Таблица №1

ХАРАКТЕРИСТИКИ БЫСТРЫХ СЦИНТИЛЛЯЦИОННЫХ КРИСТАЛЛОВ (ЧАСТЬ II)

И. Багатурия*, Ю. Тевзадзе**, И Треков**, Б Чиладзе**

*Университет им И. Чавчавадзе

**Институт Физики Высоких Энергий им Джавахишвили Тбилисского Государственного Университета

Аннотация.

Изучаются временные и амплитудные характеристики неорганических сцинтилляторов LYSO — силиката лютеция и GSO — силиката гадолиия и сравниваются с характеристиками других кристаллов, например, BGO — германат висмута. Сцинтилляционные кристаллы (в данном случае LYSO) являются основной частью (вместе с ФЭУ — фотоэлектронным умножителем) ECAL — электромагнитного калориметра. ECAL является основным детектором международного эксперимента COMET — Coherent Muon to Electron Transition [1].

Contact author –I.Tevzadze: iuri.tevzadze@tsu.ge ИФВЭ ТГУ является членом COMET compудничества.

<u>Введение.</u> Характеристики сцинтиляционных кристаллов изучаем с помощью специального стенда (установки), который выделяет из космических лучей μ - мюоны [2]. μ - мюоны взаимодействуют с сцинтиляционным кристаллом. Назначение ECAL — точное измерение энергии электронов из $\mu \rightarrow e$ конверсии. Поэтому ECAL должны собрать из кристаллов с высокими временными и амплитудными характеристиками.

Анализ Экспериментальных Данных

С помощью нашей установки[2] в которой входят: Φ ЭУ – фотоэлектронный умножитель, сцинтиллятор, толстый поглотитель тяжелого металла, который пропускает только μ - мюоны (из космических лучей) и осцилоскоп, изучаем следующие характеристики C_κ - сцинтилляционных кристаллов:

- 1. $U_A[mv]$ амплитуда выходного импульса.
- 2. $\Delta t[nsec]$ ширина импульса на полувысоте.
- 3. τ [*nsec*] время высвечивания.
- 4. LY[photon/MeV] световой выход.
- 5. $R_M[cm]$ радиус Мольер.
- 6. $X_0[cm]$ радиационная длина.

Для наглядности амплитуда импульса и временные характеристики выводятся на экране осцилоскопа и компютера.

Характеристики неорганических сцинтилляционных кристаллов

LY- R_M [cm] Тип $U_A[mv]$ $<\tau>$ [nsec] $\Delta t[nsec]$ Радиус световой выход кристалла время Мольер [photon/MeV] высвечивания LYSO 40 2,07 27000 143±5 2,23 $50^{1}/600^{8}$ [3] 8000-11500 GSO 140 ± 2 3.57 CsI(TI)1280±80 351±12 104±6 5.10(4)BGO2,30 8200 450±38 110±6 400±20

_ LY — световой выход кристалла можно оценить,как: а) абсолютную величину —количество излученных фотонов, когда в кристалле поглощается энергия равная одного MeV , б) относительную величину — излучение NaI(TI)=100. надо отметить, что NaI(TI) имеет большую выходную амплитуду, но τ - время высвечивания равно ~ 230 nsec (медленный кристалл) [3].

Таблица №2

Характеристики неорганических сцинтилляторов (Обозначения "f" и "s" характеризуют быструю и медленную компоненту,

соответственно)

coorbererbeililo)	coorbe respectively						
Кристаллы	LYSO	GSO	CsI(pure)				
$\rho[gr\cdot cm^{-3}]$ плотность	7,40	6,71	4,51				
. $X_0[cm]$ –	1,14	1,38	1,86				
радиационная длина							
R _M [cm] -	2,07	2,23	3,57				
Мольер радиус.							
τ [nsec] - время	40	600°; 56°	35 ^s ; 6 ^s				
высвечивания							
$\Lambda_{\max}[nm]$ –	420	430	420 ^s ; 310 ^f				
длина волны							
световой выход	83	3 ^s ; 30 ^s	3,6 ^s ; 1,1 ^s				
(NaI(TI)=100)							

Таблица №3

Экспериментальные и модельные характеристики кристаллов LYSO и GSO (программа GIANT)

	LYSO		GSO	
τ [ncec] - время	EXP	MOD	EXP	MOD
высвечивания	40	47	50 ^f ; 650 ^s	60 ^f ; 420 ^s 87%; 13%
<i>LY</i> (<i>Photon/MeV</i>) световой выход	25000-32000	31000	8000-11500	8400

Кроме того с помощью программы GEANT-4 были оценены t[nsec] - время высвечивания и LY - световой выход для кристаллов LYSO и GSO:

$$\tau(LYSO) \ MOD = 47 \ nsec \ , \ \tau(LYSO) \ EXP = 40 \ nsec.$$
 (1)

Также хорошо согласуются между собой модельные и экспериментальные значения для LY - светового выхода (см. табл. \mathbb{N} 23).

Время высвечивания - τ [nsec] для кристаллов BGO и CsI(TI) (наши данные) хорошо согласуются с литературными данными (см. табл. 1 и [3]).

Рассмотрим другие характеристики C_{κ} - сцинтиляционных кристаллов:

 $R_{\it M}[\it cm]$ — радиус Мольер, характеризующей размер электромагнитного ливня в поперечном направлении определяется так

$$R_M[cm] = 0.027 X_0(Z+1,2)$$
 (2)

где Z — средный заряд кристалла, X_0 - радиационная длина кристалла. характеризующая эффективность поглощения данным веществом γ - квантов, электронов и позитронов.

Мольер радиус LYSO R_M =2,07cm (a R_M (GSO)=2,23cm и R_M (CsI)=3,57cm) (табл.№2).

Радиационная длина $X_{0 \ KPUCTAЛЛа}$ LYSO = 1,14; меньше чем X_{0} для GSO и CsI (см. табл.№2). Именно маленькие значения R_{M} и X_{0} для кристалла LYSO определяет, то что LYSO имеет самый большой световой выход. $LY(LYSO) = 27000 \ Photon/MeV$. Световой выход. LYSO значительно превосходит световые выходы кристаллов BGO и CSO (табл. №1),

 U_A — значения выходных импульсов кристаллов BGO и NaI(TI) не малы, но ихние $\tau[nsec]$ - время высвечивания значительно превосходит $\tau(LYSO)$. Они - BGO и NaI(TI) являются медленными кристаллами [1,3]. (таблица № 1).

$$\pi(LYSO) = 40nsec, \ \pi(BGO) = (450\pm38)nsec, \ \pi(CsI(TI)) = (1280\pm80)nsec$$
 (3)

Как выше было сказано световой выход LYSO

LY(LYSO) = 27000 Photon/MeV. Когда температура растет от 20^{0} до 40^{0} световой выход LYSO уменьшается на 8%. Кристал LYSO обрабатывается легко. Можно изготовить кристаллы LYSO больших размеров и без примесей (что очень важно) в отличие от GSO. Енергетическое и временное разрешения кристалла LYSO гораздо лучше, чем те же величины для BGO [3].

Энергетическое разрешение BGO равно 22% (а для LYSO 12%). Временное разрешение для BGO равно 9,2nsec (а для LYSO -- 1,15nsec).

Если кристалл LYSO завернут тефлоновой лентой, то коэффициент отражения равно 93% -- теряется только 7% фотонов.

Рассмотрим кристалл GSO — силикат гадоллиния, который сам является сцинтиллятором; но его световой выход мал. Световой выход и время высвечивания не зависят от типа налетающего агента (частицы). Изготовление больших кристаллов является проблемой из-за возникновения трещин. GSO самый радяционно стойкий кристалл. Однако производство кристаллов GSO, особенно больших размеров относится к числу наиболее дорогих.

Свойства кристалла BGO — германата висмута , τ - время высвечивания зависит от температуры, когда температура меняется в пределах $(0-40)^0$ градусов значение τ изменяется от $(450-200)nsec.\ LY$ - световоые выходы BGO и GSO приблизительно одинаковы (Таблица Neq 1).

Световой выход BGO — германата висмута может быть сильно повышен путем снижения температуры [1,3]. Достоинством BGO является его хорошие механические свойства при обработке и негигроскопичность. Эффективность регистрации γ -излучения у BGO большая. $\tau(BGO) > \tau(LYSO)$.

Кристаллы йодида цезия - CsI(TI) слабо гигроскопичны, механически легко обрабативается. Материал йодида цезия позволяет изготовливать детекторы самых разнообразных форм и размеров. Время высвечивания - τ состоит из нескольких компонент и довольно большое (в среднем ~ 1300ncec. таблица №1) [3].

Спектр излучения CsI(TI) имеет максимум при $\lambda = 560nm$ т. е. $\lambda^{max} = 560nm$ и сдвинут существенно вправо от максимумов по сравнению с другими кристаллами (напр.

 $\lambda^{max}(NaI(TI))$ =410nm; $\lambda^{max}(GSO)$ =440nm; $\lambda^{max}(BGO)$ =480nm; $\lambda^{max}(LYSO)$ =430nm). По этому среднее значение выходного импульса - $\langle U_A \rangle$ для CsI(TI)=(104±6)mv, что существенно меньше, чем среднее значение выходных импульсов для NaI(TI), BGO и LYSO (1620±100)mv, (400±20)mv, (144,00±3,00)mv соответственно. (см. табл. и рис.)

K числу недостатков CsI(TI) и NaI(TI) относится их довольно высокое послесвечение, - что значительно ограничивает скорость счета.

Неактивированный $CsI \equiv CsI(pure)$. Без добавления талия в йодид цезия, его световой выход уменьшается в 12 раз, но время высвечивания сильно сокращается. Спектр высвечивания кристалла состоит из двух компонент. Их максимумы находятся соответственно, при λ^{max} =310 f и λ^{max} =420 s . Время высвечивания первой компоненты (f) составляет f0 компоненты (f0 составляет f0 компоненты (f0 составляет f0 компоненты изготовления кристалла. Полагают, что эта компонента обусловлена наличием дефектов в структуре кристалла [3].

С понижением температуры LY - световой выход и время высвечивания CsI возрастают и при температуре жидкого азота становятся примерно такими, как и у CsI(TI) 5·10(4) Photon/MeV и 1300nsec [3].

<u>Заключение</u>. Изучение характеристик разных_сцинтилляционных кристаллов (*LYSO*, *CSO*, CsI(TI), CsI(pure) и BGO показал, что оптимальными характеристиками обладают кристаллы LYSO – силиката лютеция; а именно:

- 1. U_A амплитуда выходного импульса = $(144\pm3)mv$,
- 2. τ время высвечивания = 40 nsec,
- 3. LY световой выход = 27000 photon/MeV,
- 4. R_M –Мольер радиус = 2,07cm

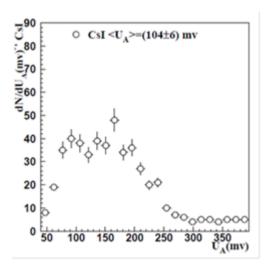


Рис.1. $U_A[mv]$ — амплитуда выходного импульса для CsI(TI)

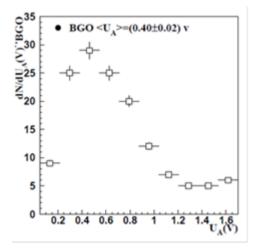


Рис. 2. $U_A[mv]$ — амплитуда выходного импульса для BGO

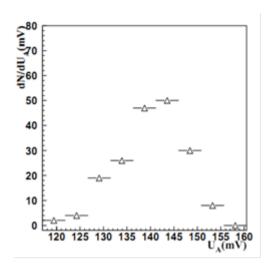


Рис. 3. $U_A[mv]$ – амплитуда выходного импульса для кристалла *LYSO*. $< U_A > = (144\pm3) \ mv$

Литература

- 1. COMET. Phase I. Technikal Design Report. January, 2014.
- 2. Временные и Амплитудные Характеристики Сцинтилляционных Кристалов (ЧастІ) Ю. Багатурия, М. Ниорадзе, Ю. Тевзадзе, И. Треков, Б. Чиладзе, GESJ:Physics 2015.12.07.
- 3. Ю. К. Акимов. Фотонные Методы Регистрации Излучений. Дубна, 2006.
- 4. W. R. Leo. Techniques for Nuclear and Particles Physics Experiment.

Article received: 2017-04-15