РАСПРЕДЕЛЕНИЕ В ПРОСТРАНСТВЕ БЫСТРОТЫ КУМУЛЯТИВНЫХ ПРОТОНОВ ОБРАЗОВАННЫХ В ЯДРО-ЯДЕРНЫХ СОУДАРЕНИЯХ ПРИ ПРИ РЕЛЯТИВИСТСКИХ ЭНЕРГИЯХ

Л. Н. Абесалашвили, Л. Т. Ахобадзе, Ю. В. Тевзадзе

Институт Физики Высоких Энергий Тбилисского Государственного Университета им. И. Джавахишвили

<u>Аннотация</u>

Изучаются импульсные и угловые характеристики кумулят ивных и некумулят ивных протонов, образованных в $A_iA_i=(p,d,He,C)Ta$ –ядро-ядерных соударениях в интервале импульсов (4.2÷10)AGeV/с. Кроме этого исследуются распределения частиц в пространстве Y-быстроты и проверяется признак по коротко действующим корреляциям $\Delta Y = |Y_i - Y_j| < 2$. Показано, что среднее расстояние между кумулят ивными прот онами в пространстве быстроты $<\Delta Y(p^{cum})>$ не зависит ни от A_i – массового числа налет ающего ядра и ни от Pимпульса налет ающего ядра. Экспериментальные результаты (по CTa–углерод– танталовых соударениям при импульсе 4.2AGeV/с) сравниваются с предсказаниями модели QGSM – кварк-глюонная струнная модель.

Ключевые слова: кумулятивные частицы, струя, жесткие столкновения, кварки, пространство быстрот.

Введение

Одной из интересных задач релятивистской ядерной физики является выделение кумулятивных частиц и сравнение их характеристик, соответствующими характеристиками некумулятивных частиц.

Экспериментальный материал получен с помощью двухметровой пропановой пузырьковой камеры (*PBC-500*) Лаборатории Высоких Энергий Объединённого Института Ядерных Исследований – ЛВЭ ОИЯИ, Дубна. Камера облучалась пучками лёгких релятивистских ядер - *p*, *d*, *He*, *C* в импульсном интервале (2-10)*AGeV/c*. Методические вопросы связанные с обработкой и анализом данных рассмотрены в работах [1-5].

Анализ экспериментального материала

Выделение $N_{ev}^{H} N_{ev}^{H}$ жестких процессов (образованных в $A_i A_t A_i A_t A_i A_t$ - ядро-ядерных соударениях) связань с возникновением в ядре мишени кумулятивных частиц (в данном случае протонов). Кумулятивным является процесс, если среди вторичных частиц возникают частицы средние кинематические характеристики (скх) которых не подчиняются кинематике NN – нуклон-нуклонного соударения. Возникновение кумулятивной частицы связань с образованием в ядре мишены $F - \phi$ луктонов – многокварковых соединении [6]. $F - \phi$ луктоны образуются в ядре мишени из-за локальной флуктуации плотности нуклонов, когда 2 или больше нуклонов образуют единую систему в течение очень короткого времени. Налетающий нуклон взаимодействует $F - \phi$ луктоном (размеры которого $\sim 10^{-13}$ см=1ферми) и в результате рассеяния возникают кумулятивные протоны - p^{cum} , которые образуют *jet* – струи (и

соответственно возникают $N_{ev}^{H} N_{ev}^{H}$ – жесткие процессы). Событие (процесс) считается жестким, если среди вторичных протонов имеется хотя бы один протон кумулятивное число n_c которого > 1,

$$n_{c} = \frac{(E - P_{\parallel})}{m_{N}} n_{c} > 1 \left(n_{c} = \frac{(E - p_{\parallel})}{m_{N}} \right)$$
(1)

где E – полная энергия, $P_{II} p_{II}$ – продольный импульс в Lab –системе, $m_N m_N$ – масса нуклона) [7].

Событие, в котором нет ни одного кумулятивного протона считается мягким - $N_{ev}^{s} N_{ev}^{s}$

Возникновение $N_{ev}^{H} N_{ev}^{H}$ – жестких процессов связан с жестким рассеянием q – кварков и g - глюонов сталкивающихся объектов (т. е. взаимодействия *NF* – нуклонов с флуктонами [6, 7, 8, 9]).

F – флуктоны – много кварковые конфигурации в ядрах (или плотные кварковые мешки – *Dense Quark Bag* – *DQB*), могут возникнуть в двух различных физических процессах. Первый - обусловлен флуктуацией плотности нуклонов ядра мишени и носит название "холодной" модели. Другой - "горячая" модель – связань со сжатием ядерной материи (нуклонов ядра) под действием налетающего объекта (частицы, или ядра) приводящим к образованию плотных кварковых мешков.

Отметим, что образование кумулятивных протонов в ранных интерпретациях связывалось с ферми импульсами нуклонов. Однако в работе [9] показано, что это не соответствует действительности.

По современным представлениям кумулятивная частица образуется после рассеяния налетающего объекта (в данном случае протона) на флуктоне; после рассеяния налетающая частица теряет большую долю своего импульса (рассеиваясь на большой угол) – выходит из ядра (без вторичного рассеяния) и за пределами ядра образуются струи – *jet* протонов. Характеристики кумулятивных протонов - p^{cum} ~ одинаковы и не зависят от энергии и от A_i – массового числа налетающего объекта – имеет место гипотеза "мягкого" обесцвечивания [6] (табл.№1)

I. Изучение распределении кумулятивных и некумулятивных протонов в пространстве быстроты и проверка признака по коротко действующим корреляциям

Согласно по современным теоретическим представлениям [6] возникший в результате жесткого столкновения быстрый кварк может адронизироваться не только в одну кумулятивную частицу, но и в кумулятивную струю. При этом выполняется естественный признак по коротко действующим корреляциям в пространстве быстрот – *SRC* – *Short Range Correlation*

$$\Delta Y = |Y_i - Y_j| < 2 \tag{2}$$

где Y_i и Y_j – продольные быстроты i - го и j – го частиц. Условые (2) выделяет частицы объязанные своим происхождением быстрому кварку.

Таблица №1

tange	ange Correlation) $\Delta Y = Y_i - Y_j < 2.$							
N⁰	$A_i A_t$	P(AGeV/c)	Частица	$<\Delta Y(EXP)>$	$<\Delta Y(MOD)>$	<p_{l}>Gev/c</p_{l}>	$< \Theta_L > degr$	
1	СТа	4.2	p^{cum}	0.242±0.006	0.210±0.002	0.578±0.015	105.3±1.100	
2	СТа	4.2	p^{ass}	0.460±0.012	0.506±0.001	1.098±012	35.13±0.290	
3	СТа	4.2	P^S	0.590±0.022	0.623±0.005	1.674±009	25.28±0.300	
4	рТа	10	p^{cum}	0.226±0.014		0.569±0.022	107.70±2.580	
5	рТа	10	p^{ass}	0.384±0.010		0.927±0.020	37.08±0.570	
6	рТа	10	P^{s}	0.506±0.014		1.582±0.036	26.95±0.400	
7	dTa	4.2	p^{cum}	0.220±0.024		0.510±0.033	108.40±3.910	
8	dTa	4.2	p^{ass}	0.306±0.010		0.728±0.011	38.99±0.320	
9	dTa	4.2	p^s	0.415±0.012		1.126±0.019	31.78±1.500	
10	HeTa	4.2	p^{cum}	0.256±0.011		0.600±0.057	103.03±4.500	
11	HeTa	4.2	p^{ass}	0.381±0.010		0.999±0.009	34.93±0.350	
12	НеТа	4.2	P^{s}	0.485±0.012		1.592±0.046	25.86±0.600	

 $A_i A_t \mathbf{A}_t \mathbf{A}_t = (p, d, He, C) Ta - соударения.$

Проверка условия по коротко действующим корреляциям в пространстве быстроты (Short Range Correlation) $\Delta Y = /Y_i - Y_j | < 2$.

Замечание к табл. №1

 p^{cum} - кумулятивные протоны, p^{s} – протоны из N_{ev}^{s} - мягких процессов, p^{ass} - протоны из $N_{ev}^{H} N_{ev}^{H}$ - жестких процессов (которые образуются в совместно с p^{cum} - кумулятивными протонами). $\langle \Delta Y(EXP) \rangle$, $\langle \Delta Y(MOD) \rangle$ - среднее расстояние в пространстве быстроты между частицами (экспериментальные и модельные значения). $\langle P_L \rangle GeV/c$ и $\langle \Theta_L \rangle degr$ - среднее значение импульса и средний угол рассеяния (экспериментальные значения).

Среднее расстояние в пространстве быстроты между *p^{cum}* -- *p^{cum}*кумулятивными и не кумулятивными протонами

В $N_{ev}^{H} N_{ev}^{H}$ жестких соударениях кроме кумулятивными частицами (в нашем случае_ p^{cum} – протонами) образуются некумулятивные, сопутствующие протоны, для которых значение кумулятивной переменной ($n_c \leq 1$) т. н. p^{ass} сопутствующие протоны. $N_{ev}^{s} N_{ev}^{s}$ – мягких процессах существуют p^{s} – протоны (вернее мягких процессах существуют только p^{s} – протоны).

Таким образом, в работе исследуются распределения p^{cum} , p^{ass} и p^s - частиц, в пространстве *Y* - быстроты и вычисляются $\langle \Delta Y(p^{cum}) \rangle$, $\langle \Delta Y(p^{ass}) \rangle$ и $\langle \Delta Y(p^s) \rangle$ - средние расстояния в пространстве быстроты между парами **р**^{сит}кумулятивных, сопутствующих и мягкими протонами.

В n – частичном состоянии (когда число вторичных частиц равно n) количество двух частичных комбинации(N^{com}) между частицами вычисляется так

$$C_n^2 = \frac{n!}{2(n-2)!}$$
(3)

 $<\Delta Y(p^{cum})>$ среднее расстояние в пространстве быстроты между p^{cum} кумулятивными протонами не зависят ни от A_i , ни от первичной энергии. $<\Delta Y(p^{cum})>(EXP)>$ и $<\Delta Y(p^{cum})>(MOD)>$ экспериментальные и модельные значения средних расстоянии в пространстве быстрот довольно близки:

$$<\Delta Y(p^{cum})>(EXP) = (0.242\pm0.006)$$

 $<\Delta Y(p^{cum})>(MOD)> = (0.210\pm0.002)$ (4)

Минимальное значение расстояния между p^{cum} кумулятивными протонами равно - $<\Delta Y(p^{cum})>(MIN, EXP)> = (0.220\pm0.024) dTa(4.2AGeV/c);$ а, максимальное значение - $<\Delta Y(p^{cum})>(MAX, EXP)> = (0.256\pm0.011) HeTa(4.2AGeV/c)$ (см. табл. №1).

Кумулятивные частицы (p^{cum} -протоны) оказывают существенное влияние на формирование характеристик p^{ass} – сопутствующих протонов; поэтому скх p^{ass} – протонов резко отличаются от характеристик p^s протонов (от $N_{ev}^s N_{ev}^s$ – мягких процессов). Например:

$$\begin{cases} < P_{L}(p^{s})(CTa) >= (1.674 \pm 0.009)GeV/c; & < P_{L}(p^{ass})(CTa) >= (1.098 \pm 0.012)GeV/c; \\ < \Theta_{L}(p^{s})(CTa) >= (25.28 \pm 0.300) \deg r; & < \Theta_{L}(p^{ass})(CTa) >= (35.13 \pm 0.029) \deg r; \\ < P_{L}(p^{s})(pTa) >= (1.582 \pm 0.036)GeV/c; & < P_{L}(p^{ass})(pTa) >= (0.927 \pm 0.020)Ge;V/c; \\ < \Theta_{L}(p^{s})(pTa) >= (26.950 \pm 0.400) \deg r; & < \Theta_{L}(p^{ass})(pTa) >= (37.080 \pm 0.570) \deg r; \\ < P_{L}(p^{s})(dTa) >= (1.126 \pm 0.019)GeV/c; & < P_{L}(p^{ass})(dTa) >= (0.728 \pm 0.011)GeV/c; \\ < \Theta_{L}(p^{s})(dTa) >= (31.780 \pm 1.500) \deg r; & < \Theta_{L}(p^{ass})(dTa) >= (38.990 \pm 0.320) \deg r. \end{cases}$$

$$(6) \begin{cases} < \Delta Y(p^{s})(CTa) >= (0.590 \pm 0.022); & < \Delta Y(p^{ass})(CTa) >= (0.460 \pm 0.012) \\ < \Delta Y(p^{s})(dTa) >= (0.506 \pm 0.014); & < \Delta Y(p^{ass})(pTa) >= (0.384 \pm 0.010) \\ < \Delta Y(p^{s})(dTa) >= (0.415 \pm 0.012); & < \Delta Y(p^{ass})(dTa) >= (0.306 \pm 0.010) \end{cases}$$

(см. Табл.№1)

Еще раз подчеркнем, что кумулятивные частицы (или, вернее поле кумулятивных частиц) оказывают существенное влияние на формирование характеристик частиц (Таблица №1).

Выше било сказано, что признаком короткодействующих корреляции (SRC) является условие (2) т. е. $\Delta Y = /Y_i - Y_j | <2$. Это условие практически 100% вероятностью выполняется для кумулятивных - p^{cum} протонов. см (рис. 1, 2, 3).

Рис. 1. $dN/d(\Delta Y) = f(\Delta Y)$ распределение по ΔY для кумулятивных протонов ($pTa \rightarrow p^{cum}$,10 GeV/c).

Рис. 2. $dN/d(\Delta Y) = f(\Delta Y)$ распределение по ΔY для p^{ass} –сопутствующих протонов из $N_{ev}^H N_{ev}^H$ -жестких событий ($pTa \rightarrow p^{ass}$,10 GeV/c).

Рис. 3. $dN/d(\Delta Y) = f(\Delta Y)$ распределение по ΔY для p^s –протонов из $N_{ev}^s N_{ev}^s$ – мягких процессов. ($pTa \rightarrow p^s$, 10 GeV/c).

I^{a)} Зависимость <∆ Y > - среднего расстояния между кумулятивными протонами от числа *p^{сит}кумулятивных* протонов в событий

Выше было сказано, что $\langle \Delta Y(p^{cum}) \rangle$ - средние расстояния в пространстве быстроты между *р*^{сит}кумулятивными протонами не зависят ни от A_{i-} массового числа и ни от P – импульса налетающего ядра. Также практически не различаются скх этих - кумулятивных протонов (см. табл. №1).

Средние кинематические характеристики (скх) p^{cum} p^{cum} - кумулятивных протонов также не зависят от количества кумулятивных протонов в событий; тоже самое можно сказать насчет $<\Delta Y(p^{cum})>$ - среднего расстояния в пространстве быстроты. Например: когда количество кумулятивных протонов меняется от 2 до 11, значения $<\Delta Y(p^{cum})>$ практически не меняются.

когда N_p^{cum} =2. то <∆ $Y(p^{cum})$ >=(0.210±0.032); когда N_p^{cum} =8, то <∆ $Y(p^{cum})$ >=(0.245±0.021) (*табл. №2, СТа*→ p^{cum} ,4.2*AGeV/c*).

То же самое относится и к другим A_iTa – соударениям и p^{ass} и p^s – протонам (см. табл. №3,4). Из таблиц видно, что модельные и экспериментальные результаты хорошо согласуются друг с другом (модель QGSM – кварк глюонная струнная модель).

ISSN 1512-1461

Известно, что характеристики частиц зависят от значения n_c – кумулятивного числа (переменной) – с ростом n_c фактически с ростом массы мишени уменьшается среднее значение импульса и увеличивается средний угол вылета. Когда $n_c>1$ протон является кумулятивным. Часть p^{cum} – кумулятивных протонов летят назад в Lab – системе p_b^{cum} , а другая часть p_f^{cum} – вперед в Lab – системе. Характеристики назад и вперед летящих кумулятивных протонов друг от друга резко отличаются. Например:

$$(7) \begin{cases} < P_L((p_b^{cum})(CTa)) >= (0.440 \pm 0.015)GeV/c; & < \Theta_L((p_b^{cum})(CTa)) >= (119.600 \pm 2.270) \deg r \\ < T((p_b^{cum})(CTa)) >= (73.000 \pm 1.300)mev; & < n_c >= (1.320 \pm 0.030) \\ < P_L((p_b^{cum}(dTa)) >= (0.436 \pm 0.025)GeV/c; & < \Theta_L((p_b^{cum})(dTa)) >= (120.000 \pm 3.110) \deg r \\ < T((p_b^{cum})(dTa)) >= (80.000 \pm 3.000)mev; & < n_c >= (1.320 \pm 0.040) \\ < P_L((p_b^{cum})(pTa)) >= (0.448 \pm 0.022)GeV/c; & < \Theta_L((p_b^{cum})(pTa)) >= (120.420 \pm 2.250) \deg r \\ < T((p_b^{cum})(pTa)) >= (75.000 \pm 1.440)mev; & < n_c >= (1.330 \pm 0.050) \end{cases}$$

(Приведены средние значения импульсов, углов вылета в *Lab* – системе, *T*- температуры и n_c , для назад летящих кумулятивных протонов).

А средние значения для p_f^{cum} - кумулятивных протонов летящих вперед в Lab – системе ($\Theta_L < 90^0$), такие:

$$\begin{cases} < P_{L}((p_{f}^{cum})(CTa)) >= (0.857 \pm 0.019)GeV/c; & < \Theta_{L}((p_{f}^{cum})(CTa)) >= (76.310 \pm 1.320) \deg r \\ < T((p_{f}^{cum})(CTa)) >= (153.000 \pm 0.500)mev; & < n_{c} >= (1.120 \pm 0.040) \\ < P_{L}((p_{f}^{cum}(dTa)) >= (0.706 \pm 0.032)GeV/c; & < \Theta_{L}((p_{f}^{cum})(dTa)) >= (77.650 \pm 2.120) \deg r \\ < T((p_{f}^{cum})(dTa)) >= (170.000 \pm 3.000)mev; & < n_{c} >= (1.090 \pm 0.050) \\ < P_{L}((p_{f}^{cum})(pTa)) >= (0.867 \pm 0.055)GeV/c; & < \Theta_{L}((p_{f}^{cum})(pTa)) >= (76.510 \pm 3.300) \deg r \\ < T((p_{f}^{cum})(pTa)) >= (175.000 \pm 2.100)mev; & < n_{c} >= (1.130 \pm 0.040) \end{cases}$$

Таблица №2.

 $CTa \rightarrow p^{cum}$. Проверка признака коротко действующих корреляции (*SRC*) для кумулятивных протонов $\Delta Y = /Y_i - Y_j | < 2$. $<\Delta Y(EXP) >$ и $<\Delta Y(MOD) >$ - экспериментальные и модельные значения. N_{com} -количество двух частичных комбинаций (см ф. 3)

-		011			(- T - /		
N	$N_p^{\ cum}$	$N_{ev}^{H}(EXP)$	$N_{com}(EXP)$	$\langle \Delta Y(EXP) \rangle$	$N_{ev}^{H}(MOD)$	$N_{com}(MOD)$	$<\Delta Y(MOD)>$
1	2	268	268	0.210±0.032	2234	2234	0.213±0.010
2	3	186	558	0.233±0.023	1937	5811	0.210±0.010
3	4	123	738	0.222±0.023	1393	8358	0.210±0.005
4	5	100	1000	0.233±0.023	828	8280	0.211±0.006
5	6	75	1125	0.251±0.020	468	7020	0.214±0.006
6	7	51	1071	0.256±0.021	200	4200	0.195±0.007
7	8	32	896	0.245±0.021	80	2240	0.217±0.010

ISSN 1512-1461

8	9	21	756	0.235±0.020	42	1512	0.201±0.013
9	10	9	405	0.211±0.024	15	675	0.200±0.005
10	11	9	495	0.227±0.023	4	220	0.201±0.005
11	Σ	874	7312	0.233±0.004	7201	40550	0.210±0.002

Таблица №3.

$CTa \rightarrow p^{ass}$	(4.2	AGeV/c)	N_{ev}^{H}	жесткие	процессы.	Проверка	условия	SRC	для	p^{ass}	_
сопутствун	оших	частин									

Ň	N_p^{ass}	$N_{ev}^{H}(EXP)$	$N_{com}(EXP)$	$<\Delta Y(EXP)>$	$N_{ev}^{H}(MOD)$	$N_{com}(MOD)$	$<\Delta Y(MOD)>$
1	2	65	65	0.518±0.100	27	2234	0.550±0.018
2	3	77	231	0.395±0.060	81	5811	0.515±0.070
3	4	53	318	0.372±0.040	180	8358	0.549±0.031
4	5	61	610	0.464±0.038	295	8280	0.665±0.019
5	6	75	1125	0.499±0.030	431	7020	0.644±0.018
6	7	74	1154	0.472±0.023	569	4200	0.648±0.010
7	8	66	1848	0.539±0.021	767	2240	0.640±0.010
8	9	69	2484	0.478±0.017	907	1512	0.620±0.012
9	10	60	2700	0.505±0.014	1001	675	0.598±0.005
10	11	83	4565	0.497±0.013	940	220	0.579±0.010
11	12	59	3894	0.522±0.014	94	59664	0.571±0.010
12	13	50	3900	0.505±0.014	731	57018	0.571±0.004
13	14	48	4368	0.496±0.012	663	60333	0.557±0.004
14	15	49	5145	0.501±0.010	494	51870	0.543±0.005
15	16	35	4200	0.478±0.011	396	47520	0.539±0.004
16	17	38	5168	0.522±0.012	241	32776	0.538±0.005
17	18	38	5814	0.497±0.010	185	28305	0.541±0.005
18	19	45	7695	0.483±0.009	115	1665	0.510±0.006
19	20	29	5510	0.466±0.010	57	10830	0.513±0.008
20	21	31	6510	0.433±0.011	30	6300	0.512±0.012
21	22	28	64468	0.426±0.012	25	5775	0.508±0.011
22	23	28	7084	0.444±0.008	8	1570	0.529±0.010
23	24	23	6348	0.432±0.001	2	1380	0.508±0.011
24	25	18	5400	0.425±0.008	5	600	0.513±0.021
25	Σ	1220	99394	0.456±0.012	9024	557394	0.505±0.001

Таблица №4.

СТа	$\rightarrow p^{s}$ (4.2	2. АGeV/c). П	роверка усло	овия <i>SRC</i> для <i>p^s</i>	– протонов и	з мягких пр	оцессов
Ν	N_p^{s}	$N_{ev}^{s}(EXP)$	$N_{com}(EXP)$	$<\Delta Y(EXP)>$	$N_{ev}^{s}(MOD)$	$N_{com}(MOD)$	$<\Delta Y(MOD)>$
1	2	206	206	0.628±0.071	20	20	0.716±0.251
2	3	114	342	0.591±0.053	40	120	0.578±0.180
3	4	89	534	0.593±0.041	60	360	0.689±0.056
4	5	53	530	0.592±0.042	83	830	0.709±0.038
5	6	32	480	0.629±0.045	105	1575	0.704±0.027
6	7	32	672	0.677±0.041	88	1848	0.710±0.026
7	8	36	1008	0.616±0.039	112	3136	0.637±0.018
8	9	25	900	0.650±0.034	82	3690	0.628±0.017
9	10	19	855	0.604±0.030	75	3780	0.629±0.016
10	11	7	385	0.585±0.047	71	3905	0.623±0.016
11	12	8	528	0.579±0.040	68	4488	0.617±0.016
12	13	2	156	0.556±0.071	42	3276	0.606±0.017
13	14	2	182	0.601±0.052	25	2275	0.517±0.019
14	15	2	240	0.631±0.071	6	1680	0.588±0.023
15	16	3	408	0.455±0.046	10	1200	0.593±0.028
	Σ	630	9217	0.559±0.022		33793	0.623±0.005

Таблица №5.

CTa (4.2 *AGeV/c*). Проверка условия *SRC* для p_b^{cum} – назад и p_f^{cum} период летящих кумулятивных протонов (в *Lab* - системе)

N	$N_{pf} \atop cum$	N _{ev} ^H (EXP)	$N_{com}(EXP)$	$<\Delta Y(p_f^{cum})>(EXP)$	N _{pb} ^{cum}	$N_{ev}^{H}(EXP)$	$N_{com}(EXP)$	$<\Delta Y(p_b^{cum})>(EXP)$
1	2	179	179	0.155±0.030	2	290	290	0.131±0.020
2	3	84	252	0.176±0.030	3	176	528	0.135±0.020
3	4	44	264	0.175±0.030	4	94	564	0.138±0.020
4	5	13	130	0.139±0.030	5	60	600	0.128±0.020
5	6	8	120	0.142±0.034	6	38	570	0.131±0.020
6	7	1	21	0.151±0.035	7	15	315	0.135±0.020
7	8	329	966	0.163±0.010	Σ	682	329	0.134±0.010

Как видно из экспериментальных данных характеристики p_b^{cum} и p_f^{cum} р^{cum}- кумулятивных протонов летящих назад и перед друг от друга отличаются довольно таки существенно. Отличаются ли также существенно $\langle \Delta Y(p^{cum}) \rangle$ - среднее расстояния в пространстве быстрот

между назад и период летящими кумулятивными протонами? Оказывается различие между $<\Delta Y(p_b^{cum}) > u < \Delta Y(p_f^{cum}) >$ всегда имеется, но несущественное –

$$(\langle \Delta Y(p_f^{cum}) \rangle) \rangle (\langle \Delta Y(p_b^{cum}) \rangle)$$
(9)

Например: $(<\Delta Y(p_f^{cum}(CTa))>) = (0.163\pm0.010), (<\Delta Y(p_b^{cum}(CTa))>)=(0.134\pm0.010).$

I⁶⁾ Соотношение неопределенности для импульса и быстроты и быстрые процессы

Соотношения неопределенностей для энергий и времени и для импульса и координаты в квантовой механике запишем так

$$\Delta E \ \Delta t \ge \hbar \tag{10}$$

$$\Delta P \ \Delta x \ge \hbar \tag{11}$$

Из уравнения (10) следует, что чем больше выделенная (переданная) энергия тем бистрее происходит процесс столкновения (взаимодействия), тем меньше Δt . Из уравнения (11) следует, что чем больше переданный импульс, тем близко подходит частицы к друг-другу, т. е. тем меньше Δx – расстояние между взаимодействующими объектами (частицами). Δt время определяет радиус области взаимодействия

$$r_{in} = \Delta t \ c \tag{12}$$

где *с* – скорость света.

Если выделенная (переданная) энергия $\Delta E \sim 4 GeV$, то (см.10)

$$\Delta t(\text{sec}) = \frac{(1.05 \times 10^{-27}) erg. \text{sec}}{4 \times (1.6 \times 10^{-3}) erg} = 0.16 \times 10^{-24} \text{ sec}$$
(13)

Тогда радиус взаимодействия

$$r_{in} = \Delta t \ c = 0.16 \times 10^{-24} \text{sec} \times 2.99 \times 10^{10} \text{cm.sec} = 0.48 \times 10^{-14} \text{cm}$$
(14)

Согласно(аналогично) уравнения (11) можем написать

$$\Delta P \ \Delta Y \ge \hbar \tag{15}$$

Если ΔY расстояние в пространстве быстроты между частицами мало, то ΔP переданный импульс большой и значение импульса коррелированных (взаимодействующих протонов) частиц мало (и угол вылета большой). Если значение ΔY большое, то значение ΔP мало и значение импульса коррелированных частиц большое (угол вылета уменьшается).

Согласно такой логике средние значения импульсов кумулятивных и некумулятивных протонов должны отличаются друг от друга настолько, насколько отличаются друг от друга средние значения - $<\Delta Y>$ кумулятивных и некумулятивных протонов.

Например: для *СТа* – столкновений (4.2*A GeV/c*)

$< P_L(p^{cum}) >= (0.578 \pm 0.015) GeV / c;$	$<\Delta Y(p^{cum})>=(0.242\pm0.010)$]
$< P_L(p^{ass}) >= (1.098 \pm 0.012) GeV / c$	$<\Delta Y(p^{ass})>=(0.460\pm0.002);$	(16)
$< P_L(p^s) >= (1.674 \pm 0.009) GeV / c;$	$<\Delta Y(p^{s})>=(0.590\pm0.015)\cdot$	

(см. Табл. №1)

Заключение.

Изучение характеристик кумулятивных и некумулятивных протонов, образованных (*p*, *d*, *He*, *C*)*Ta* – соударениях при импульсах (4.2÷10)*A GeV/c* показал, что:

1) SRC – условие (признак) коротко действующих корреляции в пространстве быстроты – $(\Delta Y = /Y_i - Y_j | < 2)$ выполняется как для кумулятивных, так и для некумулятивных протонов.

2) $<\Delta Y(p^{cum})>$ - среднее расстояние в пространстве быстроты между *р*^{cum}кумулятивными протонами не зависит ни от *A*_i, - массового числа налетающего ядра, ни от энергии налетающего ядра – возможно имеет место гипотеза "мягкого" обесцвечивания –*Hypothesis of Soft Decoloration* – что является признаком проявления единого механизма адронизации кварков и глюонов.

3) $<\Delta Y(p^{cum})>$ - среднее расстояние в пространстве быстроты между *р^{сит}кумулятивными* протонами существенно меньше, чем соответствующие значения для *p^{ass}* сопутствующих и *p^s* протонов из мягких процессов.

4) Заключение третего пункта указывает на то, что струй создаются кумулятивными протонами.

5) Соотношение неопределенности в пространстве быстроты между ΔY и ΔP запишется так $\Delta P \ge h$ уменьшение ΔY вызывает увеличение ΔP – переданного импульса и увеличение угла вылета (экспериментальные данные подтверждают наше предположение).

6) Оценка радиуса взаимодействия адронов при имеющихся энергиях дало значение

 $r_{in} = 0.48.10^{-14} cm.$

Литература

- 1. Ангелов Н. и др., 1979, ОИЯИ 1 1224, Дубна;
- 2. Abdrakhmanov E. O.,...,Tevzadze Yu.V. et.al, JINR, E1-11517, Dubna; 1978.
- 3. Grigalashvili N. S.,..., Tevzadze Yu.V., Yad. Fiz. ; 1988, <u>48</u>, 476.
- 4. Соловьев М. И., ... Тевзадзе Ю. В. и др. Дубна, ОИЯИ; 1987, Р1-87-906.
- 5. Гаспарян А П ,..., Тевзадзе Ю. В. и др., ЯФ; 1987, <u>49,</u>192.
- 6. Аношин А.И., Балдин А.М. и др., 1982, ЯФ <u>36</u>, 409; Баатар Ц.и др. ЯФ,1982, <u>36</u>, 2(8) ,431.
- 7. Азимов Я. И. И др. Адронные струи в жестских процессах. МИФИ, Москва; 1984.
- 8. Балдин А.М. Краткое Сообщение по физике, №1(35); 1977, ЭЧАЯ; 1971, <u>8</u>, 429.
- 9. Burov V.V., Lukianov V. K. and Titov A.I., Phys. Lett. <u>B67</u>; 1977, 46.
- 10. Григалашвили Н. С. и др. Сообщения, Дубна, ОИЯИ; 1983, Р1-83-327.
- 11. Дремин И. М. И Леонидов А. В., УФН, <u>180</u>, ; 2010, №11, ст. 1167.
- 12. Голубятникова Е. С. и др., Дубна, ОИЯИ; 1986, Р2-86-183, Дубна, ОИЯИ; 1989, Р2-89-20.
- 13. Калинкин Б. Н., Шмонин В. Л. ЭЧАЯ; 1980, <u>11</u>, №3, 630.
- 14. Балдин А.М...., Метревели З. В. и др. Дубна, ОИЯИ; 1983, Р1- 83-483.
- 15. Олимов К. и др., ЯФ, <u>72</u>, №3, 604, 2009; ЯФ, 2010, <u>73</u>, №11, 1899.
- 16. Лукянов В. К., Титов А. И. ЭЧАЯ, 1979, <u>10</u>, №4, 815.
- 17. Блохинцев Д. И., ЖЭТФ., 1957, <u>8, </u>42.

Article received 2017-07-24