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Abstract 

The compounds with the spin-triplet states (STS) find wide application in science and 
technology. Therefore, the investigation of the STS interaction with the lattice is of the 
great importance.  This interaction is characterized by the spin-lattice relaxation rates – in 
other words, by the rates of the longitudinal (with respect to the acting magnetic field) 
relaxation. The special attention of the experimenters is directed to the rates of the 
longitudinal relaxation at the separate transitions of STS, the measurement of which was 
realized earlier only by the high-frequency method (electron paramagnetic resonance).  In 
the given paper, the low-frequency method is suggested, enabling the measurement of the 
longitudinal relaxation rates at the STS separate transitions in the Gorter type experiment 
where the STS levels crossing is provided by the appropriate choice of the constant 
magnetic field value.   

Keywords: spin-triplet state, longitudinal relaxation rate, Gorter type experiment, 
relaxational resonance 

. 

The compounds with the spin-triplet state (STS) find the wide application at the realization of 
the nuclear dynamic polarization [1-3], in the molecular electronics [4-5] and in such optoelectronic 
devices, as light-emitting diodes, transistors and solar сells [6]. They play important role in 
photosynthesis [7] and at the creation of the "entangled" spin states, which are of interest at the 
elaboration of the quantum processors [8].  

In the given paper, we suggest the method, enabling the measurement of the longitudinal 
relaxation rates at the STS separate transitions by the Gorter method, i.e. by the observation of the spin-
system (SS) susceptibility to the low-frequency (LF) magnetic field. The relaxational spin dynamics in 
paramagnetic salts was investigated by the Gorter method before the electron paramagnetic resonance 
discovery [9]. However, could be, the method of the relaxational resonance will also be of interest for 
the studying of the spin relaxation in the molecular crystals with STS. It should be mentioned that this 
method needs only a low-frequency equipment and does not need an EPR spectrometer. 

Let us consider the SS of a sample with the STS, subjected to the constant magnetic field  B||Z  
and the LF varying magnetic field B1||X. Here X,Y,Z are the main axes of the quadrupolar interaction 
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tensor ( ) ( ) ( )2 2 21 / 3 1Q Z X YD S S S E S S = − + + − H , which, along with the Zeeman interaction 

Z B
Zg BSµ , forms the principal Hamiltonian of the problem Z

Ze Q Z B
Z

Qg BSµ+ = +H H . , ,X Y ZS S S  are the 
projections of the STS electron spin S=1 on the X,Y,Z axes. The SS interaction with the LF field 
( ) 12/ cosXXX B S Bg tµ ω  and the lattice are the perturbations of the principal Hamiltonian. 

For example, we would like to describe the suggested method of the measurement of the 
longitudinal relaxation rate ( ) 12 3

1 ||
T

−−

B X
 at the STS transition 2-3, which is characterized by its resonance 

quantum ( )2 2
23 Z B
Z D g B Eµω = − + + . This measurement should occur with the help of the 

observation of the dynamic susceptibility ( )XXχ ω  to the LF field with the frequency ω ~ ( ) 12 3
1T

−− , 
which is essentially smaller than all the three resonance frequencies of STS. The exact equations of the 
regular (non-relaxational) motion of the magnetization components 2 3

, ,X Y ZM −

 of the 2-3 transition have 
the form: 

 ( ) ( ) ( )2 3 2 3 1 3
23 1/ /2 / cosX Y X YX
Z

Y Z Y X B Xg g g gM M C M g B tω µ ω− − −−= −   

  

( )
( ) ( )( ) ( )

2 3 2 3
23

2 3 1 3
1

/

/ /2 2 / cos
Y X

Z Y Z Y X

Y
Z

X

Z Z X X B X

g g

g g g g

M M
A M C M g B t
ω

µ ω

− −

− −

−

−

=

−




              (1)   

( ) ( ) ( )2 3 1 2 2 3
1/2 2 / cosZ Y ZZ Y Z Y X B Xg gM C M A M g B tµ ω− − −− −= 

 

where , ,X Y Zg  are the diagonal components of the g -factor tensor,  Bµ  is the Bohr magneton, 

the values ZA  and ZC  are determined at the end of this paper. The derivation of these equations will be 
described in our another paper. 

It is supposed at the further description of the experiment scheme that the inequality D E>  
takes place. Then for the realization of the method the constant field should be fitted to the value 

2 2 / Z BD EB g µ−= . At that the 2-3 transition quantum 2-3 23
Zω  becomes zero, and the three-level SS 

turns effectively to the two-level one. The two other resonance quanta 12 13 2Z Z Dω ω= =   significantly  
exceed the LF field quantum, therefore the frequency resonances of the 1-2, 1-3 transitions will not be 
excited. This means that the precession of the magnetizations of these transitions around the Z axis 
does not takes place, i.e. the corresponding transverse to the Z axis  magnetization components are 

zero: 
1 2
1 3

, 0X YM
−
− = . 

As to the 2-3 transition magnetization, it is effectively subjected to the zero constant field and 
according to the experiment conditions feels only the LF filed B1||X  with the frequency ω ~ ( ) 12 3

1 ||
T

−−

Β X
 

and the value 1 02 cosH tµ ω . Therefore, according to [10], its only X-component relaxes to its 
instantaneous equilibrium value in this field. It follows from the above-mentioned facts that the 
equations (1) under the proposed experimental conditions come to the following equations: 
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 ( )
2 3
0 1
2 3

1 ||

2 3
2 3 2 cosX
X

H t
T

MM χ ω−

−

−
− −

−=
Β X

           

( ) ( ) ( )2 3
2 ||

2 3
2 3 2 3

1/ 22 / cosZ Y Z
Y

Y Z X B XA g g
T
MM M g B tµ ω

−

−
− −−= −

Β X

                                     (2)     

( ) ( ) ( )2 3
2 ||

2 3
2 3 2 3

1/ 22 / cosZ Z Y
Z

Z Y X B XA g g
T
MM M g B tµ ω

−

−
− −− +=

Β X

   

Here we suppose already the presence of the relaxation: of the longitudinal one (with the rate 

( )2 3
1 ||

T −

Β X
) along the X axis in the equation for  2 3

XM −  and of the transverse one (with the rate 

( )2 3
2 ||

T −

Β X
) in the equations for the transverse to the acting LF field components 2 3

YM −  и 2 3
ZM − . It 

should be noted that under these conditions the first equation of the (2) system appears to be 
disentangled from the two others. The system of the two latter equations in the stationary case has only 
the trivial stationary solution 2 3 0YM − = ; 2 3 0ZM − = . The calculation of the full X-component of the 
magnetization 2 32X Z XM A M −=  leads to the expression of the type of (III.39a) in [10], and, 
consequently, to the analogous values of the LF dynamic susceptibility 

( )
( )

2 3
0'

22 2 3
1 ||

1

Z

X
XX

T

χ
χ ω

ω

−

−
=

+
Β X

;                ( )
( )
( )

2 3 2 3
0 1 ||"

22 2 3
1 ||

1

Z

X
XX

T

T

χ ω
χ ω

ω

− −

−
=

+
Β X

Β X

,                                  (3)               

where   ( )2
2 3 20
0 3

Z X B
ZX

B L

g
A

k T
nµ µ

χ − = .                                                                                                                                            

The expression of the imaginary part ( )"
XXχ ω  of the complex dynamic susceptibility  (3) shows 

that as a result of such experiment the sample absorbs the energy of the LF field. Finding the varying 
field frequency max

ω , providing the maximal absorption – the maximal value of ( )"
XXχ ω , it is possible 

to extract the required value ( ) 12 3
1 max||

T ω
−− =
Β X

 (i.e. the so called relaxational resonance takes place)  

[11]). 

In the general form, the tensor of the LF complex susceptibility has only the diagonal elements; 
it is convenient to write them in the form of the Table: 
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LF susceptibilities in 
the constant fields 

( )
2 2

0

3
X B

XX
B

g n
k T
µ µχ ω = ×

 

( )
2 2

0

3
Y B

YY
B

g n
k T
µ µχ ω = ×

 

( )
2 2

0

3
Z B

ZZ
B

g n
k T
µ µχ ω = ×

 
 

 
B || Z  ( )2 2 3

1 ||ZA F T −

Β X
 ( )2 2 3

1 ||ZC F T −

Β Y
 

( )

2

1 3
1 ||

3 1

;

Z B

B

g Bth
k T

F T

µ

−

 
− × 

 

×
Β Z

 

0E =  

 
B || Y  

( )2 1 2
1 ||YA F T −

Β X
;  

0E >  ( )

2

1 3
1 ||

3 1

;

Y B

B

g Bth
k T

F T

µ

−

 
− × 

 

×
Β Y

 

0E =  

( )2 1 2
1 ||

;YC F T −

Β Z   
0E >  

 
B || X  ( )

2

1 3
1 ||

3 1

;

X B

B

g Bth
k T

F T

µ

−

 
− × 

 

×
Β X

 

0E =  

( )2 1 2
1 ||XC F T −

Β Y
; 

0E <   

( )2 1 2
1 ||XA F T −

Β Z
;  

0E <  

 

where ( )ααχ ω  describes the response of the α -component of the magnetization to the LF field 

directed along the α  axis,  in the items with  ( )2 3
1F T −  the constant field has the value 

2 2 / Z BB D E g µ= − ;
 
in the items with ( )1 2

1F T −  the constant field has the value ( ) ,2 / X Y BB E D E g µ= + ; 

subscript at ,X Yg  should be choosed according to the direstion of B ; in the items with  ( )1 3
1F T −  the 

constant field has the arbitrary value B >> D , also it is taken 0E =  in these latter items for the 
simplification of the result. Everywhere 2

, , , ,1 sinX Y Z X Y ZA = + Θ ; 2
, , , ,1 sinX Y Z X Y ZC = − Θ ; 

( ) ( ) ( ) ( )22 2 2sin / 2 / / 2 /Z X Y Z B X Y Z BD D g B D D E g B Eµ µ   Θ =   = − − + − − + ;         

the values of ,sin X YΘ  are obtained by the cyclic repositioning of the indices in the values , ,X Y ZD D D  

and by the using of the table from the monography [12]; ( )
( )

1
1 22

1

1
1

i j
i j

i j

i TF T
T

ω

ω

−
−

−

−
≡

+
. 

In conclusion we would like to note the following: if the spin-lattice relaxation is of the one-
phonon type and realizes according to the van Fleck mechnism, then  the values of the relaxation rates 
obtained with the help of the suggested method can be compared with the expressions obtained by us 
for the relaxation rates on the STS separate transitions, which will be published in our another paper.  
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