UDK 541.123.3+537.226.2

ЧАСТОТНАЯ ДИСПЕРСИЯ ДИЭЛЕКТРИЧЕСКИХ КОЭФФИЦИЕНТОВ И ПРОВОДИМОСТИ МОНОКРИСТАЛЛОВ TIGaS₂<Ni>

Мустафаева С.Н., Керимова Э.М., Абдинбеков С.С., Гаджиева А.А.

Институт физики Национальной Академии наук Азербайджана 1143 Баку, Проспект Г.Джавида 131

Экспериментальные результаты по изучению частотной дисперсии диэлектрических коэффициентов монокристалла $TlGaS_2 < Ni >$ позволили установить природу диэлектрических потерь, механизм переноса заряда, оценить плотность состояний вблизи уровня Ферми, их разброс, среднее время и расстояние прыжков, а также концентрацию глубоких ловушек, ответственных за проводимость на переменном токе. Показано, что за счет легирования монокристалла $TlGaS_2$ никелем можно управлять его диэлектрическими свойствами и ас-проводимостью.

Ключевые слова: монокристалл, диэлектрические свойства, проводимость, локализованные состояния.

The results of high-frequency dielectric measurements on obtained $TlGaS_2 < Ni >$ single crystals provided an opportunity to determine the nature of dielectric losses, the mechanism of charge transport, and also to evaluate the density of states at the Fermi level; the average time of charge carrier hopping between localized states, average hopping distance, scattering of trap states near the Fermi level; concentration of deep traps determining the ac conductivity of the crystals. It was shown that doping of $TlGaS_2$ single crystals with Ni allows to control their dielectric properties and acconductivity.

Keywords: single crystal, dielectric properties, conductivity, localized states.

1. Введение

Монокристаллы TlGaS₂, обладающие слоистой структурой и характеризующиеся высокой фоточувствительностью и оптической прозрачностью, являются перспективными материалами для возможных применений в фотоприемниках, фотопреобразователях, детекторах импульсного лазерного излучения и рентгенрегистрирующих устройствах[1-6].

Изучение электрических свойств слоистых монокристаллов TlGaS₂ на постоянном [1] и переменном температурах T < 200 K токе [2] показало, что при частотах f = И $5 \cdot 10^4 - 10^6$ Гш место прыжковая В них имеет dc- и ас-проводимость по локализованным вблизи уровня Ферми состояниям. Было показано, что результаты изучения dc- и ас-проводимости кристаллов TlGaS2, взятых из одной технологической партии, хорошо согласуются друг с другом. В силу своей слоистости монокристаллы TlGaS₂ склонны к политипизму, поэтому физические параметры этих кристаллов, взятых из разных технологических партий, не всегда согласуются друг с другом.

В предыдущих работах [2–6] были изучены диэлектрические свойства как специально не легированных слоистых монокристаллов $TlGaS_2$ [2], так и легированных переходными металлами, в частности, хромом [3], марганцем [4], кобальтом [5,6]. Было показано, что частичное замещение галлия в монокристаллах $TlGaS_2$ переходными металлами приводит к существенному изменению диэлектрических коэффициентов полученных монокристаллов и изменяет в них природу диэлектрических потерь.

В настоящей работе приведены результаты изучения влияния частичного замещения галлия никелем в монокристалле TlGaS₂ на диэлектрические свойства и электропроводность полученных монокристаллов, измеренных на переменном токе.

2. Методика эксперимента

Для получения гомогенных образцов TlGaS₂<Ni> (процентное содержание никеля в кристаллах взято равным 1 мол. %) использован метод прямого синтеза исходных компонентов. Монокристаллы TlGaS₂<Ni> выращены методом Бриджмена.

Диэлектрические коэффициенты монокристаллов TlGaS₂<Ni> измерены резонансным методом [7]. Диапазон частот переменного электрического поля составлял $5 \cdot 10^4$ – $3.5 \cdot 10^7$ Гц.

Образцы из TlGaS₂<Ni> для электрических измерений были изготовлены в виде плоских конденсаторов, плоскость которых была перпендикулярна кристаллографической С-оси кристалла. В качестве электродов использована серебряная паста. Толщина монокристаллических образцов из TlGaS₂<Ni> составляла 400 мкм, а площадь обкладок – $7.2 \cdot 10^{-2}$ см².

Все диэлектрические измерения проведены при 300 К. Воспроизводимость положения резонанса составляла по емкости ± 0.2 пФ, а по добротности (Q = 1/tgδ) $\pm 1.0-1.5$ деления шкалы. При этом наибольшие отклонения от средних значений составляли 3 – 4 % для ϵ и 7 % для tgδ.

3. Результаты и их обсуждение

На рис. 1 приведены частотные зависимости диэлектрической проницаемости (є) образцов TlGaS₂ и TlGaS₂<Ni>. Из рис. 1 видно, что в TlGaS₂ (кривая 1) во всем изученном диапазоне частот существенной дисперсии є не наблюдается. Легирование кристалла TlGaS₂ никелем приводит к заметной диэлектрической дисперсии (рис.1, кривая 2). Так, в TlGaS₂<Ni> с изменением частоты от $5 \cdot 10^4$ до $3.5 \cdot 10^7$ Гц значение є уменьшалось от 46.5 до 34.

Наблюдаемое в экспериментах монотонное уменьшение диэлектрической проницаемости монокристалла TlGaS₂<Ni> с ростом частоты от $5 \cdot 10^4$ до $3.5 \cdot 10^7$ Гц (рис. 1, кривая 2) свидетельствует о релаксационной дисперсии [8]. Частичное замещение галлия никелем в TlGaS₂ приводило к заметному увеличению є; так при f = $5 \cdot 10^4$ Гц значение є TlGaS₂<Ni> в два раза превышало значение є TlGaS₂.

Значения тангенса угла диэлектрических потерь (tgδ) изученных монокристаллов TlGaS₂<Ni> существенно превышали значения tgδ в TlGaS₂ (табл.1). Гиперболический спад tgδ с увеличением частоты в монокристаллах TlGaS₂ и TlGaS₂<Ni> свидетельствует о потерях сквозной проводимости [8]. Однако, при f > 10⁷ Гц в TlGaS₂ и f > 3·10⁷ Гц в TlGaS₂<Ni> спад tgδ сменялся ростом. Этот экспериментальный факт является свидетельством того, что при высоких частотах на фоне потерь на электропроводность начинают проявляться релаксационные потери [8].

Рис.1. Дисперсионные кривые
є(f) для монокристаллов TlGaS $_2$ (1) и TlGaS $_2{<\!Ni\!>}$ (2) при 300 К.

Частота, Гц	$tg\delta \times 10^4$		
	TlGaS ₂	TlGaS ₂ <ni></ni>	
$5 \cdot 10^4$	172	331	
10^{5}	125	281	
$2 \cdot 10^5$	94	221	
$4 \cdot 10^{5}$	88	216	
$8 \cdot 10^5$	78	178	
$1.6 \cdot 10^{6}$	60	157	
$3.2 \cdot 10^{6}$	51	130	
$6 \cdot 10^{6}$	45	110	
107	45	108	
$1.8 \cdot 10^7$	50	107	
$2.4 \cdot 10^7$	52	108	
$3 \cdot 10^{7}$	58	99	
$3.5 \cdot 10^7$	-	105	

Таблица 1. Значения tgб монокристаллов TlGaS $_2$ и TlGaS $_2$ <ni></ni>
в зависимости от частоты

На рис. 2 приведена частотная зависимость ε'' монокристаллов TlGaS₂ (кривая 1) и TlGaS₂<Ni> (кривая 2). В отличие от монокристалла TlGaS₂, в TlGaS₂<Ni> дисперсионная кривая $\varepsilon''(f)$ характеризовалась довольно ощутимым спадом во всей изученной области

5

частот. При f = $5 \cdot 10^4$ Гц значение є" монокристалла TlGaS₂<Ni> почти в 4 раза превышало значение є" нелегированного монокристалла TlGaS₂.

Рис. 2. Частотная зависимость мнимой составляющей комплексной диэлектрической проницаемости монокристаллов TlGaS₂ (1) и TlGaS₂<Ni> (2).

На рис. 3 представлены экспериментальные результаты изучения частотно-зависимой аспроводимости монокристалла TlGaS₂<Ni> (кривая 2) при 300 К. На этом же рисунке для сравнения приведена зависимость $\sigma_{ac}(f)$ для монокристалла TlGaS₂ (кривая 1).

Рис. 3. Частотно-зависимая проводимость монокристаллов TlGaS₂ (1) и TlGaS₂ <Ni> (2) при T = 300 K.

В частотной области 5·10⁴÷2·10⁵ Гц ас-проводимость монокристалла TlGaS₂ изменялась по закону $\sigma_{ac} \sim f^{0.6}$, а при $f = 2 \cdot 10^5 - 2 \cdot 10^7$ Гц $\sigma_{ac} \sim f^{0.8}$. При $f > 2 \cdot 10^7$ Гц имела место квадратичная зависимость $\sigma_{ac} \sim f^{-2}$. Дисперсионная кривая $\sigma_{ac}(f)$ образца TlGaS₂<Ni> также имела три наклона:

$$\sigma_{ac} = \sigma_1 + \sigma_2 + \sigma_3, \tag{1}$$

где $\sigma_1 \sim f^{0.5}$ в интервале частот $f = 5 \cdot 10^4 - 2 \cdot 10^5$ Гц; $\sigma_2 \sim f^{0.8}$ при $f = 2 \cdot 10^5 - 10^7$ Гц и $\sigma_3 \sim f$ при $f > 10^7$ Гц.

Полученный нами закон $\sigma_{ac} \sim f^{0.8}$ свидетельствует о прыжковом механизме переноса заряда по состояниям, локализованным в окрестности уровня Ферми [9]:

$$\sigma_{ac}(f) = \frac{\pi^3}{96} e^2 k T N_F^2 a^5 f \left[\ln \left(\frac{\nu_{ph}}{f} \right) \right]^4, \qquad (2)$$

где е – заряд электрона; k – постоянная Больцмана; N_F – плотность состояний вблизи уровня Ферми; a=1/ α – радиус локализации; α – постоянная спада волновой функции локализованного носителя заряда $\psi \sim e^{-\alpha r}$; v_{ph} – фононная частота.

С помощью формулы (2) по экспериментально найденным значениям $\sigma_{ac}(f)$ вычислили плотность состояний на уровне Ферми. Вычисленное значение N_F для монокристалла TlGaS₂<Ni> составляло $N_F = 1.1 \cdot 10^{19}$ эВ⁻¹·см⁻³. В TlGaS₂ для N_F было получено значение $N_F = 5.9 \cdot 10^{18}$ эВ⁻¹·см⁻³. Т.е. легирование монокристалла TlGaS₂ никелем приводило к двухкратному увеличению плотности состояний вблизи уровня Ферми. При вычислениях N_F для радиуса локализации взято значение a = 14 Å [2]. А значение v_{ph} для TlGaS₂ порядка 10^{12} Гц.

Согласно теории прыжковой проводимости на переменном токе среднее расстояние прыжков (R) определяется по следующей формуле [9]:

$$R = \frac{1}{2\alpha} \ln \left(\frac{\nu_{ph}}{f} \right).$$
(3)

Вычисленное по формуле (3) значение R для монокристалла TlGaS₂<Ni> составляло 86 Å. В TlGaS₂ для R было получено значение 81 Å. Эти значения R примерно в 6 раз превышают среднее расстояние между центрами локализации носителей заряда в монокристаллах TlGaS₂ и TlGaS₂<Ni>. По формуле

$$\tau^{-1} = v_{\rm ph} \cdot \exp(-2\alpha R) \tag{4}$$

определено среднее время прыжков в монокристалле TlGaS₂<Ni>: $\tau = 0.2$ мкс (в TlGaS₂ $\tau = 0.1$ мкс). Формула [9]:

$$\Delta E = \frac{3}{2\pi R^3 \cdot N_F} \tag{5}$$

позволила оценить в TlGaS₂<Ni> энергетический разброс локализованных вблизи уровня Ферми состояний: $\Delta E = 6.6 \cdot 10^{-2}$ эВ. А по формуле:

$$N_t = N_F \cdot \Delta E \tag{6}$$

определена концентрация глубоких ловушек в TlGaS₂<Ni>, ответственных за аспроводимость: $N_t = 7.5 \cdot 10^{17} \text{ см}^{-3}$. Ниже в табл. 2 приведены для сравнения параметры локализованных состояний, определенные из измерений диэлектрических свойств монокристаллов TlGaS₂ и TlGaS₂<Ni> на переменном токе.

Таблица 2. Параметры локализованных состояний в монокристаллах TlGaS₂ и TlGaS₂<Ni>, определенные из высокочастотных диэлектрических измерений (T = 300 K)

ISSN 1512-1461

Кристалл	N_F , э B^{-1} см $^{-3}$	τ, мкс	R, Å	ΔЕ, эВ
TlGaS ₂	$5.9 \cdot 10^{18}$	0.1	81	0.15
TlGaS ₂ <ni></ni>	$1.1 \cdot 10^{19}$	0.2	86	0.066

Из табл. 2 наглядно видно, что легирование монокристалла $TlGaS_2$ никелем приводило к увеличению плотности состояний вблизи уровня Ферми, среднего времени и расстояния прыжков. При этом энергетическая полоса локализованных вблизи уровня Ферми состояний сужалась.

4. Заключение

В слоистых легированных монокристаллах TlGaS₂<Ni> изучена частотная дисперсия тангенса угла диэлектрических потерь (tgδ), действительной (ε) и мнимой (ε") составляющих комплексной диэлектрической проницаемости и ас-проводимости (σ_{ac}) поперек слоев частот f=5·10⁴-3.5·10⁷ Гц. Установлено, что в изученных монокристаллах области В TlGaS₂<Ni> имеет место релаксационная дисперсия. Частичное замещение галлия в монокристаллах TlGaS₂ никелем приводит к модифицированию дисперсионных кривых ε(f) и $\varepsilon''(f)$. При $f = 5 \cdot 10^4 - 3 \cdot 10^7$ Гц в TlGaS₂<Ni> имеют место потери на электропроводность. В f = $2 \cdot 10^5 - 10^7$ Гц диапазоне частот ас-проводимость монокристалла TlGaS₂<Ni> подчинялась закономерности $\sigma_{ac} \sim f^{0.8}$, характерной для прыжкового механизма переноса заряда по локализованным вблизи уровня Ферми состояниям. Оценены плотность (N_F) и разброс (ΔE) состояний, лежащих в окрестности уровня Ферми N_F = $1.1 \cdot 10^{19}$ эB⁻¹·см⁻³ И $\Delta E = 6.6 \cdot 10^{-2}$ эB; среднее время (τ) и расстояние (R) прыжков $\tau = 0.2$ мкс и R = 86 Å.

СПИСОК ЛИТЕРАТУРЫ

- 1. Мустафаева С.Н., Алиев В.А., Асадов М.М. // ФТТ. 1998. Т. 40. № 4. С. 612-615.
- 2. Мустафаева С.Н. // ФТТ. 2004. Т. 46. № 6. С. 979-981.
- 3. Мустафаева С.Н. // Журнал Радиоэлектроники. 2008. № 8. С. 1-8.
- 4. Мустафаева С.Н. // Неорган. Материалы. 2006. Т. 42. № 5. С. 530-533.
- 5. Мустафаева С.Н. // Журнал Радиоэлектроники. 2009. № 4. С. 1-10.
- 6. Mustafaeva S.N. // Book of Abstracts. 16th International Conference on Ternary and Multinary Compounds (ICTMC-16). Technical University Berlin, Germany. Sept. 15-19, 2008. ID:23.
- 7. Мустафаева С.Н. // Все материалы. Энциклопедический справочник. 2016. № 10. С. 74-79.
- 8. Пасынков В.В., Сорокин В.С. Материалы электронной техники. С.Птб.-Москва-Краснодар. 2004..
- 9. Мотт Н.Ф., Дэвис Э.А. Электронные процессы в некристаллических веществах. Москва. Мир. 1974.

Article received 2017-06-29