubuntu experienced very low amount of delay time compared to windows
server 2008 that experienced very high delay time.

GESJ: Computer Science and Telecommunications 2016|No.4(50)
ISSN 1512-1232

 110

Figure 15: 6TO4 UDP JITTER

In figure 15, at time 256, 384, 512, 640, 768, 1152,1408 and 1536, Ubuntu had lower jitter

time compared to windows server 2008 but for all other packet sizes windows server 2008 recorded
lower amount of jitter time.

GESJ: Computer Science and Telecommunications 2016|No.4(50)
ISSN 1512-1232

 111

Figure 16: 6TO4 UDP THROUGHPUT

In figure 16, both operating system had close range of throughput time except at time 1208

and 1408, where windows server 2008 had lower throughput time with a difference of 6.94 and 6.89
respectively compared to Ubuntu.

DISCUSSION
In configured tunnel of TCP, it was observed that at time 640, 1280 and 1408 windows server

2008 had lesser amount of throughput time when compared with Ubuntu but for all other packet
sizes they had almost the same amount of throughput time. In configured tunnel of UDP, both
operating systems had a close range of amount of time from size 64 to 1152, at time 1280 and 1408
windows server 2008 had lower amount of throughput time with a difference of 7.9 and 8.32
respectively. Generally, for configured tunnel of TCP throughput, the throughput time is better in
Ubuntu than in Microsoft windows 2008. In addition, the configured tunnel of TCP throughput time
of Ubuntu is also better than in configured tunnel of UDP as the former involves better transfer of
packets than the latter. This correlates with the experiment performed by Soorty and Sarkar(2013);
Kolahi et al. 2011.

GESJ: Computer Science and Telecommunications 2016|No.4(50)
ISSN 1512-1232

 112

Implementing a configured tunnel on IPv4 and IPv6 showed no significant changes on the
two operating systems for jitter. Though, it was noticed that at time 64, 128 and 256 windows
server 2008 had lower jitter time compared to Ubuntu but for all other packet sizes Ubuntu had
lower jitter than windows server 2008.

For the delay time experienced by both operating systems, all packet sizes in Ubuntu had
lower amount of delay time compared to Windows server 2008.

In 6TO4 throughput, both operating systems had a close range of throughput time except at
time 256, 640, 1280 and 1408, where windows server 2008 had lower throughput time with a
difference of 1.32, 4.52, 7.38 and 6.72 respectively compared to Ubuntu.

In 6 to 4 TCP Jitter and UDP jitter, Ubuntu had lower jitter time compared to windows server
2008 but for all other packet sizes windows server 2008 recorded lower amount of jitter time.

Furthermore, In 6to4 TCP and UDP delay, there was a very high difference between the delay
experienced by windows server 2008 and Ubuntu. Ubuntu experienced very low amount of delay
time compared to windows server 2008 that experienced very high delay time (Narayan and Tauch,
2010); (Chandra and Lalitha, 2015). The line graph was also similar for both operating systems.

In this study, implementing configured tunnel is better in Ubuntu than in windows operating
system as it shows much better performance on linux. The research work has been able to establish
configured tunnel mechanisms using some metrics to compare the performance of two operating
systems.

CONCLUSION
The aim of this paper is to evaluate the performance of IPv4 and IPv6 on Microsoft operating

system and Linux operating system using two transition mechanisms. The performance
measurement was examined on two types of transmission protocols namely: TCP (Transmission
Control Protocol) and also UDP (User Datagram Protocol). The performance metrics used are
throughput, delay, jitter, CPU utilization and they were used over a range of bytes.

After the successful completion of the experimental design and network setup, this paper was
able to show:

[1] The evaluation of the performance of IPv4 and IPv6 on Microsoft operating system and
Linux operating system also depends on the transition mechanisms being used. For example, 6to4
and configured tunnel perform better on Linux than on Microsoft operating system.

[2] TCP is better for smaller packet sizes while UDP is better for larger packet sizes.

A good and clear knowledge of the understanding of the transition mechanisms is necessary
for a better understanding of this work.

Further research can also be done for this paper because there are lots of other transition
mechanisms and performance metrics that can be used for performance evaluation such as: Dual
Stack, 4over 6 tunnels, NAT-PT.

In order to carry out a proper research on this topic, there is a need to be in an environment
where IPv4 are IPv6 are being used for further evaluation of this work.

References
1. Ogunde, A. (2015). Lecture on Introduction to Data Communication. Personal Collection of A.

Ogunde, Redeemer's University, Ede, Nigeria.
2. Lammle, T. (2013). CCNA: Routing and Switching. Study Guide.
3. Sotharith, T. (2010). Performance Evaluation of IP version 4 and IP version 6 transitions

mechanisms on various operating Systems (Master's thesis, UNITEC Institute of Technology,
Auckland, New Zealand).

GESJ: Computer Science and Telecommunications 2016|No.4(50)
ISSN 1512-1232

 113

4. Govil, J. (2007). On the investigation of transactional and interoperability issues between IPv4
and IPv6.Proceedings of the 2007 IEEE International Conference on Electro/Information
Technology (pp. 604-609). Washington: IEEE Computer Society.

5. Davies, J. (2008). Understanding IPv6 (2nd Ed.). Washington: Microsoft Press.
6. Blum, R. (2003).Network performance open source toolkit: Using Netperf, tcptrace, NIST Net,

and SSFNet. Indianapolis: Wiley.
7. SourceForge. (2009). Iperf. Retrieved March 23, 2016, from http://iperf.sourceforge.net
8. Soorty B. and Sarkar N (2013), Quantifying TCP Performance for IPv6 in Linux-Based Server

Operating Systems, Cyber Journals: Multidisciplinary Journals in Science and Technology,
Journal of Selected Areas in Telecommunications (JSAT),Volume 3, Issue 11.

9. Kolahi S. and Soorty B.(2011) "Evaluation of Gigabit Ethernet Local Area Networks in
Windows Vista-Server 2008 Environment," in IEEE Workshops of Int. Conf. Advanced
Information Networking and Applications (AINA), pp. 308-312.

10. Narayan S. and Tauch S.(2010), “IPv4-v6 Transition Mechanisms network Performance
Evaluation on Operating Systems”, IEEE 2nd International Conference on Signal Processing
Systems and Applications (ICSPS) .

11. Chandra A. and Lalitha K. (2015), IPv4 to IPv6 Network Migration and Co-Existence,
International Research Journal of Engineering and Technology (IRJET), Vol 2, Issue 2.

Article received: 2016-10-21

	2.0 Related Works
	2.1 TRANSITION MECHANISMS
	2.2. PERFORMANCE MEASUREMENT TOOLS
	ALGORITHM FOR THROUGHPUT
	3.1 CONFIGURED TUNNEL MECHANISM ON WINDOWS SERVER 2008
	3.2 6TO4 MECHANISM ON UBUNTU
	NETWORK DESIGN
	GRAPHICAL USER INTERFACE
	DATA ANALYSIS
	CONCLUSION

