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Abstract.  
The Schrödinger equation in prolate spheroidal coordinates separates into ordinary-
differential equations in single coordinates; of these direct solutions, two contain 
confluent Heun functions. We derive polynomial solutions of Heun’s confluent equation 
and express Coulomb spheroidal functions in a closed algebraic form. Spheroidal orbitals 
are expressible as hybrids composed of spherical ones corresponding to a degenerate 
level. The contribution of each spherical orbital within a hybrid orbital depends on 
distance R from a nucleus to a dummy centre, and varies substantially with R. The most 
stretched orbitals are either toward a dummy centre having quasi-angular nodes of 
maximum number or in the opposite direction for an orbital having quasi-radial nodes of 
maximum number. For the purpose of direct applications of the wave functions of 
hydrogen in molecular physics, wave functions expressed in spheroidal coordinates are 
the most useful.      
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1. Introduction 
 
      The solution of the Schrödinger equation for the hydrogen atom is of such fundamental 
importance that its solutions must be found in all possible cases. The problem is typically treated in 
spherical polar and paraboloidal coordinates in textbooks of quantum mechanics in physics [1]. The 
solution involves separating the spherical or paraboloidal variables so that the amplitude or wave 
functions are represented as a product of the one-dimensional functions.    
      In addition to spherical polar and paraboloidal coordinates, the Schrödinger equation for the 
hydrogen atom is separable in prolate spheroidal coordinates. An atomic nucleus is located at one 
focus of those spheroidal coordinates; another focus is at distance R from the nucleus. The separation 
yields three equations for the three spatial variables, which become the familiar radial and angular 
equations when R tends to zero; their solutions might hence be called quasi-radial and quasi-angular 
functions. The interest in the solution of the hydrogen atom in spheroidal coordinates arises because it 
is closely related to the so-called two-Coulomb-centre problem (an electron moving in the field of two 
fixed Coulomb centres with charges 1Z  and 2Z ) for which the Schrödinger equation is separable also 
in prolate spheroidal coordinates. In the case in which 1 2 1Z Z= = , i.e. for hydrogen molecular ion 

2H + , the problem was treated by Pauli [2] on the basis of the old Bohr quantum theory before the 
development   of   quantum   mechanics.   Among   the  first  quantum-mechanical considerations, one  
______________ 
*Corresponding author; e-mail address: tamaz.kereselidze@tsu.ge 
treatment of 2H +  was undertaken by Wilson [3,4], who thought that the solutions of the one-
dimensional equations obtained after separation of spheroidal variables in the Schrödinger equation 
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might be represented in a polynomial form. In his paper Teller [5] indicated that, although the 
expansions introduced by Wilson for the solutions converged, these expansions are not representable 
in a polynomial form. Bates and Read [6] undertook a detailed study of 2H + ; for arbitrary 1Z  and 2Z , 
the solution of the problem is found, e.g., in the paper of Power [7]. As the wave functions of the 

1 2Z eZ  system are basic to all molecular physics and quantum chemistry, it becomes evident that 
knowledge of the explicit algebraic expressions for the hydrogenic wave functions in spheroidal 
coordinates is highly desirable. 
      Coulson and Robinson [8] made initial attempts to solve the problem of the hydrogen atom in 
spheroidal coordinates; their important result was a termination of the power series for the one-
dimensional functions and a derivation of Coulomb spheroidal functions (CSF) for some low-lying 
eigenstates in a polynomial form. Cook and Fowler [9] have used these techniques to extend the 
known solutions and study their application to the theory of chemical bonding. They presented 
contour diagrams of CSF at selected values of R . Using the hidden symmetry of the hydrogen atom, 
Sung and Hercshbach [10] derived CSF for eigenstates with 4n ≤  and 4m ≤  ( n  denotes the principal 
quantum number; m  denotes the modulus of the magnetic quantum number). For eigenstates with 

0m = , Coulomb elliptic wave functions are obtained and used for study molecular Rydberg states 

[11]. With a suggested simple and straightforward scheme of calculation [12], CSF are derivable in 
principle for arbitrary eigenstates. Despite substantial progress, a general solution of the problem in 
spheroidal coordinates is lacking, mostly because solutions of the appropriate one-dimensional 
equations were not recognized to be expressible in terms of known special functions. With two 
exceptions [9,10] the graphs of CSF have not been reported.  
      An isolated atom is the only system in which a model based on spherical symmetry would be at all 
realistic. Because the presence of a second attracting centre in a diatomic molecule distorts the field, 
the deviation from spherical symmetry must be taken into account. A theory of the electronic structure 
of diatomic molecules hence requires a set of atomic wave functions that reflect not just the static 
spatial symmetry of an atom but the dynamical properties of atomic orbitals. It is assumed that a lack 
of dynamical properties can be rectified on using hybrid atomic orbitals; the standard approach to their 
use is to take linear combinations of the atomic orbitals. The method is justified a posteriori according 
to a qualitative agreement between, for instance, the hybrid directions and molecular geometry. The 
main weakness of this approach is that hybridization is imposed on an isolated atom in an arbitrary 
way −  the linear transformations used are not seen to emerge in a natural way from the physics of an 
atom in a molecular environment [9].    
      In the present communication we show that two one-dimensional ordinary-differential equations 
obtained after separation of variables in the Schrödinger equation applied to the hydrogen atom in 
prolate spheroidal coordinates are related to Heun’s confluent equation. The quasi-radial and quasi-
angular functions can hence be represented in terms of confluent Heun functions. Our purpose is first 
to discover a direct method of solution of the Schrödinger equation and to obtain the complete set of 
CSF in a closed algebraic form, and second to demonstrate that CSF are hybrid orbitals that reproduce 
the dynamical properties of atomic orbitals, and therefore these functions are the most appropriate 
basic functions for diatomic molecular calculations. We concentrate on the separation and solution of 
the partial-differential equations, making no use of other and sophisticated methods such as using a 
purported hidden symmetry of the hydrogen atom, or a group-theoretical approach. The developed 
method of solution, with the wave functions of the hydrogen atom written in spheroidal coordinates, 
can be included in textbooks of quantum mechanics and quantum chemistry as an example of 
naturally obtained hybrid functions that reflect the dynamical properties of atomic orbitals. The 
graphs of CSF for varied R make visible these dynamical properties.    
      The article is organized as follows. After stating the purpose, we present briefly the basic 
equations in section 2. Section 3 reveals the relation of CSF to confluent Heun functions and presents 
explicit expressions for the introduced functions. Section 4 presents illustrations of spheroidal 
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functions and reveals their properties, before a conclusion in section 5. Atomic units in which 
1e m= = = , are used throughout this article. 

 
  
2. Basic equations 
 
      We consider a general one-electron atom with nuclear charge Z . Because the energy spectrum is 
independent of the system of coordinates in which the electron motion is quantized, the problem 
becomes reduced to the derivation of the amplitude functions. The amplitude function in prolate 
spheroidal coordinates ( ) /a br r Rξ = + , ( ) /a br r Rη = − , arctan( / )y xϕ =  is represented as this product 
of three functions  

                                 ( , , ) ( ) ( ) imX Y e ϕψ ξ η ϕ ξ η ±= ,                                                (1) 
 

in which the quasi-radial ( )X ξ  and quasi-angular ( )Y η  functions depend upon distance R  between 
the foci of spheroidal coordinates; one centre, at left, has charge Z , and another, a dummy centre at 
right, has 0Z = . In the definition of the spheroidal variables, ar  and br  denote the distances of an 
electron from those left and right foci of spheroidal coordinates, respectively. A surface of constant ξ 
is an ellipsoid; a surface of constant η is a hyperboloid. These variables ξ  and η  are thus defined in 
distinct domains 1 ξ≤ < ∞  and  1 1η− ≤ ≤ , with 0 2ϕ π≤ ≤ . 
      Substituting (1) into the Schrödinger equation for one-electron atom, one obtains that ( )X ξ  and 

( )Y η  satisfy these equations  

                               ( ) ( )
2 2

2 2
21 1 0

2 1
d dX ER mZR X

d d
ξ λ ξ ξ

ξ ξ ξ

 
− + + − + − = 

−  
,                    (2a) 

                              ( ) ( )
2 2

2 2
21 1 0

2 1
d dY ER mZR Y

d d
η λ η η

η η η

 
− + − + − − − = 

−  
,                    (2b) 

in which appear separation parameter λ ; 2 2/ 2E Z n= −  is the electron energy in which n  denotes the 
principal quantum number. 
      Equations (2) imply that functions ( ) ( )X W tξ ≡ and ( ) ( )Y W tη ≡ satisfy the same equation with 
distinct domains for the variables 
 

                           ( ) ( )
2 2 2

2 2
2 21 1 0

4 1
d dW Z R mt t ZRt W
dt dt n t

λ
 

− − − − + + = 
−  

.                        (3) 

Representing ( )W t  as 

( ) ( )
( 1)

22 2( ) 1 ( ),
ZR t m

nW t e t t t ξ
−

−
= − Φ =                                      (4a) 

                                   ( ) ( )
(1 )

22 2( ) 1 ( ),
ZR t m

nW t e t t t η
+

−
= − Φ =                                      (4b)  

 
and substituting (4a) and (4b) into (3), we obtain an equation for unknown function ( )tΦ  

                               
( ) ( )

2
2 2

2

2

1 2 1 (1 )

( 1) 0.

d ZR dt m t t
n dtdt

ZRm m n m t
n

λ

Φ Φ − − + + −  
 − + + + − − Φ =  

                                       (5) 

The resolution of the problem becomes reduced to the solution of one-dimensional Eq. (5). 
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      In CSF (1) occur spheroidal quantum numbers ( nξ , nη , m ), of which nξ  denotes the number of 
nodes of quasi-radial function ( )n mX

ξ
ξ  in domain [1, )∞ ; nη  denotes the number of nodes of quasi-

angular function ( )n mY
η

η  in domain [-1,1].  

 
 
3. Relation to confluent Heun equation 
 
      In its standard canonical normal form, Heun’s differential equation is expressed as [13-15] 

                             
[

]

2

2( 1)( ) ( 1)( ) ( )

( 1 ) ( 1) ( ) ( ) 0.

dx x x c x x dx x
dx

da b c d x x abx x
dx

µ µ µ

α χ

 − − + − − + −


+ + + − − − + − =


                              (6) 

This equation has three regular singularities 0x = , 1x = , x µ=  and one irregular singularity x = ∞ ; a , 
b , c , d  are local parameters; µ  is a scaling parameter that determines the  location of one singular 
point; α  is an accessory parameter that typically plays a role of spectral parameter. 
       Heun’s singly confluent equation is obtained from general Heun Eq. (6) through confluence −  a 
coalescence of two singularities, implemented on redefining parameters and taking limits. Coalescing 
singular points 0x =  and x = ∞ , with 1 /µ ε= , /b p ε= , /α β ε= , 0ε → , p µ= , aβ = , we obtain 
[14,15] 

                         [ ] ( )
2

2( 1) ( 1) ( 1) ( ) 0.d dx x c x dx x x a x x
dxdx

µ µ α χ
  − + − + − − − − = 
  

                  (7) 

 
Performing Möbius transformation x t→  with 2 1t x= − , Heun’s confluent Eq. (7) becomes expressed 
as [15] 

                        ( ) ( ) ( )
2

2 2
2(1 ) 1 1 ( ) 0.

2 2
d d at c d t c d t t t

dtdt
µ µα χ

     − − + − + + − − − + =         
          (8) 

Assuming that 
                                       1a n m= − + + , 
                                      1c d m= = + ,                                                                                                    (9) 
                                      2 /ZR nµ = ,                                           
                                      2 ( 1) /m m ZR n m nα λ= + + − − − , 
 
Eq. (8) converts into Eq. (5). The solutions of confluent Heun Eq. (8) with parameters defined in Eq. 
(9) should hence coincide with the solutions of Eq. (5), ( )( )t xχΦ =  in which ( 1) / 2x t= + .    
      For any singular points 0x = , 1x =  and x = ∞ , two solutions of Eq. (7) exist and are characterized 
by the particular behaviour at these singular points [15]. As shown in [1], the solution of Eq. (5) is 
expected to be polynomial; we hence seek the solution of Heun’s confluent Eq. (7) in a polynomial 
form. Near singular point x = 0, the regular solution is represented as an expansion in a power series, 

                                         0
0

( ) , 1, ( 1) / 2.
s

i
i

i
x g x g x tχ

=
= = = +∑                                       (10) 

Here s defines the degree of the polynomial and ig  are polynomial coefficients that depend on R. For 
the non-polynomial solutions of Eq. (7), the algorithm of the calculation is discussed elsewhere 
[14,15]. 
      For polynomial (10) to be a solution of Eq. (7), the coefficients in (10) must satisfy a three-term 
recurrence relation [15] 
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              ( ) ( )1 1( 1)( ) 1 1 0i i ii i c g i i c d g i a gµ α µ+ − + + − + + + − + + + − =  .                 (11) 
When parameters a , c , d , µ  and accessory parameter α  are defined with Eq. (9), Eq. (11) 
transforms into this three-term recurrence relation 

                               
( )( ) ( ) ( )

( )

1

1

1 1 1 2 1

2 22 1 0,

i

i i

ZRi i m g n m s m s h
n

ZR ZRi i m g n m i g
n n

+

−

+ + + + − − + + + −
 − + + + − − − = 

 

                         (12) 

in which the relation of h  to λ  is ( )( 1)h m s m sλ= + + + + . Recurrence relation (12) determines the 
polynomial coefficients in (10) and yields an equation for new separation parameter h . When 0R → , 
(12) transforms into a two-term recurrence relation that leads to the well-known solutions [1] of the 
radial and angular equations.   
      When s = 0, (10) is a polynomial of degree zero; recurrence relation (12) converts into the 
equation ( / )( 1) 0ZR n n m h− − − = . To satisfy this equation for arbitrary R, conditions 1n m= +  and 

0h =  must be fulfilled; we accordingly obtain one spheroidal function n n mξ η
ψ  with quantum numbers 

0n nξ η= = . When s = 1, (10) converts into a polynomial of first degree; recurrence relation (12) yields 
a quadratic equation for h , which has two real and distinct roots, 1 2h h< . As a result, we derive two 
spheroidal functions 01mψ  ( 1h h= ) and 10mψ  ( 2h h= ) with 2n m= + .      When s = 2, (10) converts into 
a polynomial of second degree; recurrence relation (12) yields a cubic equation for h , which has three 
real and distinct roots, 1 2 3h h h< < . We obtain three spheroidal functions 02mψ  ( 1h h= ), 11mψ  ( 2h h= ) 
and 20mψ  ( 3h h= ) with 3n m= + . When s  = 3, (10) converts into a polynomial of third degree and 
(12) yields an equation of fourth degree for h , which has four real and distinct roots, 1 2 3 4h h h h< < < . 
The corresponding spheroidal functions are: 03mψ  ( 1h h= ), 12mψ  ( 2h h= ), 21mψ  ( 3h h= ) and 30mψ  
( 4h h= ) with 4n m= + . Polynomials of fourth, fifth… degrees and the equations for appropriate 
separation parameters are readily evaluated. For given n  and m , h  is thus a solution of an equation of 
order ( n m− ) that has ( n m− ) real and distinct roots.  
      To summarize the above results, we state that, for given m  and s  ( 1 0,1,2,s n m≡ − − = ) the CSF 
are expressible as  

            
( )

2 22 2

0 0

1 1( 1)(1 )
2 2

ZR m i js s
imn

n n m n n m i j
i j

C e g g e
ξ η ξ η

ξ η
ϕξ ηψ ξ η

+
− ±

= =

+ +    = − −         
∑ ∑ ,            (13)                 

in which  
                                           0 1g = , 

               
( )( ) ( )

( )

1

2

1 1 2 2 2
( 1)

2 2 . ( 1,2, )

i i

i

ZRg h s i m s i s i g
i m n

ZRs i g i s
n

−

−

 = − + − + + − + − +  
 + + − =  



                       (14) 

 
Here h  is solution of the algebraic equation of order ( n m− )     
                                         

                1
2 0, ( 0,1, )s s

ZR ZRh s g g s
n n −

 + + = = 
 

                                          (15)    

 
and n n mC

ξ η
 is a normalizing factor.   

      We proceed to establish the relations between quantum numbers nξ , nη , m  used to specify the 
electronic states in the general case (with R finite and nonzero) and spherical quantum numbers 
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n , l , m and paraboloidal quantum numbers 1n , 2n , m  describing the hydrogenic states at R = 0 and 
R →∞ , respectively. Employing that the number of nodal surfaces of ( )n mX

ξ
ξ  and ( )n mY

η
ξ  functions 

is conserved as R varies [16], we obtain that 11n l n nξ− − = =  and 2l m n nη− = = . The spheroidal 
quantum numbers corresponding to degenerate states with given n  and m  are hence related according 
to a condition that 1n n n mξ η= + + + . 
      Spheroidal functions (13) correspond to a location of a nucleus at the left centre of spheroidal 
coordinates ( 1ξ = , 1η = − ). For a nucleus located at the right centre ( 1ξ = , 1η = ), the quasi-radial 
function ( )n mX

ξ
ξ  remains unchanged, whereas η η→ −  (or equivalently a br r 

 ) in the quasi-angular 

function ( )n mY
η

η . We thus obtain that Eqs. (13) - (15) define a set of CSF on each centre of spheroidal 

coordinates for the description of localized bonds.  
 
 
4. Properties of Coulomb spheroidal functions 
 
      CSF (13) with varied m  are orthogonal because of factor exp( )imϕ± . Functions ( )n mX

ξ
ξ  and 

( )n mY
η

η  are defined with Eq. (5), in which separation parameter λ  plays the role of an eigenvalue. The 

solutions of this equation corresponding to a degenerate level with given n  and m are hence mutually 
orthogonal, provided only that λ  are distinct. We recall from section 3 that h , and accordingly λ , are 

all real and distinct. Hence ' 0n mn mX X
ξξ

=  and ' 0n mn mY Y
ηη

=  if ' 'n n n nξ η ξ η+ = +  and 'n nξ ξ≠ , 

'n nη η≠ .  
      Spheroidal functions ( , , )n n mξ η

ψ ξ η ϕ  are representable as linear combinations of Coulomb spherical 

functions ( , , )nlm a ar ϑ ϕΨ . This result is achievable on representing br  as 2 2 1/2( 2 cos )b a a ar r r R Rϑ= − + , 
in which aϑ  denotes the angle between radius vector ar

  and polar axis z , and on representing 
spheroidal coordinates ( ) /a br r Rξ = +  and ( ) /a br r Rη = −  through spherical ones ( , ,a ar ϑ ϕ ) in 

( , , )n n mξ η
ψ ξ η ϕ . Performing the appropriate calculation, we obtain that, at all separations, 

( , , )n n mξ η
ψ ξ η ϕ  is a linear combination of spherical functions ( , , )nlm a ar ϑ ϕΨ  with principal quantum 

number 1n n n mξ η= + + +  and orbital quantum number l m= , 1m + ,… 1n − . The normalized 
spheroidal functions are thus expressible as   

                                    
1

( ) ( , , )
n

n n m nlm nlm a a
l m

A R r
ξ η

ψ ϑ ϕ
−

=
= Ψ∑ ,                                               (16) 

in which expansion coefficients nlmA  are related with a condition 2 1nlml m A= =∑ . When 0R → , one 
expansion coefficient is equal to unity in (16) whereas the  others tend to zero. When R →∞ , 
spheroidal function n n mξ η

ψ  converts into paraboloidal function 
1 2n n mψ  with 1n nξ=  and 2n nη= . 

Equation (16) accordingly transforms into the relation between Coulomb paraboloidal and Coulomb 
spherical functions [1]. In this limit, we hence write that 1 2 1 2( )nlmA j j lmµ µ∞ = 〈  in which 

1 2 ( 1) / 2j j n= = − , 1 ( ) / 2m n nξ ηµ = + − ,  2 ( ) / 2m n nξ ηµ = − + ; 1 2 1 2j j lmµ µ〈  is a Clebsch-Gordan 
coefficient. At arbitrary separation R  and with 3n m− ≤ , explicit expressions for n n mξ η

ψ  are presented 

in the appendix. We thus obtain that, with the exception of 00mψ , the introduced CSF are hybrid 
functions composed of Coulomb spherical functions nlmΨ  corresponding to the degenerate level 
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with 2 2/ 2nE Z n= −  and 1n n n mξ η= + + + . In (16), the hybridization coefficients are determined 
uniquely by distance R from a nucleus to a dummy centre. 
      The expression for the probability density is obtained from Eq. (16). Taking into account that 
spherical function nlmΨ  is a product of radial function ( )nl aR r  and spherical harmonic ( , )lm aY ϑ ϕ , we 
derive 

                    ' ' '
'

1
*

,
( , ) ( ) ( ) ( , ) ( , )

n

n n m a a nlm nl a a lm a anl m nl l m
l l m

r A A R r R r Y Y
ξ η

ρ ϑ ϑ ϕ ϑ ϕ
−

=

= ∑ .             (17) 

The radial and angular probability densities are derived on integrating (17) over either spherical angles 
aϑ  and ϕ  or radius ar , which gives 

                                      
1

2 2( ) ( )
n

n n m a nlm nl a
l m

r A R r
ξ η

ρ
−

=
= ∑ ,                                                (18)  

for radial density and  

                                   
21

2( ) ( , )
n

n n m a nlm lm a
l m

A Y
ξ η

ρ ϑ ϑ ϕ
−

=
= ∑ ,                                          (19) 

for angular density, respectively. 
      An important property that follows from Eq. (17) is that the contribution of each spherical orbital 
to a spheroidal one depends on distance R from the nucleus to the dummy centre, and varies 
appreciably with R. The shape of hybrid orbital n n mξ η

ψ  with 0n nξ η+ >  depends in turn on the location 

of the dummy centre. As a graphic illustration of this dependence, we display the probability density 
( , )n n m a ar

ξ η
ρ ϑ  with ar  fixed and distance R increasing along axis z  from the spherical polar limit at R 

= 0 to the paraboloidal limit as R →∞ . To reveal the stretching effect, we take ar  to be equal to the 
size of shell nr  of the hydrogenic state under consideration, i.e. 2 /a nr r n Z=   in ( , )n n m a ar

ξ η
ρ ϑ . 

Figures 1-5 are polar plots of angular probability density for spheroidal hybrid orbitals with 0m = , 
3n nξ η+ ≤  and 1Z = .   

      Figure 1 shows that, at R = 0, the shape of spheroidal orbital 010ψ  coincides with the shape of 
spherical polar orbital 2 0pΨ . When R increases, this shape alters such that the negative lobe contracts 
monotonically along axis z, whereas the positive lobe expands along axis z; when R exceeds 

2 / 4ar n Z= = , the positive lobe contracts slightly. When 1R  , the negative lobe is much smaller 
than the positive lobe. When R →∞ , the shape of spheroidal orbital 010ψ  resembles strongly the shape 
of paraboloidal orbital with quantum numbers 1 0n =  and 2 1n = . 
      At 0R = , the shape of spheroidal orbital 100ψ  has central symmetry as shown in Fig. 2, and 
coincides with the shape of spherical polar orbital Ψ2s. When R increases, the spheroidal orbital 100ψ  
has its centre clearly displaced along negative axis z . When 1R  , the shape of spheroidal orbital 

100ψ  resembles strongly the shape of paraboloidal orbital with quantum numbers 1 1n =  and 2 0n = . 
According to Figs. 1 and 2, at 1R   the shapes of spheroidal orbitals 010ψ  an 100ψ  are practically 
identical, but oriented oppositely along axis z . 
      Figures 3, 4 and 5 show the angular probability density for spheroidal hybrid orbitals 020ψ , 200ψ  
and 030ψ  as distance R increases from 0R =  to 1R  . At 0R = , the shapes of these spheroidal orbitals 
coincide with the shape of spherical orbitals 3 0dΨ , Ψ3s and 4 0fΨ . When 1R  , the shapes of 
spheroidal orbitals 020ψ , 200ψ  and 030ψ  resemble strongly the shapes of paraboloidal orbitals with 
quantum numbers ( 1 0n = , 2 2n = ), ( 1 2n = , 2 0n = ) and ( 1 0n = , 2 3n = ), respectively. Other tendencies 
analogous to those shown in Figs. 1 and 2 are also observable in Figs. 3-5.  
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      For the angular probability density when ar  is much less than the size of the shell, i.e. when 
2 /ar n Z  in ( , )n n m a ar

ξ η
ρ ϑ , we refrain from presenting the appropriate angular probability density 

because the transformation of shapes is simply opposite to that when 2 /ar n Z= . Explicitly, when R  
increases from 0R =  to 1R  , the positive lobes contract as the negative lobes expand. As follows 
from Figs. 6 and 7, angular probability density ( , )n n m a ar

ξ η
ρ ϑ  that is integrated over radius ar  is 

equally squeezed or stretched along positive and negative axis z . According to Fig. 6 presented in 
[10], because angular probability distributions are equalized at 0aϑ = , the stretching or squeezing 
effects are unobservable.  
                                   
               
               

 
 
 
 
 

Fig. 1 Polar plots of angular probability density 010 ( , )a arρ ϑ  at 1Z =  and 4ar = . 
Distance R from a nucleus to the dummy centre is 0R =  (red curve), 1R =  (blue 

curve), 5R =  (green curve) and 20R =  (magenta curve). Axis z is horizontal. 
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Fig. 2 As in Fig. 1 but for 100 ( , )a arρ ϑ  at 4ar = . 

 
 

 
Fig. 3 As in Fig. 1 but for 020 ( , )a arρ ϑ  at 9ar = . 
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Fig. 4 As in Fig. 1 but for 200 ( , )a arρ ϑ  at 9ar = . 
 

 
                                   

Fig. 5 As in Fig. 1 but for 030 ( , )a arρ ϑ  at 16ar = . 
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Fig. 6 Polar plots of angular probability density 010 ( )aρ ϑ  at 1Z = . The distance R  from a nucleus to 
the dummy centre is: 0R =  (red curve), 1R =  (blue curve), 5R =  (green curve) and 20R =  (magenta 

curve). The axis z is horizontal. 
 

 
Fig. 7 As in Fig. 6 but for 100 ( )aρ ϑ . 
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5. Conclusion 
 
Our treatment of the hydrogen atom in prolate spheroidal coordinates demonstrates that the Coulomb 
spheroidal functions are related to the solutions of Heun’s confluent equation, which enables us to 
present CSF in a closed algebraic form. Unlike hydrogen molecular ion 2H + , for which the wave 
functions are not expressible in a polynomial form, the wave functions for the hydrogen atom in 
spheroidal coordinates are expressible as the polynomial solutions of Heun’s confluent equation. For 
given principal quantum number n  and magnetic quantum number m  the quasi-radial ( )n mX

ξ
ξ  and 

quasi-angular ( )n mY
η

η  wave functions are polynomials of order 1n m− − . CSF with different n  and m  

but the same n m−  or n nξ η+  are thus products of two similar polynomials defined in distinct regions 
of variables ξ  and η , as follows from Eq. (13).   
      We explore the properties of spheroidal orbitals; for 0R >  they are hybrid orbitals composed of 
spherical wave functions. An important result is that the angular probability density depends on the 
distance from a nucleus to the dummy centre, and varies substantially with R. For given n  and m, the 
orbital most stretched toward the dummy centre is an orbital with quasi-angular nodes of maximum 
number, whereas the orbital most stretched in the opposite direction is an orbital with quasi-radial 
nodes of maximum number. An orbital with 1n n mη = − −  is hence a bonding orbital, whereas an 
orbital with 1n n mξ = − −  is an antibonding orbital. The characteristic feature of CSF is thus the 
development of preferred directions around an atom, i.e. the bond directions. These features reveal the 
great advantage of a Coulomb spheroidal basis over a Coulomb spherical basis in calculations on 
diatomic molecules. Our calculations [17,18] undertaken for 2H +  show that the similarity of the one- 
and two-Coulomb-centre wave functions in spheroidal coordinates, combined with effective 
convergence properties of CSF, makes the calculated results substantially nearer the exact ones.  

The most striking feature of Rydberg states of long-range diatomic molecules predicted in [19] 
is that some molecular Rydberg states possess large electric-dipolar moments, which, in any long-
lived molecular state, presents a promising opportunity for manipulation and control through the 
application of an electric field. A simple model of these molecules has been elaborated: Rydberg 
states are described with a sum of degenerate Coulomb elliptic wave functions; the attraction between 
a weakly bound electron and a ground-state atom is described with a short-range potential [11]. In this 
way, many qualitative features have been understood. CSF are ideal zero-order functions for the 
investigation of Rydberg states of diatomic molecules and molecular ions. To obtain more precise, 
quantitative results, Rydberg states must be described with CSF; the attraction between a weakly 
bound electron and two atomic cores should be treated using a realistic potential. Other applications of 
CSF are discussed elsewhere [10].   
 

  
Appendix  

 
      Here we represent some spheroidal functions n n mξ η

ψ  in terms of spherical functions nlmΨ :  

                      00 1m m mmψ += Ψ ,                                                                                        (A.1) 

                    
( )

( )

1/22 1
01 1 2 2 1

1/22 2
10 2 2 2 1

1 ( / ) ,

1 ( / )

m m mm m m m

m m mm m m m

nhnh ZR
ZR
nhnh ZR
ZR

ψ

ψ

−
+ + +

−
+ + +

 = + Ψ +Ψ  
 = + Ψ +Ψ  

,                             (A.2) 
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]

1 1
02 02 3 3 1

1

3 2

2 2 3
1 ( 4 6) 1 2

,

m m m mm m m m

m m m

h nhm mC
m h m m ZR

ψ + + +

+ +

 + +
= Ψ + Ψ

+ − − +
+Ψ

 

                   

]

2 2
11 11 3 3 1

2

3 2

2 2 3
1 ( 4 6) 1 2

,

m m m mm m m m

m m m

h nhm mC
m h m m ZR

ψ + + +

+ +

 + +
= Ψ + Ψ

+ − − +
+Ψ

                   (A.3) 

                     

]

3 3
20 20 3 3 1

3

3 2

2 2 3
1 ( 4 6) 1 2

.

m m m mm m m m

m m m

h nhm mC
m h m m ZR

ψ + + +

+ +

 + +
= Ψ + Ψ

+ − − +
+Ψ

 

In (A.2), 1h , 2h  are the solutions of a quadratic equation; in (A.3) 1h , 2h , 3h  are the solutions of a cubic 
equation defined in (15).  
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