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Abstract 
The oldest problem of quantum field theory - the asymptotic behavior at large momenta 
(or, at short-distances) we discussed and present our  results of the investigation of 
asymptotical behavior of amplitude at short distances in four-dimensional scalar field 
theory. To formulate of our calculating model two-particle approximation of the mean-
field expansion we have used an iteration scheme of solution of the Schwinger-Dyson 
equations with the fermion bilocal source. We have considered the nonlinear integral 
equations in deep-inelastic region of momenta. As result we have a non-trivial behavior 
of amplitude at large momenta: searched the location of non-physical poles (poles Lan-
dau) in amplitude at different coupling constants. 

 
1. Introduction. As well known, Quantum Field Theory (QFT) –the theory of relativistic 

particle physics is the advanced version of the relativistic Quantum Mechanics[1]. QFT describes 
the properties and interactions of fundamental particles of matter, for example, electrons, photons, 
quarks and gluons, which are composed of other material objects. For example, a hydrogen atom is 
a bound state of an electron and proton interacting with an electromagnetic field (photons), and the 
proton, in turn, consists of quarks, interacting via gluons. The main characteristics include particle 
rest mass m, energy E and momentum p, which are interconnected by the known relation: 

42222 cmcpE =− , which is satisfied in any inertial reference frame. Here c - light speed in  the 
vacuum. In the rest system of the particle ( 0=p ) this ratio turns to the text 
color{magenta}{Einstein}'s famous formula: 2mcE = . If the relative momenta of the particles and 
their interaction energies are small compared to the rest mass, the motion of particles is described 
by quantum mechanics: each particle is mapped to the wave function ψ , which is the solution of 
the Schrödinger equation. Increasing the interaction energies, the usual quantum-mechanical 
description of particles becomes inapplicable, since there is a new physical phenomenon: creation 
and annihilation of particles. For example, during the scattering of high-energy photon ( −γ quant) 
at the nuclei electrons and their antiparticles – positrons are produced. In turn, the electron and 
positron can annihilate, i.e. turn into photons. With further increase of the interaction energy more 
and more particles can be borne. The number of a new particles known today exceeds the hundreds. 
To describe the systems with a variable number of high-energy particles each class of fundamental 
particles is connected with quantized field, which consists the creation and annihilation operators of 
particles. Quantized field of the electron ψ  is no longer the usual generalized function in quantum 
mechanics, and much more complex object - as operator's (operators-like generalized function). 
Such a quantized field describes, in general, all the particles of the class, i.e, electronic field 
describes all the electrons in the universe, the photon (electromagnetic field) - all photons, etc. The 
particles are divided into two categories - real particles existing in the initial and final stages of the 
physical process hysical and virtual, particles, which play a role only in the process of interaction 
between the particles. For real particles the usual relativistic relation between energy and 



GESJ: Physics 2016 | No.2(16) 
ISSN 1512-1461 

 

 39 

momentum is valid. In high-energy physics so-called natural system of units is commonly used in 
which of light speed c  and Planck’s constant   equal to one: .1== c  In this system of units using 
conventional 4-vector notation of relativistic mechanics ( ) Epppp == 00 ,,  , the ratio between the 

momentum and energy of real particles takes the simple form: 222
0

2 mppp =−=  . As physicists 
say, the real particles are on the mass shell.  For virtual particles, this relation is not satisfied: 

22 mp ≠  i. e., virtual particles are off the mass shell. As in all physical experiments measured only 
the parameters of the initial and final states, the concept of virtual particles, of course, in no way 
does not violate the law of conservation of energy-momentum[1]. 

It is well known, that in  QFT the basic mathematical objects of calculations are vacuum 
expectation values of products of fields ( ) ( ) ( ) 0...0 21 nxxxT ψψψ . Here 0 - the vacuum state, i.e. 
state without real particles - 4-vector ( )xxx ,0=  coordinates in the usual 4-dimensional space-time. 
Sign T indicates the chronological ordering of the field operators, i.e field operators are arranged in 
ascending order of time coordinates. Introduction of chronological ordering is necessary in order to 
take into account the principle of causality, i.e the correct sequence of events describing the 
particles interactions[1]. 

Knowing the vacuum expectation values, we can calculate all the physical characteristics of 
both the fundamental particles and composed of these objects, i.e., - masses of the particles and 
bound states, scattering cross sections, lifetimes of unstable particles, etc. Briefly theorists call the 
vacuum expectation values of products of fields Green's functions[1]. 

The simplest physically meaningful Green's function is the two-point Green's function, or 
propagator (particles propagation function): ( ) ( ) ( ) 00 yxTyxD ψψ=− . Propagator depends only on 
a 4-dimensional variable yx − . This fact is a reflection of the translational invariance of the theory, 
i.e independence of the physical phenomena of the coordinate system[1].  

Simple propagators of the free fields are in momentum space is: 

( ) ( )
22

1)(
pm

xDdxepD c
pxi

c −
≅= ∫ . Note that in this formula p - is not a real particle momentum 

but the momentum variable  Fourier conjugate to coordinate. As can be seen from this expression, 
the propagator has a pole singularity in the momentum variable. This fact is very general and is also 
valid for interacting fields. In other words, in QFT the pole of the Green's function implies the 
existence of a real particle with mass m . Massless particles (e.g, photons) correspond to the pole at 

the point 02 =p , and, accordingly, the propagator of a free photon has the form: ( )
2

1
p

pDc
−

≅ . The 

calculation of the Green's functions in the theory of interacting fields is a very difficult problem. For 
more than half a century, the exact physically meaningful solution of interacting quantum fields was 
not found. Therefore, the various approximate methods are of particular importance, among which 
the most important is the perturbation theory. Green's function of free fields are taken as the main 
approach. Interaction is considered as a small perturbation, which is physically quite reasonable for 
important case of quantum electrodynamics (QED) of interaction of electrons with photons, as the 

strength of interaction in this theory and is determined by the −==
137

1
4

2

π
α e

 a small and expansion 

parameter in the perturbation theory in QED[1].  
By the mid-fifties of the last century, successful theoretical description of most of the well-

known electrodynamic phenomena  was given, including splitting of the electron levels in the 
hydrogen atom, the anomalous magnetic moment of the electron, etc. These successes have led 
theorists to investigate the limits of applicability of QED. In 1954-1955, Landau and his colleagues 
, published the results of their calculations, the asymptotic behavior of the Green functions of QED, 
i.e. behavior for large values of the momentum variable 2p [2]. These results were very strange, and 
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further interpretation led them to a very sad for the QFT. It was found that when 
22 mp >> asymptotic behavior of the photon propagator is described by the following formula:  

( )
1

2

2

2 ln
3

11
−
















 −
−

−
≅

m
p

p
pD

π
α

, i.e., apart from the normal pole at 02 =p  the photon propagator 

has "ghost pole” at α
π3

22 emp −= . In accordance with the foregoing principles of QFT, such a pole 
corresponds to a particle with a ‘negative squared mass’(?!)[2]. Such particles have never been 
observed experimentally, and their very existence contradicts the basic principles of particle 
physics.  Landau pole cannot undo all the successes of QED, is very far from the energies attainable 
in experimental setups. Indeed, the value of ‘Landau mass’ according to the above formula is 

mM L
2810= , while the energy of the particles that can be achieved in the most modern plants do not 

exceed 710 . Therefore, the effect of such a remote pole is negligible. But it exists, and it can not be 
ignored, especially since studies later confirmed the existence of such poles and in other models of 
QFT. There arose a dual and a strange situation. On the one hand, calculations based on 
perturbation theory described well the experimental data and the predictions of QED were always 
confirmed experimentally. On the other hand,  QED was internally inconsistent, as contained in the 
statement of magnitude, the existence of which is contrary to the basic principles of the theory. This 
inner contradiction was inherent and other models of QFT, including models, claiming at the time 
to describe strong interactions[1,2]. 

Landau himself assessed the situation very pessimistic and made a very definitive conclusion: 
"Operators ψ  containing unobservable information should disappear from the theory; and because 
the Hamiltonian can be built only from the operators, we need to come to the conclusion that the 
Hamiltonian  method for strong interactions outlived its usefulness and should be buried, of course, 
with all the respect it deserves"[3]. In fact, Landau called completely abandons the concept of 
quantized fields in the describing of the interaction of high-energy particles. Instead, he proposed 
the creation of a new theory, which uses only the scattering amplitude and their analytic 
continuation. But the heroic efforts of many theorists to create this kind of theory, taken in the 
following years, unfortunately, yielded modest results. It turned out that the information contained 
in the field operators and compiled out of  Lagrangians and Hamiltonians, replace virtually nothing. 
Remained the other way - to try to solve the problem within the framework of the QFT. But 
Vladimir  Yakovlevich Fainberg from Lebedev Physical Institute (Moscow), listened to the 
personal word of Landau, “such non-physical poles must be reduced counter non-physical pole, in 
the summation of infinite number Feynman diagrams. Is reasonable: appropriate to look for a new 
nonperturbative approach!, i.e., a new method for summing Feynman diagrams, necessary!  

A widespread opinion is formulated as a triviality of the quantum field models that is not 
asymptotically free in the sense of the improved coupling constant perturbative expansion. There is 
a rigorous theorem that the four-dimensional scalar field theory with 4ϕ  interaction on the lattice 
does not have an interacting continuum theory as its limit for zero lattice spacing, i.e. the theory is 
trivial. However, this argument is not fully conclusive due to an uncertainty of the continuous limit 
in this model. In our day the situation with triviality of 4ϕ  theory is vague as before, and recent pa-
pers in this topic maintain incompatible statements.  So that in the models without asymptotic free-
dom the asymptotic short-distance region of strong coupling (exactly, concerning to weak coupling) 
is the difficultly at investigation, therefore a standard non-perturbative methods are too tethered to 
the weak-coupling region and not in full enough meaning to describes a short-distances for these 
models. Promising method for solving of problems for large momenta (or, short distances) demon-
strated in works by Rochev [4]. It is new approximation in this directing and based on iteration 
scheme of solution of the Schwinger-Dyson equation (SDEs) with the fermion bilocal source. The 
present version of this method based on a system of SDEs for the single-particle and two-particle 
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Greens functions. For standard QFT procedure, which is the beyond our knowledge, we will to in-
vestigate the following  nonlinear second order Volterra-type integral equation for amplitude (for 
detail mathematical foundation, see [4]): 

∫++=
t

dytKtl
gty 0

)(),()(1
)(

1 τττ                                            (1) 

2. Numerical realization. For getting of the standard nonlinear second order Volterra-type 
integral equation in the form of  Urysohn [5] make the following change, 

)(
)(

1 tu
ty
= .                                                             (2) 

Then we get  

)())(,,()(
0

tfdutKtu
t

+= ∫ τττ                                                       (3) 

on the segment Tt ≤≤0 , where  
)(

),())(,,(
τ
τττ

u
tKutK = and )(1)( tl

g
tf += . Из (3) видно, что  

)0()0( fu = . From (3) it is seen that )0()0( fu = . Then for every 1>n  integer define a constant 

integration step 
1−

=
n

Th  and consider a discrete set )1( −= ihti , where ni ,...,2,1= . It's obvious 

that Ttt n == ,01 . At the points of itt = ,the equation (3) takes the form 

)())(,,()(
0

i

t

ii tfdutKtu
i

+= ∫ τττ .                                                   (4) 

To obtain an explicit formula for the solution of the recurrence to find )( ii tuu = , the integral 
in the expression (4) using a quadrature formula of rectangles [6] on the segments [ ]1, +ii tt  with the 
selection of the value of the function at the left end itt = . Then we have 
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Label )( ii tff = and using (5) as in [5, 6] we obtain the relation of recursion formulas 
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Further, from (6) we obtain the solution of equation (1) 
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Example. Let some constant g , and the function ),( τtK  and )(tl  are set as follows 

)1(
)1(log

1
1log11),(

t
tt

tt
tK

+
+

+
+
+

+−=
τ

ττ
τ

ττ , 

.))1log(11)(1()1log()1
2

()( t
t

gtgtl +−−++−=  



GESJ: Physics 2016 | No.2(16) 
ISSN 1512-1461 

 

 42 

By setting different values Tg,  and n  we obtain approximate solutions whose graphs are 
shown below. 

3.Conclution. By decreasing the values of g, Landau "point" mL slowly increases (see Fig.1) 
and in terms of lower than g=0.99, the situation doubles (!) (see Fig.2) for Landau pole, which con-
firms the well known opinion: such non-physical poles must be reduced via counter non-physical 
pole, in the summation of infinite number Feynman diagrams. And less than g=0.1, a non-physical 
pole disappears (see Fig.3). 

Fig.1. 
 

Fig.2. 
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Fig.3. 
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