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Abstract  
This survey explores different aspects of adaptive streaming. It first gives a history of 
adaptive video streaming. It is desirable for users to receive desired or adequate quality 
of experience (QoE), when viewing an online video. ON-OFF traffic patterns associated 
with competing adaptive players is then described. This is a very important area of 
research as it is found that poor user-perceived QoE is experienced by competing 
players as a result of ON-OFF traffic patterns. A set of real-world factors which affect 
the user-perceived QoE as a result of competing players are then investigated. After 
stating the problem and factors that affect adaptive streaming players, this survey paper 
closes with a classification of state of the art adaptive video streaming techniques, 
which try to remedy the problem and some of the factors. 
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1. History of streaming methods 
 

In the past ten years, the Internet has become a standard medium for multimedia delivery. The 
Internet today is prolific with applications that use video data. As a result, a number of video 
streaming services have been established over the past decade. Old-fashioned RTSP streaming 
eventually evolved to HTTP-based streaming protocols. This shift leads to a better user-perceived 
Quality of Experience (QoE). Progressive download uses HTTP as a protocol and succeeded 
traditional streaming. Today, HTTP adaptive video streaming has become the de facto standard. 
Real-time multimedia delivery has tight latency constraints, and data arriving too late is essentially 
useless. To create the illusion of motion, video frames should be played between 24-30 frames per 
second. Efficient media compression creates interdependence between packet contents and codecs, 
so packet losses and late arrivals of video data can be detrimental. When combined with the 
inherent nature of network environments and transport protocol behaviours, effective multimedia 
delivery presents many challenges. The variability in encoded bits per second leads to Variable Bit 
Rate (VBR) video. This is used by the ITU (International Telecommunication Union) H.264 and 
MPEG-4 video coding standards. The VBR encoded video is transmitted into the Internet. Since the 
Internet does not provide a constant, guar-anteed bandwidth for the video stream, the network can 
only support the video bitrate on a best-effort basis. QoS design is the fundamental functionality of 
the next generation IP router to enable differentiated delivery and to guarantee the delivery quality 
for diverse service traffic [1]. 

The importance of Quality of Service (QoS) is parallel with the recent evolution of 
telecommunication networks, which are characterized by a great heterogeneity [2]. All the 
applications that require a specific level of assurance from the network [2], especially Real -time 
video applications have quality-of-service (QoS) requirements [3].The Video streaming is often 
described as “bursty” and this can be attributed to the frame-based nature of video. Video frames 
are transmitted with a particular frame rate [4]. The analysis of a captured traffic from a "head and 
shoulders'' multimedia telephony session shows us that voice and video packets have different 
characteristics. In fact, while voice packets have short and constant size, video packets have long 
and variable size [5]. If the network bandwidth is not sufficient to support the video bitrate, then the 
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decoder at the client-end starts to consume the video data at a greater rate than at which new data is 
being received from the network. The decoder eventually runs out of video data to decode, which 
results in a screen freeze (video stalls or rebuffering events). In order to avoid this consequence 
without having to introduce costly and complex guaranteed bandwidth mechanisms, playout buffers 
and stream switching solutions has become industry standards. In order to avoid buffer under-run, 
the video server has to use an appropriate sending rate. In some of the early work on video 
transport, protocols such as Rate Adaptation Protocol (RAP) [1] and TCP Friendly Rate Control 
(TFRC) [2] were defined on top of the transport layer that put the sender in charge of varying the 
sending rate (and consequently the video rate) based on feedback being received from either the 
network or the receiver, forming a combination of congestion control and flow control. RAP used a 
TCP-like additive in-crease/multiplicative decrease (AIMD) scheme. TFRC uses an additive 
increase/additive decrease (AIAD) scheme to adjust the server’s sending rate by estimating the 
path’s throughput based on TCP square root formula using the path’s Round Trip Time (RTT) and 
packet loss rate. 
 

1.1 Traditional streaming 

Originally, video was streamed using stateful protocols. This became the traditional way of 
streaming. An example of a stateful protocol is Real-Time Streaming Protocol (RTSP). If a client 
wants to request data, it connects to the server. The server continuously monitors the state of the 
client after the connection is made. Communication is maintained using a continuous stream of data 
packets. These packets are sent to the client using either TCP or UDP. Applications run on top of 
transport protocols and real-time multimedia applications ideally trust the transport layer to 
minimize induced delays and deliver data with an appropriate degree of reliability and timeliness. 
Over the years, message-oriented transport proto-cols, such as Stream Control Transmission 
Protocol (SCTP) and Datagram Congestion Control Protocol (DCCP) [4] have been thought 
suitable. Nevertheless, the existence of Network Address Translations (NAT) [5], firewalls, and 
other middleboxes led to a range of known deployment challenges. However, when frames are 
partially or totally lost, UDP connections present less latency. Hence, most early work focused on 
enhancing User Datagram Protocol (UDP) [7] for multimedia delivery.  

On the other hand, although TCP prefers reliability to timeliness and its congestion control 
tends to induce high queuing delays, it traverses any network path that supports regular HTTP-
based communication. Therefore, in recent years TCP has rapidly supplanted UDP as the standard 
for multimedia delivery. The client to server connection stays open until the client disconnects. The 
player state between client and server, for example, stop, play or pause uses RTSP to communicate. 
In traditional streaming, data packets are streamed until the receive buffer is full. If the pause button 
is pressed, the client buffer is filled and the download is interrupted. The server does not resume the 
streaming of the video frames to the client anymore. This only happens when the play button is 
pressed again. 

 
1.2 Progressive download 

 
With stateful protocols memory is allocated dynamically at the server-side to keep 

information about all current connections. State information of connections that died out is cleaned 
up by the system. When there are a lot of client connections to the server some requests may not be 
processed as the server maximum number of clients is exceeded. Together with the increase in 
popularity of video streaming services and the performance issues with stateful protocols, the 
industry moved to stateless protocols to deliver video content to users. Each request is seen as an 
independent transaction in a stateless protocol. The client state is not constantly monitored. Hyper-
text Transfer Protocol (HTTP) is the stateless protocol which is used in most of the modern video 
streaming applications. The HTTP [8] on top of Transmission Control Protocol (TCP) has become 
the primary  
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Figure 1: HTTP Download 

 
protocol for multimedia content delivery over the Internet, also widely known as over-the-top 
(OTT) or Internet Protocol (IP)-based content delivery. HTTP avoids NAT and firewall traversal 
issues and provides reliability and deployment simplicity because of the widely implemented and 
deployed underlying TCP/IP protocol.  

HTTP streaming, cf. Figure 1, uses a fast startup by downloading lowest quality and smallest 
segment first and adjusting its’ rate afterwards. By using HTTP on top of TCP, Dynamic Adaptive 
Streaming over HTTP (DASH) yields the following benefits: 

• Clients use the standard HTTP protocol which provides more ubiquitous reach as HTTP 
traffic can traverse NATs and firewalls [10]. 

• DASH servers are regular commodity Web servers, which significantly reduces the 
operational costs and allow the deployment of caches to improve the performance and 
reduce the network load. 

• A client requests each video chunk independently and maintains the playback session state, 
so servers do not need to track session state. Maintaining session state at the client means 
clients can retrieve video chunks from multiple servers with load-balancing and fault 
tolerance between commodity HTTP servers [11]. 

• Relying on TCP reliability and inter-flow friendliness improves the likelihood that streaming 
traffic consumes only a fair fraction of the network bandwidth when sharing with other 
traffic. 

These advantages enable service providers to leverage existing and significantly cheaper 
HTTP infrastructures. Proprietary commercial systems such as Microsoft’s Smooth Streaming [12], 
Adobe’s HTTP Dynamic Streaming (HDS) [13] or Apple’s HTTP Live Streaming (HLS) [14] 
leverage existing CDNs and proxy caches. 

With progressive download the player takes over. The Web browser requests and receives a 
Meta File (a file describing the object) instead of receiving the entire video or audio file itself, cf. 
Figure 2. The Browser launches the appropriate player and passes it the Meta File. The Player sets 
up a connection with Web Server and downloads or streams the file. Client machines supporting 
HTTP can use progressive HTTP download. The original video file does not need to be downloaded 
completely. Hence, the client can start viewing the file immediately. This is similar to traditional 
streaming. However, there is a difference [15]. During a progressive download, the user can pause a 
video. When this happens, the download of the entire file still continues until the download is 
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completed. With traditional streaming (RTSP), a pause command is sent to the server and the 
download is temporarily interrupted. Thus, progressive download wastes a lot of bandwidth if the 
user decides not to resume the video. 

 
 
 

 
Figure 2: Progressive Download 

 
 
 
1.3 Segmented streaming 

The major disadvantage of progressive download is that a lot of unused data is sent over the 
network when the client decides to interrupt a streaming session. This is discussed in the previous 
section. The industry shifted to segmented streaming to avoid this waste of bandwidth, cf. Figure 3. 
The video file is split into smaller segments (chunks) of a certain length. Usually the segments 
range between 1 and 20 seconds. The segments are stored on the server. The sum of all the 
segments represents the total video for that specific range value, for example, a video may be 
broken up into 2 second and 4 second segments. Thus, there will be 2 second segments that when 
put together will form the entire video and so to for all the 4 second segments. 

For each chunk, the client sends a separate HTTP request to the server. The server responds 
by sending the segment requested to the client. Each request and response for a particular segment 
is unique and standalone. Persistent connections are mostly used. Otherwise, a lot of overhead is 
introduced due to the TCP connection set-up. This is created when a separate connection has to be 
made for each segment request. To receive a next packet the client sends a new HTTP request. If 
the user decides to end or to pause a streaming session, the process is temporarily interrupted. In the 
majority of cases this occurs after the buffer is filled. 
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Figure 3: Segmented Streaming 
 
 

The use of segmented streaming brings along some benefits. For example, when caching 
videos, segments at the beginning of a video are generally requested more than segments at the end. 
This happens as users do not always look at the entire video. The caching algorithm can decide to 
replace segments appearing at the end of the video first, by taking these differences in popularity 
into account. 

 
 
 
1.4 HTTP Adaptive Streaming (HAS) 

In progressive download and segmented streaming, the client receives a video file in a certain 
fixed quality. Different predefined qualities, for example, different bitrates, resolutions, 
quantization, etc...) are present and ready for download. These qualities are stored on the server. A 
decision is made about which quality to request, before the transmission starts. This takes into 
account the available bandwidth and the type of device used to display the video. Once the 
transmission is started, this quality is kept the same during the entire streaming session. There are 
no quality variations in the video sent to the client.  

Variability of the network conditions during a streaming session implies that quality 
adaptation is needed. For example, consider a situation where the client streams a high quality video 
and where the quality cannot be adapted during the session. This can be the result of different 
network effects, for example, TCP long-lived flows [16]. When the bandwidth of the connection to 
the server drops, the segments will not be fully downloaded. Hence, the buffer runs out of video 
play-time. This leads to bothersome freezes in the video playback, which leads to stalling of the 
video. 

A solution to the issue stated above is HTTP Adaptive Streaming (HAS), cf. Figure 4. With 
HAS, the client algorithm dynamically adapts the quality level. This adjustment is based on the 
current  
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Figure 4: Adaptive Video Streaming 

 
 

network conditions. This weaknesses of RTSP, progressive download and regular segmented 
streaming is ad-dressed by HAS. The media content needs to be preprocessed to allow this. The 
media content is split in several small segments of a certain length, as in segmented streaming. Each 
segment is now encoded in a number of predefined qualities. The different versions of the segments 
are then distributed over one or more media servers (HTTP web servers). It is important to note that 
each representation of the segments can be individually decoded. Also, the segment length 
determines the shortest video duration after which a quality adjustment can occur. Usually, this is 2 
seconds in length. 

A major decision-making challenge for the streaming client is which quality level to 
download from the server. This decision is required for each segment requested by the client during 
HAS streaming. However, all operations are transparent to the user as all bitrate selection happens 
behind the scenes. The viewer may notice a slight change in quality as the bitrates change, but no 
action is required on his/her part. Adaptive video streaming employs similar operating standards. 
However, there are some key differences. For instance, adaptive video streaming observes elements 
like (1) video buffer status to assess actual throughput, and (2) CPU utilization and dropped frames 
to evaluate the obtainable computing power on the playback station. This data is used to determine 
when to switch bitrates. For example, if the video buffer is full and CPU utilization low, the  
adaptive video streaming controller switches to a greater quality stream to augment the viewing 
experience. If the buffer drops under certain levels, or CPU use spikes above certain thresholds, the 
controller switches to a lower quality stream. Thus, adaptive video streaming enable producers to 
deliver outstanding quality bitrates at the high end of the bandwidth/power spectrum.  

MPEG developed a HAS standard in 2012, Dynamic Adaptive Streaming over HTTP 
(DASH) [17], [18]. It is also known as MPEG-DASH, cf. Figure 4. It aims to provide an 
uninterrupted video streaming service to users with dynamic network conditions and heterogeneous 
devices. MPEG-DASH uses an application layer Adaptive Bitrate (ABR) algorithm. The main goal 
of ABR algorithms is to prevent client’s playout buffer under-run, while maximizing the perceived 
Quality of Experience (QoE) of the user by adapting to the dynamically changing network 
conditions. The key differences between DASH and earlier protocols for multimedia streaming are: 

 
• Unlike earlier UDP-based schemes, DASH is built on top of TCP transport.  
• The client drives the algorithm. Depending on its ABR, the client typically requests video 

bitrates based on observed network conditions, hence regulating the server’s transmission 
rate. 
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• DASH requests and receives video data in terms of milli-second video chunks instead of a 
continuous stream of video packets. 

 
Preprocessing is required by MPEG-DASH. In this process, a media presentation description 

(MPD) is created and hosted on a media server. In DASH-based systems video content is encoded 
into multiple versions. The differences are at discrete bitrates. Each encoded video is then 
fragmented into small video segments or chunks. Each segment contains a few seconds of video. 
Client can smoothly switch bitrates at the segment boundary. This is made possible by having 
segments from one bitrate aligned in a time-centric manner to the video segments from other 
bitrates. The Media Presentation Description (MPD) files describe content information. This 
information includes video profiles, metadata, codecs, byte-ranges, mimeType [19] server IP, 
addresses, and download URLs. URLs pointing to the video segments in an MPD can either be 
explicitly described or be constructed via a template [20]. Video chunks are 3GP-formatted [21]. 
Standard HTTP servers serve video segments and MPDs to clients. 

DASH does not control the video transmission rate directly as with traditional streaming 
strategies. DASH clients depend on the underlying TCP algorithm to regulate the video 
transmission rate. This is determined by the congestion feedback from the client-server network 
path. At the start of a streaming session, the client requests the MPD file from the HTTP server. It 
then starts requesting video chunks in a sequential order. This process takes place as fast as possible 
to fill the playout buffer. Once this buffer is full, the player enters a steady state phase. During this 
phase, the player periodically downloads new chunks according to its chosen ABR algorithm. In the 
steady state, the player is in the ON state when it is downloading a chunk, and in the OFF state 
when it waiting for another chunk download. This results in an alternating ON-OFF traffic pattern. 
The time between the start of two consecutive ON periods is termed a cycle time interval. The client 
typically keeps a few segments in the buffer to maintain smooth playback. 

The video player uses various feedback signals observed for each segment. These system 
parameters, such as, average bandwidth and/or playout buffer underruns are used to determine 
which video rate to select for the next chunk to be downloaded. Consider average bandwidth as a 
system parameter. If the bandwidth is high, ABR should select a higher video rate to provide better 
QoE for the user. However, if the bandwidth is low, ABR should dynamically switch to a lower 
video rate to avoid playout buffer underruns. A good ABR algorithm is responsive to fluctuating 
network conditions and adapts smoothly to provide better QoE [22]. DASH clients cannot estimate 
the network bandwidth perfectly. The clients can only achieve the (discrete) video rates described 
by the MPD. It will select a rate below the estimated bandwidth to sustain video playback. When 
the network bandwidth exceeds the maximum video bitrate, the video rate is set to the maximum 
video bitrate. The smoothness between video bitrate transitions depend on the encoding granularity, 
that is, the number of video representations of the video content provided at the server. 

An MPD file contains information on the available quality levels of the segments and other 
related meta-data information. This includes the URLs where each segment can be found as well as 
available bitrates, resolutions supported, bandwidth, frame rates, codecs, etc. A manifest file is the 
general term for an MPD in HAS.  

The client has full control over the streaming session when using HAS. The rate adaptation 
algorithm is used to request the desired segment. It requests a specific quality by using a GET-
operation. The adaptation algorithm takes care of adapting to network conditions and CPU 
capabilities. Usually the adaptation algorithm is in a module of the Controller within the adaptive 
player. Thus, some authors use the term adaptation algorithm and Controller to represent the part of 
the player that makes the request decision to the server. The requested chunks are played back 
smoothly. In current HAS implementations, MPEG-DASH and other (adaptive) video streaming 
services download segments of a single video from a single server. The client sends segment 
requests to this server even if there is a significant change in network conditions. This happens once 
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the streaming session has started. On-demand and live streaming are the two types of streaming 
services that currently exist [23], [24], [25], [26]. On-demand streaming refers to requesting media 
content on the user’s demand. The entire content is already present at one or more media servers 
and can be requested any time. 
 
 

2. ON-OFF Traffic Patterns 

Usually a streaming session is started by an adaptive video player and the player enters the 
Buffering-State [27]. The goal of the player in this state is to fill up its playback buffer as quickly as 
possible. Eventually the players’ maximum buffer size is reached. To do this the player requests a 
new chunk in quick succession of the previously downloaded chunk. The player changes to Steady-
State when the playback buffer size reaches a target value, for instance, 25 seconds. During 
streaming the players’ goal is to maintain a constant playback buffer size. For the sake of 
simplicity, let us assume that a player can request one chunk every T seconds if the download 
duration is less than or equal to T. Otherwise, the player would request the next chunk as soon as all 
the data for the previous chunk is received. This can lead to an activity pattern in which the player is 
either in an ON period, downloading a chunk, or an OFF period, staying idle or waiting for the 
present chunk to be fully downloaded. The player estimates its values of the underlying network 
system parameters by using various estimation techniques. The discrete nature of the video bitrates 
makes it difficult for a client player to correctly perceive its fair-share bandwidth. This leads to 
video bitrate oscillation and other undesirable behaviours that negatively impact the user experience 
[28]. It may compute a running average of those parameters over time [28]. The player then uses 
these parameter values to select the bitrate for the next requested chunk. However, due to the time 
differences in various players’ ON-OFF period the estimation of the system parameters may not be 
accurate. This result in five performance problems: 

• buffer underruns 
• network bandwidth utilization  
• unfairness 
• instability  
• low quality 

Based on these performance problems we define desired QoE as each competing player 
obtaining high buffer levels, bandwidth utilization, fairness, stability and quality. 

Let us consider a simple model with three adaptive players sharing a bottleneck with 
bandwidth B. Assume that players are in Steady-State. There will be a request for a new chunk 
every T seconds. We ignore the TCP model and accept that a single connection gets the entire 
bandwidth B.  

Let us assume that network bandwidth is shared equally. We let bi represents network 
bandwidth measured at the player. Thus, for equal sharing of the bandwidth the following condition 
holds: b1=b2=b3. Therefore, b1+b2+b3=B, anytime during the streaming process. Take the case 
where all players ON periods are non-overlapping during the download of a chunk, Figure 5. Each 
player would measure the bandwidth as B. Thus b1+b2+b3>B. Hence, each player overestimates the 
bandwidth by a factor of three. The result is that players may request higher bitrates than the 
channel can provide. This can result in network congestion. Players will then measure that their 
bandwidth is less than their previous estimate. They will then switch back to a lower video bitrate. 
This creates a repeating oscillatory scenario, which causes instability. 
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Figure 5: Non-overlapping ONs 

 
 

The situation can arise where the ON period of one player falls within the ON period of the 
other player, Figure 6. This occurs if one player is requests a chunk with a low bitrate and another 
player requests a chunk with a high bitrate. The player requesting the lower bitrate estimates a 
bandwidth of B divided by 3, while the other player estimates a bandwidth that is more than B 
divided by 3. This means that player two overestimates the bandwidth. This overestimation by one 
of the three players can still result in the three players converging to a stable equilibrium. However, 
the player who estimates the higher bandwidth share will request a higher video bitrate. This will 
create an unfair bandwidth allocation to all players. The players who request low bitrates will 
experience buffer underruns and poor video quality due to flickering. 

 
 

 
Figure 6: ON periods within each other   

 
The situation can exist where the ON period of the three players are perfectly aligned, Figure 

7. All players estimate bandwidth of B divided by 3. Thus, b1+b2+b3=B. The three players estimate 
their bandwidth share correctly. However, bandwidth underutilization can still occur. To illustrate, 
suppose that the video has two quality levels, q1 and q2, respectively. Consider the cases among 
players where either the ON period of one player falls within the ON period of the other player or 
the ON period of the three players are perfectly aligned. Both cases can be stable if b1<B divided by 
3, b2>B divided by 3, b3<B divided by 3, and b1+b2+b3<B. However, the case where the ON 
period  
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Figure 7: Perfectly Aligned ONs 

 
 

of the three players are perfectly aligned, may result in all players request quality level, q1. This 
causes bandwidth underutilization, even though it is stable and fair. The players who obtain low 
bandwidth will experience buffer underruns and poor video quality due to flickering. 

 
 
 

3. Factors Affecting Adaptive Video Streaming 
 

3.1 Time-varying bandwidth occurrences 
 

Note that there is already competition for bandwidth at the bottleneck, which results in poor 
video quality shown to the user. Thus, when the bandwidth becomes too high or low in consecutive 
time periods within this competitive environment the quality can be severely degraded. As a result it 
is essential for our experiments to show the performance of players in network bottleneck 
competition with varying bandwidth. 

 
3.2 Competition from other network flows, for example, TCP long-lived flows in networks 

 
In [29] it has been established that the adaptive video players of three popular video streaming 

services were not able to get a fair share when coexisting with a TCP greedy flow. Authors name 
this issue the downward spiral effect and ascribe its cause to the on-off traffic pattern described 
above; authors suggest increasing the segment size and filter bandwidth estimates to tackle this 
issue. Chat and messaging (MSN, Skype) are served by TCP long-lived connections. Between 
computer-to-computer communications there are frequent “keepalive” message being transmitted 
periodically. This causes issues, such as, network resources being over-consumed. In addition, other 
issues occur during a TCP long-lived connection, including TCP congestion, and TCP connection 
recovery. The traffic features of TCP long-lived flows depends on specific applications usages 
characteristics. 

In some cases, TCP is not able to fully utilize the transport or network layer resources because 
the application does not produce data fast enough. The application is producing small amounts of 
data at a relatively constant rate for the TCP layer. This results in small bursts of packets and in the 
extreme case a single packet of size less than the maximum segment size of the connection. Typical 
examples are live streaming applications such as Skype [30] that transfer data over TCP at a  
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constant rate of 32 Kbit/s. Also, applications that use permanent TCP connections and send keep-
alive packets during inactive periods, fall in this category (BitTorrent [31] exhibits this behavior 
during choke periods). 

In some scenarios, the application is producing data in bursts separated from each other by 
idle periods. An example of such behavior is web browsing with persistent HTTP connections. The 
user clicks on a link to load a web page, causing a transfer period, reads the page, causing an idle 
period, and clicks on another link, causing another transfer period. It is observed that TCP long-
lived flows may completely shut off TCP short-lived flows [32]. This causes performance problems 
for TCP short-lived flows, which generally carry interactive/delay sensitive data. Video data usually 
consists of TCP short-lived flows. It is because such flows are becoming increasingly dominant in 
Internet traffic patterns and the increase in competition with TCP long-lived flows makes it 
essential for a researcher to include as a part of their future research. 
 

3.3 Players starting, pausing and stopping at different times 
 

In most adaptive video streaming experiments it is assumed that the bottleneck bandwidth 
stays the same and the players have the same settings and initial states, which is a strong 
assumption. In reality players may have different initial state and can join at arbitrary time. Players 
can start following a certain statistic. It is therefore essential for researchers to evaluate their 
streaming algorithms in a settings where players are different (e.g., has different initial bitrate and 
buffer level). 
 

3.4 Players downloading different videos 
 

It is important for players to be tested in scenarios where videos with different sets of bitrate 
levels are downloaded from one or more servers. The adaptive approach should satisfy the various 
requirements of each video and user. 

 
3.5 Users having different QoE functions 

 
Scenarios where players have different QoE functions should be investigated by researchers. 

This is essential as different users may have different requirements when viewing a video. Usually 
researchers try to find the optimum QoE, which may be far from the actual requirements of some 
viewers. Subjective studies should be carried out to determine the best QoE for certain sections of 
users. Then the video QoE could be tailored for the specific QoE-based groups using adaptive 
streaming. 

 
3.6 A large number of players competing for bandwidth 

 
Scalability is a very important part of a video streaming algorithm. From a commercial point 

of view streaming is usually from a one-to-many model. Currently optimization approaches have 
difficulties in scaling and heuristics are used to counteract this problem. 

 
 
4. State of the art Adaptive Video Streaming Techniques 

  
Various techniques are used to provide solutions for adaptive video streaming. These 

adaptation techniques falls into three broad categories: (1) Heuristic, (2) Stochastic, and (3) 
Analytical. The  
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Figure 8: State of the art adaptive video streaming techniques 

 
Heuristic techniques are described first and illustrate approaches that use a best guess 

technique to select segments. The probabilistic or stochastic techniques are then illustrated. These 
include Markov Decision Processes (MDPs), Reinforcement Learning (RL), and Q-learning (QL). 
Both RL and QL are described in terms of an MDP. Lastly analytical techniques are presented, 
which includes linear programming (LP) and convex optimization approaches. 

 
 

 
4.1 Heuristic technique 

 
Segment scheduling with stateless bitrate selection causes feedback loops, bad bandwidth 

estimation, bitrate switches and unfair bitrate choices. Researchers portray the FESTIVE control 
approach, and confirm that numerous problems occur when multiple bitrate-adaptive players share a 
bottleneck link. It uncovers the fact that the feedback signal the player receives is not a true 
reflection of the network state because of overlaying the adaptation logic over several layers. The 
following HTTP-based video delivery issues are investigated: 

• the granularity of the control decisions,  
• the timescales of adaptation, 
• the nature of feedback from the network, and 
• the interactions with other independent control loops in lower layers of the networking 

stack. 
 

FESTIVE creates a robust video adaptation approach to achieve: 
 
• Fairness - equal allocation of network resources, 
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• Efficiency - highest bitrates for maximum user experience, and 
• Stability - avoids needless bitrate switches. 

 
The FESTIVE approach has the following features: 
• Randomized segment scheduling: avoids sync biases in network state sampling, 
• Stateful bitrate selection: compensates between biased bitrate and estimated bandwidth 

interaction, 
• Delayed update: accounts for stability and efficiency tradeoff, and 
• Bandwidth estimator: increases robustness to outliers. 

The authors in [28] propose the PANDA approach. They observe that the discrete nature of 
the video bitrates makes it difficult for a client player to correctly perceive its fair-share bandwidth. 
This leads to video bitrate oscillation and other undesirable behaviours that negatively impact the 
user experience. The authors provide a solution to these problems at the application layer using a 
probe and adapt principle for video bitrate adaptation (where probe refers to trial increment of the 
data rate, instead of sending auxiliary piggybacking traffic). The authors outline a four-step state for 
a HAS rate adaptation approach: 

• Estimating: guesses the network bandwidth that can legitimately be used, 
• Smoothing: removes outliers, 
• Quantizing: maps the continuous bit rate to the discrete video bitrate, 
• Scheduling: selects the target interval until the next download request. 
The advantages of PANDA are as follows. Firstly, as the bandwidth estimation by probing is 

quite accurate, one does not need to apply strong smoothing. Secondly, PANDA is very sensitive to 
bandwidth drops since after a bandwidth drop, the video bitrate reduction is made proportional to 
the TCP throughput. 

ELASTIC [34] approach to adaptive client side streaming proposes a method that throttles the 
video level. This drives the playout buffer length to a set-point, which eliminates the ON-OFF 
traffic patterns. The player is always in ON phase. The basic concept is that two controllers are 
used. The first selects the video level to match the available bandwidth and the second controls the 
playout buffer length by ensuring that there is no gap between two consecutive segments. The 
ELAS-TIC approach produces a received video rate that oscillates around the fair share, with an 
increased number of video level switches. However, the main result shows that ELASTIC is able to 
get the fair share when competing with TCP long-lived flows. 

Two content-aware adaptation schemes are proposed in [35]. They are Content-aware Probe 
and Adapt (CPANDA) and Content-aware Dynamic Programming (C-DP), which are able to decide 
the video bitrate for the next video segment, based on not only the available bandwidth, and the 
existing buffer capacity, but also the video content type. The content-aware adaptation schemes 
achieve  better QoE when compared with the conventional PANDA scheme. The proposed schemes 
are able to optimize the QoE according to contents. They can achieve higher than acceptable QoE 
for most attractive contents such as those with high motion intensity to improve user experience for 
the most interesting scenes; select same video representations for segments belonging to a scene to 
avoid quality oscillation; and reserve buffer resource during low motion scenes  

to avoid stalling for the following high motion scenes. 
 
 

4.2 Stochastic technique 
 
4.2.1 Markov Decision Processes 
 

There is a growing body of literature on the use of Markov Decision Process (MDP) [36] to 
optimize video streaming. We now outline different ways MDPs are applied to adaptive video 
streaming. In [37] and [38], researchers found that bandwidth can vary severely in different 
locations. Adaptive streaming is modelled as an MDP problem to cope with varying network 
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conditions [39]. The power consumption problem of video decoding can be effectively modelled as 
an MDP [40]. An MDP to optimize rate adaption of streaming video where the uncertainty in 
network bandwidth is modeled as a Markov chain with its own bandwidth states is given in [41] and 

[42]. In [43], and [44], a stochastic dynamic programming (SDP) [45] technique was 
proposed for rate adaption in DASH players, where the system rate is determined based on client 
buffer occupancy and bandwidth condition. 

We label two studied models as MDP-DASH (Markov Decision Process DASH) and QC-
DASH (Quality Control DASH). The goal of MDP-DASH [46] is to explore different methods to 
reduce decision making overhead for DASH-based adaptive video players. The states depend on the 
quality level of the downloaded chunk and the time available before the chunk playback deadline 
(current buffer occupancy measured in time). The actions (decisions) are the quality level of the 
next chunk to be downloaded. Higher rewards are given for watching a chunk in higher quality. 
There is a penalty for missing a deadline as well as switching quality from the present chunk to the 
next. For a given action (chunk size), state transition probabilities are calculated based on the 
Cumulative Distribution Function (CDF) [47] of the network bandwidth. The CDF allows 
calculation of the probability of a given buffer occupancy when the next chunk is downloaded. The 
buffer occupancy, together with the action (quality level decision), defines the next state. Transition 
probabilities will change with different CDFs. Different CDFs lead to different MDP strategies. 

QC-DASH [43] uses Stochastic Dynamic Programming (SDP) to solve the MDP and aid 
adaptive video streaming. The three parameters to compute the state transition matrix are buffer 
level, average channel bandwidth and quality. The authors designed a cost function that penalizes 
situations that may lead to a reduction of the QoE. This computation is done offline, where the 
control policies map the environment information to the client requests. The main result is that the 
average quality requested with their algorithm is higher, but it also involves a related number of 
quality switches among segments. 

  
4.2.2 Reinforcement Learning 
 

In [48] a Reinforcement Learning-based [49] quality selection algorithm is proposed. When 
multiple players compete it is able to achieve fairness. A coordination proxy facilitates the 
coordination among players. Unlike current HAS heuristics, the algorithm is able to learn and adapt 
its policy depending on network conditions. No significant overhead is introduced into the network 
as fairness is achieved without explicit communication among agents. Researchers in [50] 
progressively maximize a pre-defined QoE-related reward function. By this action players are able 
to learn the optimal request strategy.  

 
  

4.2.3 Q-Learning 
 

A HAS client dynamically learns the optimal behavior corresponding to the current network 
environment [51] via Q-Learning [52]. A tunable reward function is used which considers multiple 
aspects of video quality. In order to optimize the QoE the HAS client dynamically learns the 
optimal behaviour corresponding to the current network environment [53]. The adaptive streaming 
problem can naturally be modeled as a Partial Observable Markov Decision Process (POMDP) [54] 
as the end-user has partial information about the network state based on the received throughput 
[55]. This service layer control mechanism gracefully degrades the video quality experienced by the 
end-user depending on the connection status. The end-user is able to find the most appropriate 
quality level for its stream. 
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4.3 Analytical technique 

 
4.3.1 Integer Programming 

 
A QoE-driven quality optimization approach is modeled as an Integer Linear Programming 

(ILP) [56] problem [57]. It maximizes the QoE over all clients. The ILP uses both centralized as 
well as distributed algorithms. The approach allows the client to take into account the in-network 
decisions during the rate adaptation process. It concurrently gives the player the ability to react to 
sudden bandwidth fluctuations in the local network. Hybrid Transmission strategies for DASH 
(HTD) in LTE network is considered in [58]. It considers both unicast and multicast modes for 
DASH. The optimization problem is formulated as a Mixed Binary Integer Programming (MBIP) 
problem. This together with a greedy algorithm improves the quality of experience (QoE) of 
wireless DASH users, and save the wireless resources in LTE networks. 

  
4.3.2 Convex optimization 

 
Researchers in [59] propose a QoE evaluation model based on playback continuity, segment 

media quality and perceptual quality fluctuations caused by bitrate switching. They formulate the 
rate adaptation for DASH as a constrained convex optimization problem [60]. The design objective 
is to maximize the overall QoE for the end users while keeping the receiver buffer from under 
flowing. Near optimal tradeoff between overall QoE and playback continuity was observed.  

An optimal content placement model maximizing the sum of user satisfaction of all contents 
is proposed in [61]. Due to the large number of content items in the network, the con-tent placement 
problem is usually a large-scale optimization problem. However, with mild assumption on the 
probability density function of the content popularity distribution it can be reduced. Here it is 
reduced to an equivalent small-scale convex problem. The number of variables is only the number 
of levels of representations. 
 

5. Conclusion  
A history of adaptive video streaming is given. This is followed by pointing out the key 

problem that occurs when adaptive players compete for bandwidth. This is the ON-OFF traffic 
patterns that results. Another area of interest is real-world factors that affect video streaming. These 
are pointed out and researchers can use these as test scenarios for experiments. Finally, a 
contemporary three-layer classification of streaming techniques is presented, which includes 
heuristic, stochastic and analytical techniques. 
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