УДК 577.3

ПРОСТРАНСТВЕННАЯ СТРУКТУРА АНАЛОГА [MELEU3] МОЛЕКУЛЫ ОКТАРФИНА

Ахмедов Н.А., Аббаслы Р.М., Агаева Л.Н., Исмаилова Л.И.

Бакинский государственный университет, Институт физических проблем *AZ-1148*, *Баку, ул. Академика Захида Халилова, 23, Азербайджан* e-mail: Namig.49@bk.ru

Аннотация. Методом теоретического конформационного исследована пространственная структура аналога [MeLeu3] молекулы октарфина. Аминокислотная последовательность октарфина Thr1-Pro2-Leu3-Val4-Thr5-Leu6- $Phe7-Lys8-NH_2$ соответствует фрагменту 12-19 β -эндорфина. Установлено, что макрофагами октарфин связывается С cвысокой аффильностью специфичностью. Расчет молекулы выполнен с помощью метода теоретического конформационного анализа. Потенциальная функция системы выбрана в виде суммы невалентных, электростатических и торсионных взаимодействий и энергии водородных связей. Пространственная структура молекулы Thr1-Pro2-MeLeu3-Val4-Thr5-Leu6-Phe7-Lys8-NH2 рассчитана на основе низкоэнергетических конформаций молекулы октарфина. Показано, что пространственная структура аналога [MeLeu3] молекулы октарфина может быть представлена 11-ю низкоэнергетическими формами основной цепи. Найдены низкоэнергетические конформации молекулы, значения двугранных углов основных и боковых цепей аминокислотных остатков, оценена энергия внутрии межостаточных взаимодействий.

Ключевые слова: октарфин, аналог, теоретический конформационный анализ, пространственная структура, конформация.

Аминокислотная последовательность октарфина Thr1-Pro2-Leu3-Val4-Thr5-Leu6-Phe7-Lys8-NH $_2$ соответствует фрагменту 12-19 β -эндорфина. Установлено, что октарфин связывается с макрофагами с высокой аффильностью и специфичностью. Молекула октарфина представляет большой биологический интерес, поэтому для этой молекулы были синтезированы следующие аналоги октарфина:

```
Leu1-Pro2-Leu3-Val4-Thr5-Leu6-Phe7-Lys8-NH<sub>2</sub>
Thr1-Leu2-Leu3-Val4-Thr5-Leu6-Phe7-Lys8-NH<sub>2</sub>
Thr1-Pro2-Leu3-Val4-Val5-Leu6-Phe7-Lys8-NH<sub>2</sub>
Thr1-Pro2-Leu3-Val4-Thr5-Leu6-Leu7-Lys8-NH<sub>2</sub>
Thr1-Pro2-Leu3-Val4-Thr5-Leu6-Phe7-Leu8-NH<sub>2</sub>
```

Ингибирующая активность аналогов оказалась в 100 и более раз ниже, чем у октарфина. Показано, что октарфин стимулирует активность иммунокомпетентных клеток мыши in vitro и in vivo: при концентрации 1-10 нМ он увеличивал адгезию и распластывание перитональных макрофагов молекулы октарфина, способствовал перевариванию бактерий вирулентного штамма Salmonella typhimurium 415 in vitro. Внутрибрюшинное введение пептида приводило к

возрастанию активности перитональных макрофагов, а также Т- и В-лимфоцитов селезенки [1,2].

Нами изучена пространственная структура молекулы октарфина и [Leu2], [Val5], [Leu7] [Leu8], аналогов молекулы октарфина. Цель настоящей работы состоит в исследовании структурной организации [MeLeu3]- аналога молекулы октарфина.

Расчет молекулы выполнен с помощью метода теоретического конформационного системы выбрана в виде суммы невалентных, функция анализа. Потенциальная электростатических и торсионных взаимодействий и энергии водородных связей. Невалентные взаимодействия были оценены по потенциалу Леннарда-Джонса. Электростатические в монопольном приближении по закону Кулона с взаимодействия рассчитывались использованием парциальных зарядов на атомах. Конформационные возможности молекулы октарфина изучены в условиях водного окружения, в связи, с чем величина диэлектрической проницаемости принята равной 10. Энергия водородных связей, оценивалась с помощью потенциала Морзе.

При изложении результатов расчета использована классификация пептидных структур по конформациям, формам основной цепи и шейпам пептидного скелета. Конформационные состояния полностью определяются значениями двугранных углов основной и боковых цепей всех аминокислотных остатков, входящих в данную молекулу. Формы основной цепи фрагмента образуются сочетаниями форм R, B, L остатков в данной последовательности. Формы основной цепи дипептида могут быть разделены на два класса – свернутые (f) и развернутые (e) формы, которые названы шейпами. Все конформации группируются по формам основной цепи, а формы – по шейпам. Для обозначения конформационных состояний остатков использованы идентификаторы типа X_{ij} , где X определяет низкоэнергетические области конформационной карты $\varphi - \psi : R(\varphi, \psi = -180^{\circ} - 0^{\circ}), \quad B(\varphi = -180^{\circ} - 0^{\circ}, \psi = 0^{\circ} - 180^{\circ}), L(\varphi, \psi = 0^{\circ} - 180^{\circ})$ и $P(\varphi = 0^{\circ} - 180^{\circ}, \psi = -180^{\circ} - 0^{\circ}); ij...=11...,12...,13...,21... определяет положение боковой цепи (<math>\chi_{1}, \chi_{2}...$), причем индекс 1 соответствует значению угла в пределах от 0 до 120°, 2 – от 120° до - 120°, и 3 - от -120° до 0°. Обозначения и отсчеты углов вращения соответствуют номенклатуре IUPAC-IUB [3].

На первом этапе нами была исследована пространственная структура молекулы октарфина. Пространственная структура октарфина изучена фрагментарно, как и в предыдущих работах [4-6]. Вначале, на основе низкоэнергетических конформаций соответствующих аминокислотных остатков были изучены конформационные возможности N-концевого пентапептидного фрагмента Thr1-Pro2-Leu3-Val4-Thr5 и С-концевого тетрапептидного фрагмента Thr5-Leu6-Phe7-Lyz8-NH2. На основе результатов этих пента- и тетрапептидных участков исследована трехмерная структура всей молекулы октарфина. Оптимальные конформации молекулы, энергия которых не превышает 8.0 kkal/моль имеют 15 различных форм основной цепи. В отношении геометрии N-концевого тетрапептидного фрагмента Thr1-Val4 низкоэнергетические конформации октарфина распадаются на четыре группы (А-Д). Наименьшую свободную энергию имеют структуры группы А, предпочтительные и по внутренней энергии, и по энтропии. Впрочем, в отношении обоих факторов им сравнительно немного уступают наборы конформаций В и С. Энергетические вклады невалентных, электростатических, торсионных взаимодействий, их относительные энергии показаны в таблице 1. Пространственная структура аналога [MeLeu3] молекулы октарфина рассчитана на основе низкоэнергетических конформаций молекулы октарфина (таблица 1). Данный аналог получен метилированием третьего лейцина природной молекулы.

Таблица 1 Относительная энергия $(U_{\text{отн.}})$ и энергетические вклады невалентных $(U_{\text{нев.}})$, электростатических $(U_{\text{эл.}})$, торсионных $(U_{\text{торс.}})$ взаимодействий оптимальных конформаций молекулы октарфина

Группы	№	Шейпы	Конформации	$U_{\text{HeB.}}$	$U_{\mathfrak{I}}$	$U_{\text{Top.}}$	$U_{\text{отн.}}$
A	1	efeffee	$B_{12}RB_{21}R_1R_{12}B_{31}B_1B_{3222}$	-40.6	10.2	4.3	0
	2	efeeffe	$B_{12}RB_{23}B_1R_{12}R_{22}B_1B_{3122}$	-38.4	7.4	7.1	2.2
	3	efeefee	$B_{12}RB_{23}B_1R_{12}B_{31}B_1B_{3122}$	-38.0	9.0	5.8	3.0
	4	efeefff	$B_{12}RB_{23}B_1R_{12}R_{21}R_2R_{2122}$	-38.1	9.0	6.0	3.0
	5	efeefef	$B_{12}RB_{23}B_1R_{12}B_{21}R_1R_{2122}$	-35.6	9.3	5.5	5.3
	6	efeeeff	$B_{12}RB_{23}B_1B_{12}R_{32}R_1R_{3222}$	-38.3	10.3	7.4	5.6
В	7	eefffff	$B_{12}BR_{22}R_1R_{12}R_{21}R_2R_{2122}$	-40.5	8.5	7.0	1.1
	8	eefffee	$B_{12}BR_{22}R_1R_{12}B_{21}B_1B_{2122}$	-40.9	9.1	8.1	2.4
	9	eefffef	$B_{12}BR_{22}R_1R_{12}B_{21}R_1R_{2122}$	-36.2	10.4	6.6	6.9
С	10	effefee	$B_{12}RR_{21}B_1R_{12}B_{31}B_1B_{3122}$	-38.0	9.0	6.2	3.3
	11	effeffe	$B_{12}RR_{21}B_1R_{12}R_{22}B_1B_{3122}$	-37.4	8.3	7.8	4.7
	12	effefef	$B_{12}RR_{21}B_1R_{12}B_{21}R_1R_{2122}$	-35.8	9.4	4.5	4.2
	13	effefff	$B_{12}RR_{21}B_1R_{12}R_{21}R_2R_{2122}$	-37.4	10.4	5.6	4.7
	14	effeee	$B_{12}RR_{21}B_1B_{12}B_{21}B_3B_{1222}$	-33.9	9.8	3.8	5.8
D	15	eeeffee	$B_{12}BB_{21}R_1R_{12}B_{31}B_1B_{3122}$	-39.4	11.0	6.6	4.4

Известно, что метилирование аминокислотного остатка ограничивает конформационные возможности и предыдущего остатка и самого аминокислотного остатка. С другой стороны все функциональные группы аминокислотных остатков остаются без изменений. Поэтому, целесообразна замена аминокислотного остатка на N-метилированный. Энергетические вклады невалентных, электростатических, торсионных взаимодействий, и относительные энергии рассчитанных конформаций аналога [MeLeu3] молекулы октарфина показаны в таблице 2. Как видно из таблицы 2, относительные энергии рассчитанных конформаций изменяются в энегетическом интервале 0-24.2 ккал/моль. Энергия внутри- и межостаточных взаимодействий низкоэнергетических конформаций групп А и С показаны в таблице 3, а их геометрические параметры – в таблице 4. Стабильной конформацией аналога [MeLeu3] молекулы октарфина является В₁₂RB₂₃B₁R₁₂B₃₁B₁B₃₁₂₂ шейпа efeefee. В этой конформации вклад невалентных взаимодействий составляет (-31.7) ккал/моль, электростатических – (-8.7) ккал/моль, торсионных – (-6.0) ккал/моль. Здесь образуется водородная связь между атомами С=О основной цепи с Leu6 и между атомами N-H основной цепи с Lys8.

Таблица 2. Относительная энергия $(U_{\text{отн.}})$ и энергетические вклады невалентных $(U_{\text{нев.}})$, электростатических $(U_{\text{эл.}})$, торсионных $(U_{\text{торс.}})$ взаимодействий оптимальных конформаций аналога [MeLeu3] молекулы октарфина

Группы	№	Шейп	Конформация	U_{HeB}	U_{el}	U_{TOP}	$U_{\text{отн.}}$
A	1	efeffee	$B_{12}RB_{21}R_1R_{12}B_{31}B_1B_{3222}$	-27.8	10.4	5.4	5.1
	2	efeeffe	$B_{12}RB_{23}B_1R_{12}R_{22}B_1B_{3122}$	-31.5	7.6	7.9	1.1
	3	efeefee	$B_{12}RB_{23}B_1R_{12}B_{31}B_1B_{3122}$	-31.7	8.7	6.0	0
	4	efeefff	$B_{12}RB_{23}B_1R_{12}R_{21}R_2R_{2122}$	-31.5	9.9	6.4	1.9
	5	efeefef	$B_{12}RB_{23}B_1R_{12}B_{21}R_1R_{2122}$	-28.6	9.4	5.9	3.7
	6	efeeeff	$B_{12}RB_{23}B_1B_{12}R_{32}R_1R_{3222}$	-32.3	10.4	8.2	3.3
В	7	eefffff	$B_{12}BR_{22}R_1R_{12}R_{21}R_2R_{2122}$	-33.0	9.5	22.0	15.5
	8	eefffee	$B_{12}BR_{22}R_1R_{12}B_{21}B_1B_{2122}$	-30.3	10.6	15.2	12.5
	9	eefffef	$B_{12}BR_{22}R_1R_{12}B_{21}R_1R_{2122}$	-29.2	10.4	14.4	12.8
С	10	effefee	$B_{12}RR_{21}B_1R_{12}B_{31}B_1B_{3122}$	-24.9	8.9	4.3	5.4
	11	effeffe	$B_{12}RR_{21}B_1R_{12}R_{22}B_1B_{3122}$	-26.3	7.7	6.1	4.7
	12	effefef	$B_{12}RR_{21}B_1R_{12}B_{21}R_1R_{2122}$	-26.9	10.7	23.3	24.2
	13	effefff	$B_{12}RR_{21}B_1R_{12}R_{21}R_2R_{2122}$	-26.9	9.7	5.3	5.2
	14	effeee	$B_{12}RR_{21}B_1B_{12}B_{21}B_3B_{1222}$	-21.3	9.7	3.2	8.6
D	15	eeeffee	$B_{12}BB_{21}R_1R_{12}B_{31}B_1B_{3122}$	-24.8	10.5	5.8	8.5

В стабилизацию конформаций взаимодействие Thr1-Pro2 вносит вклад (-4.4) ккал/моль, взаимодействие MeLeu3-Val4 - (-2.3) ккал/моль, Val4-Phe7 - (-3.4) ккал/моль, Thr5-Leu6 - (-3.4) ккал/моль, Thr5-Phe7 - (-2.4) ккал/моль, Leu6-Lys8 - (-3.9) ккал/моль, Phe7-Lys8 - (-4.2) ккал/моль (табл.3). У природной молекулы относительная энергия этой конформации была 3.0 ккал/моль. Это означает, что она была низкоэнергетической и у ее аналога. Оказалось, что все конформации группы А являются низкоэнергетическими и в пяти из шести конформаций N-концевой пентапептидный фрагмент находится в шейпе efee.

Все три конформации группы В являются высокоэнергетическими, их относительная энергия изменяется в энергетическом интервале 12.5-15.5 ккал/моль. В группе С из пяти конформаций – в трех, относительная энергия изменяется в интервале 4.7-5.4 ккал/моль, относительные энергии других 8.6 ккал/моль и 24.2 ккал/моль. Самая низкоэнергетическая конформация $B_{12}RR_{21}B_1R_{12}R_{22}B_1B_{3122}$ шейпа effeffe имеет относительную энергию 4.7 ккал/моль (табл.2). Вклад невалентных взаимодействий в этой конформации составляет (-26.3) ккал/моль, электростатических взаимодействий 7.7 ккал/моль, торсионных взаимодействий 6.1 ккал/моль. С=О атомы Thr5 приближаются в пространстве к N-H атомам боковой цепи Lys8 и между ними образуется водородная связь. Thr1-Pro2 вносит вклад (-4.5) кал/моль, Val4-Phe7 — (-3.3) ккал/моль, Thr5-Lys8 — (-3.0) ккал/моль, Leu6-Phe7 — (-3.4) ккал/моль, Leu6-Lys8 - (-3.6) ккал/моль, Phe7-Lys8 — (-3.7) ккал/моль и конформация становится низкоэнергетической (таблица 3).

Расчет показал, что у самых низкоэнергетических пространственных структур аналога [MeLeu3]-молекулы октарфина боковые цепи аминокислотных остатков принимают положения, наиболее выгодные с точки зрения межмолекулярных взаимодействий с окружающей средой. Теоретический конформационный анализ аналога [MeLeu3]-молекулы октарфина привел к таким структурным организациям молекулы, которые не исключают реализацию гормоном целого ряда самых разнообразных функций, требующих строго специфических взаимодействий с различными рецепторами.

Таблица 3. Энергия внутри- и межостаточных взаимодействий (ккал/моль) в конформациях $B_{12}RB_{23}B_1R_{12}B_{31}B_1B_{3122}$ ($U_{\text{отн.}}$ =0 ккал/моль, верхняя строка), $B_{12}RR_{21}B_1R_{12}R_{22}B_1B_{3122}$ ($U_{\text{отн.}}$ =4.7 ккал/моль, нижняя строка) аналога (MeLeu3) молекулы октарфина

Thr1	Pro2	Meleu3	Val4	Thr5	Leu6	Phe7	Lys8	
2.1	-4.4	-0.5	-0.1	-0.1	0	0	1.2	Thr1
4.8	-4.5	-0.6	-0.1	0	0	0	1.3	
	0.7	-0.8	-1.3	0	0	0	0.1	Pro2
	0.7	-0.6	-0.3	-0.1	0	0	0.1	
		1.9	-2.3	-0.5	0	0	0.1	Meleu3
		-0.5	1.1	-0.5	0	-0.1	0.2	
			0.7	-1.9	-1.2	-3.4	0.1	Val4
			0.7	-1.5	-1.0	-3.3	-1.5	
				0	-3.4	-2.4	0	Thr5
				0.4	-1.2	-0.9	-3.0	
					-0.2	-1.3	-3.9	Leu6
					0	-3.4	-3.6	
						0.4	-4.2	Phe7
						0.3	-3.7	
							1.6	Lys8
							1.4	

Таблица 4. Геометрические параметры (град) оптимальных конформаций аналога MeLeu3 молекулы октарфина. (Значения двугранных углов даны в последовательности $\phi, \psi, \omega, \chi_1, \chi_2, \ldots$)

Остаток	efeefee	effeffe
Thr1	-4.1 151 174	-112 152 175
	53 -175 179	49 180 177
Pro2	-60 -78 175	-60 -82 -177
Meleu3	175 -110 98 180	169 -115 -99 -179
	-155 -54 171 -172	-179 69 179 175
Val4	-145 148 -179	-132 146 -176
	59 177 180	66 178 -178
Thr5	-109 -64 179	-107 -57 -169
	57 -179 174	-58 179 176
Leu6	-87 75 177	-66 -69 -174
	-75 66 180 172	-172 158 -171 180
Phe7	-99 147 -175	-101 143 -179
	62 84	66 86
Lys8	-98 81 179	-100 99 179
	-74 67 167	-75 67 166
	180 -177	179 179

ISSN 1512-1461

Известно, что при создании синтетических аналогов природной молекулы возникают три основные проблемы: 1) пептид должен быть стабильным в биологических средах, 2) он должен взаимодействовать со специфическими рецепторами, 3) препарат должен проникать к своим клеткам-мишеням. Аналог [MeLeu3]-молекулы октарфина отвечает вышеуказанным требованиям. Проведенные нами исследования показывают. пространственная структура аналога [MeLeu3]-молекулы октарфина представлена 11-ю низкоэнергетическими конформациями, а самого октарфина - 15-ю низкоэнергетическими конформациями. Если бы число низкоэнергетических конформаций аналога [Val5]-молекулы октарфина резко сократилось бы по сравнению с самой молекулой октарфина, было бы лучше. В этом случае биологические функции молекулы октарфина уменьшились, аналог мог бы выполнять только некоторые функции октарфина.

Работа была доложена на конференции: International Conference MODERN TRENDS IN PHYSICS 20–22 April 2017, BAKU

СПИСОК ЛИТЕРАТУРЫ

- 1. Некрасова Ю.Н., Садовников В.Б., Золотарев Ю.А., Наволоцкая Е.В. Свойства и механизм действия синтетического пептида октарфина. Биоорган.химия, 2010, Т.36, №5, с.638-645
- 2. Наволоцкая Е.В. Октарфин-неопиоидный пептид опиоидного происхождения. Международная конференция по биоорганической химии, биотехнологии и бионанотехнологии. Москва, ИБХ, 2014, с.38-39.
- 3. Axmedov N.A.,Ismailova L.I.,Agayeva L.N.,N.M.Gocayev N.M. The spetial structure of the cardio active peptides.Curren Topics in Peptide and Protein Research,2010, V.11,p.87-93.
- 4. Akhmedov N.A.,Ismailova L.I.,Abbasli R.M.,Agayeva L.N.,Akmedova S.R.Spatial Structure of Octarphin Molecule IOSR Journal of Applied Physics (IOSR-JAP),e-ISSN;2278-4861,V.8,Issue1 ver,III (Jan.-Feb.2016),PP 66-70.
- 5. Н.А.Ахмедов, Р.М.Аббаслы, Л.И.Исмаилова, С.Р.Ахмедова Пространственная структура аналога [Val5] молекулы октарфина Материалы XI международной научно-технической конференции «Актуальные вопросы биологической физики и химии БФФХ -2016», Севастополь 2016, том 1, стр.140-143

Работа	содержит 4	- таблицы.
--------	------------	------------

Article received 2017-09-12