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ABSTRACT 
The applications of path integrals are growing by the day. The intimate connection of 
these mathematical constructs with the theory of stochastic processes has enabled their 
adoption as versatile tools of mathematical finance. In this article, we further this 
program and revisit some seminal results relating to asset pricing using the path integral 
framework.   

 
1. Introduction 
  
Significant progress seems to have been achieved towards the convergence of physics and finance, 
at least, insofar as the adoption of the underlying apparatus of probability, group theory, gauge 
theory, path integral formalisms etc. for the solution of complex problems is concerned. The use of 
these analytic tools as well as empirical analysis have unmasked several radical similarities between 
financial phenomena of stock price patterns, critical crashes etc. [1-12]. The linkage between 
physics and finance has a chequered history with pioneering contributions from Pareto [13] and 
Batchlier [14].  The distribution of wealth was empirically shown to follow a power law by Pareto. 
Batchlier used geometric Brownian motion for capturing the randomness embedded in stock price 
patterns and, thereby, unleashed a strong mathematical formulation for modeling of market based 
pricing.  However, the seminal work that gave unparalleled recognition to the role of physicists in 
finance was the Nobel prize winning contingent claims pricing model developed by Fischer Black 
& Myron Scholes [15] together with Robert Merton [16]. The problem was reduced to a PDE, 
converted to a diffusion equation and, thereafter solved for appropriate boundary conditions to 
closed form expressions for the pricing of contingent claims on financial assets.  
 
2. The Path Integral Formalism 
 
Path integrals constitute the contemporary framework of choice for exploring the theory of quantum 
fields, gauge theories in particle physics and string theory. Theories of economics and finance are also 
being premised on path integrals with methodologies being developed for the pricing of financial 
instruments in equilibrium and non-equilibrium market states.  
 
This technique was developed  by Wiener [17] and Kac [18] in context of stochastic processes and 
adapted by Richard Feynman [19, 20] for application in quantum field theory.   
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Path integrals have percolated to the realms of finance with some fervor with adaptations of the 
underlying techniques for pricing of contingent claims being extensively investigated [21, 22]. 
Application of the path integral formulation for path dependent options [23] and fixed income 
securities [24] have also been reported.  Variants of the approach with semigroup pricing kernels 
[25], Green’s function [26, 27] and the basic Feynman-Kac formula [28] in financial modelling are 
also conspicuous. 
 
3. Path Integrals in Financial Modelling: The Underlying Rationale 
 
At this juncture, the appropriateness of the underlying rationality of using the path integral 
formulation in finance needs to be examined. The dynamics of a classical deterministic system are 
usually described by the Euler-Lagrange equations that emerge as the outcome of the minimization 
of the “action” functional. This constitutes the “Least Action Principle” of classical mechanics. It is 
both convenient and conventional to write the “action” functional as an integral over time of a 
“Lagrangian” function that captures the dynamics of the system.  
 
The quantum mechanical version of this formulation involve an integration over all possible paths 
from the initial state of the system to its final state and hence, the name “path integration”. The 
procedure, in essence, comprises of (i) evaluating the action functional on each path connecting the 
final  state with the initial state of the system; (ii) defining an integration measure over the set of 
all possible paths as above (iii) exponentiating the negative of the classical action functional 
obtained in step (i) to get the weight of this path in the path integral; (iv) obtaining expectation 
values of the various dynamical attributes of the system that depend on paths by doing the 
integration over all possible paths. The path integration involves slicing of the time interval into 
equal partitions and thereafter taking limits as such partitions shrink to infinitesimals. The fact that 
the path integral formalism provides appropriate solutions of Schrodinger’s equation  which, in 
turn, is a transformed version of the diffusion equation akin to the Black Scholes equation of 
mathematical finance is an unmistakable pointer to the intimacy between quantum physics and 
mathematical finance, with “stochastic processes” being the “golden thread” intertwining the two 
disciplines. Stock price evolution over time has been shown, both empirically and by stochastic 
modeling, to represent a diffusion process obeying the Kolmogorov equation. Expectation values of 
quantum mechanical operators and/or stochastic variables of interest can be obtained by 
representing the dynamical evolution of the system as a time-dependent PDE and obtaining its 
Feynman–Kac solution. 
 
A correspondence can be established between the physical systems whose dynamics are captured 
by the “principle of least action” and financial systems that are believed to obey the “no arbitrage 
principle” [29-32]. This equivalence enables us to identify quantities performing the functions of 
the action functional and the Lagrangian in context of asset pricing equations.  
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As mentioned earlier, the underlying philosophy for modelling of financial processes has been by 
treating them as stochastic systems following some form of random time evolution. It immediately 
follows that expectations of various quantities contingent upon price paths would be obtainable by 
a framework akin to that for quantum systems.  This analogy naturally builds up a case for adopting 
path integrals as a powerful technique for financial modelling. The intimacy is well vindicated by 
the fact that both the Schrodinger and Black-Scholes equations present themselves as the diffusion 
equation on appropriate algebraic transformations. 
 
4. Path Integral Formalism: The Mathematics 
 
We shall begin our development of the formalism of path integrals with the framework in the 
context of the diffusion equation [33] (of which the Schrodinger equation and the Black Scholes 
equation are special cases) and then carrying on to apply this techniques for the purposes of 
computing quantities of interest for financial systems. By way of illustrating the technique, we 
solve the problem of the pricing of contingent claims with the path integral method.  
 
The general theory of path integrals is well documented [33]. We start from the diffusion equation, 
 

21
2

D U
t
ψ ψ ψ∂

= ∇ +
∂

         (1) 

 
which can be written in the form, 
 

( )A B
t
ψ ψ∂

= +
∂

          (2) 

 

with the substitution 21
2

A D≡ ∇  and B U≡ .  Both ,A B are simple operators, although their 

sum need not necessarily be a simple operator.    
 
The solution of eq. (2) can be written as, 
 
( ) ( ) ( ) ( ) ( )exp 0 0t t A B tψ ψ κ ψ= + =         (3) 

 
Trotter's formula allows us to write,  
 

( ) ( ) ( )exp lim exp exp
n

n
t A B tA n tB n

→∞
+ =            (4) 
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Substituting expressions for A & B as 21
2

A D≡ ∇  and B U≡ respectively in eq. (4), we obtain, on 

confining ourselves to one space dimension,  
 

2 2

2 2
1exp lim exp exp
2 2

n

n

d t t D dt D U U
dx n n dx→∞

       Κ ≡ + =        
       

     (5) 

 

To evaluate 
2

2exp
2

t D d
n dx

 
 
 

, we start with the Gaussian integral,  

 
2

21 1
2

z

e dz
π

∞ −

−∞
=∫           (6) 

 

and make the substitution 2
2
bz a y
a

 = − 
 

, 2dz ady=  representing a translation together 

with a rescaling. Substitution in eq. (6) yields, 
 

2
2

4
b

ay bya ae dye
π

∞ − +

−∞
= ∫          (7)    

 

whence, by setting, 
1

2
a

D
= , 

t db
n dx

= , we obtain,  

 
2

2
2

1 1exp exp
2 22

t D d t ddy y y
n dx D n dxDπ

  
= − +  

   

⌠

⌡

    (8)  

 
The maneuver using the Gaussian integral has enabled us to replace the second order derivative in 
the exponent of the integrand  by a first order derivative,  that operates as a translation generator, 
while adding a Gaussian integral.  
 
Eq. (8) is of the form,  
 

( )p dω ω ω ω=∫           (9) 
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where exp t dy
n dx

ω
 

=  
 

 is distributed as a Gaussian with probability density,  

 

( )
21 exp

22
yp d dy
DD

ω ω
π

 
= − 

 
        (10)  

 
so that, 
 

2

2exp exp
2

t D d t dy
n dx n dx

  
=   

   
       (11) 

 

Let us, now, return to the the expression 
2

2exp
2

n
t D d
n dx

  
  

  
of eq. (5). For each one of these n 

factors, 
2

2exp
2

t D d
n dx

 
 
 

, we introduce an independent Gaussian random variable jy  with the 

corresponding probability density ( )j jp dω ω  
21 exp

22
j

j

y
dy

DDπ
 

= −  
 

 with 1,2,...,j n= . 

Making these substitutions in eq. (5), and using eq. (11), we obtain, 
 

1

lim exp exp
n

jn j

t t dU y
n n dx→∞

=

  Κ =   
   

∏        (12) 

 
The following observations on eq. (12) are appropriate: 
 
(a) The expectation bracket stands for all n expectation values or Gaussian  integrals; 
(b) In each term of the product, the lower indexed 'jy s  are written to the  right, by 

convention; 

(c) The product in eq. (12) is an ordered product where a factor with 
d
dx

 is  followed by 

a factor with U(x), then followed by a factor with 
d
dx

 etc.  



GESJ: Physics 2018|No.1(18) 
ISSN 1512-1461 

 

60 

Since 
d
dx

 is the generator of infinitesimal spatial translations i.e. 

( ) ( )exp exp exp expd du f x f x u u
dx dx

   = +            
, we can use it to bring all the 

d
dx

 

terms in eq. (12) to the right. We have, on applying this identity to the terms 1,2j =  in eq. (12), 
 

( ) ( )2 1exp exp exp expt t d t t dU x y U x y
n n dx n n dx

      
            

 

( ) 2 2 1exp exp exp expt t t t d t dU x U x y y y
n n n n dx n dx

       = +                
 

( ) 2 2 1exp expt t t t t dU x U x y y y
n n n n n dx
      

= + + +      
         

   (13) 

 
Proceeding iteratively, we obtain: 
 

1
1 1

lim exp exp
n n n

j kn k j k k

t t t dU x y y
n n n dx+→∞

= = =

    
Κ = +         

∑ ∑ ∑    (14) 

with 1 0ny + ≡ . 
 

Now,  2
2j j
bz a y
a

 = − 
 

, 
1

2
a

D
= , 

t db
n dx

=  so that j j
t dy z D D
n dx

= +  and each jz  

is a standard Gaussian variate with mean zero and variance unity whence in the limit n →∞ , 

0jy →  and 2
jy D→ . 

1

n

k
k

y
=
∑ is a sum of n independent, identically distributed random 

variables, so that, by the Central Limit Theorem, it converges to the Gaussian distribution with 
mean zero and variance nD . Thus, the expression,  
 

1

k

k j
j

tW y
n =

= − ∑           (15) 

 
forms a Brownian motion, whence, for the Brownian motion increment 1k kdW W W −= − , we 
have,  
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( )
2

2
k

t tdW y D Ddt
n n

 
= − = = 

 
       (16)  

 
In terms of kW , we can write eq. (14) as, 
 

( )
1

lim exp exp
n

k n nn k

t dU x W W W
n dx→∞

=

   Κ = + − −     
∑     (17) 

 
This is the operator form of the propagator. To obtain the expression for the kernel of this operator, 
i.e. the function ( ), ;x t yΚ  that is a solution of eq. (1) in the form, 
 

( ) ( ) ( )0, ;t x dy x t y yψ ψ= Κ∫         (18) 

 
We have, 
 

( ) ( )( )0t x xψ ψ= Κ  

( ) ( )0
1

lim exp exp
n

k n nn k

t dU x W W W x
n dx

ψ
→∞

=

   = + − −     
∑  

( ) ( )0
1

lim exp
n

k n nn k

t U x W W x W
n

ψ
→∞

=

 
= + − −  

∑  

( ) ( ) ( )0
1

lim exp
n

k nn k

td U W x W
n

θ θ δ θ ψ θ
→∞

=

 
= + − −  

⌠

⌡

∑  where nx Wθ = −  (19) 

 
From eqs. (18) & (19), we get, 
 

( ) ( ) ( )
1

, ; lim exp
n

k nn k

tx t y U y W x W y
n

δ
→∞

=

 
Κ = + − −  

∑     (20) 

 
In the continuum limit of Brownian motion, we can assume ( )W s  as a Brownian motion path 

initiating at y i.e. ( )0W y= whence its value at s kt n=  is ( )ky W+ .  Eq. (20), then, becomes, 
 

( ) ( )( ) ( )( )
0

, ; exp
t

x t y U W s ds x W tδ Κ = −  ∫  
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( )( ) ( )( ){ }0
exp

t

tE U W s ds x W tδ = −  ∫  with ( )0W y=  

( )( )( )( )0
exp

t

xtE U W s ds= ∫         (21) 

 

where ( ) ( )( )( )xt tE E x W tζ ζδ= − . This the Feynman Kac formula. 

 
The expectation in eq. (21) is with respect to continuous time Brownian motion with 

( )2dW Ddt= .  
 
5.  Stochastic Process of Stock Prices  
 
It is conventional to model the stock price movements over an infinitesimal time interval 
( ),t t dt+  by the stochastic differential equation representing geometric Brownian motion [34], 
 

( ) ( ) ( )dS t S t dt S t dWµ σ= +         (22)  
 
where µ  is the expected drift rate (return) and σ  is the volatility of the stock price at time t  and 
dW  is the standard Brownian motion increment over the interval ( ),t t dt+ . This increment is 
normally distributed with mean 0 and variance dt  and can, therefore, be expressed as 

dW z dt=  where z  is the standard normal variate.  This equation is an Ito process where the 
coefficients of dt  and dW  are proportional to the instantaneous stock price S . it is emphasized 
that this model of stock prices holds over infinitesimal time intervals( ),t t dt+ . 
 
This model assumes that the instantaneous percentage return ( ) ( )dS t S t  on a stock is a function 
of the drift rate µ  and volatility σ  of the stock price. The drift rate and volatility are, themselves, 
constant over the infinitesimal time interval ( ),t t dt+ . Thus, the expected percentage return ( )µ  
required by investors over this infinitesimal interval from a stock is independent of the stock’s 
price. If investors require a certain expected return over ( ),t t dt+ when the stock price is 1S , 

then, ceteris paribus, they will also require the same expected return when it is 2S . It follows that 

the expected drift rate of the stock price over ( ),t t dt+ is ( )S tµ  and the corresponding expected 

change in stock price over this infinitesimal interval is ( )S t dtµ . As to the variance of the process, 

the model assumes that the variability ( )2σ  of the percentage return in ( ),t t dt+  is constant and 

independent of the stock price i.e. an investor is just as uncertain of the percentage return when 
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the stock price is 1S as when it is 2S . It follows that the standard deviation of the change in stock 

price in ( ),t t dt+ is ( )S tσ  . 
 
The corresponding price process over finite time intervals can be easily obtained by the Ito 

equation. We have, by setting, lnG Sξ≡ = , 
2

2 2

1 1, , 0
S S S S t
ξ ξ ξ∂ ∂ ∂
= = − =

∂ ∂ ∂
, 

( ) ( ) ( )dS t S t dt S t dWµ σ= + in the Ito equation [34] 
 

2
2

2

1
2

G G G GdG a b dt b dW
x t x x

 ∂ ∂ ∂ ∂
= + + + ∂ ∂ ∂ ∂ 

 for ( ) ( ), ,dx a x t dt b x t dW= +  that 

 
2

2
d dt dWσξ µ σ

 
= − + 
 

         (23)  

 

  whence
2

2,
2

d dt dtσξ µ σ
  

−  
  

N .  

Equivalently, 
2

2
0ln ln ,

2TS S T Tσµ σ
  

+ −  
  

N  thereby showing that the stock prices follow 

a lognormal distribution with ln TS  being normally distributed with mean  
2

0ln
2

S Tσµ
 

+ − 
 

 

and variance 2Tσ . 
 
The probability density function of a lognormal distribution is given by,  
 

( )
2

2

1 1 lnexp , 0
22

xf x x
x

µ
σπσ

 − = − >  
   

      (24) 

where ( )2ln ,x µ σN  . 

 
6. Fokker Planck Equation & Transition Probabilities 
 
We, now, derive the Fokker Planck equation [35-37] satisfied by the transition probabilities 

( ), ', 'p S t S t  corresponding to the stochastic process of eq. (22). In line with the prescription of 

the Efficient Market Hypothesis [38-40], we assume that the stock prices follow a Markov process, 
so that, for "' " 't t t> > , 
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( ) ( )"', "' ", " ', ' "', "' ", "P S t S t S t P S t S t∧ =       (25) 

 
Now, by the Chapman Kolmogorov eq., that holds for Markov processes, 
 

( ) ( ) ( )", " ', ' ", " , , ', 'P S t S t P S t S t P S t S t dS= ∫      (26) 

 

Since, 
( ) ( ) ( )* * *

0

, ,0 , ,0 , ,0
lim

t

P S t S P S t t S P S t S
t t∆ →

∂ + ∆ −
=

∂ ∆
, we have, for any differentiable 

function ( )*Sρ ,  

 

( ) ( )*
* *, ,0P S t S

S dS
t

ρ
∞

−∞

∂

∂
⌠

⌡

( ) ( ) ( )* *
* *

0

, ,0 , ,0
lim

t

P S t t S P S t S
S dS

t
ρ

∞

∆ →
−∞

 + ∆ −
=  

∆  

⌠

⌡

 

( ) ( ) ( )* *
* *

0

, ,0 , ,0
lim

t

P S t t S P S t S
S dS

t
ρ

∞

∆ →
−∞

 + ∆ −
=  

∆  

⌠

⌡

 

( ) ( ) ( )
( ) ( )

* * ** ** ** *

0 * * *

, , , ,01lim
, ,0t

S P S t t S t P S t S dS dS

t S P S t S dS

ρ

ρ

∞ ∞

−∞ −∞

∞∆ →

−∞

 + ∆ =  ∆ −  

∫ ∫
∫

 

( ) ( ) ( ) ( )( )** * ** * ** ** *

0

1lim , ,0 , ,
t

P S t S P S t t S t S S dS dS
t

ρ ρ
∞ ∞

−∞ −∞∆ →

 = + ∆ −  ∆ ∫ ∫  (27) 

 
where we have performed the following operations in arriving at eq. (27), 
 
(i) used the Chapman Kolmogorov eq. to write  
 

( ) ( ) ( )* * ** ** **, ,0 , , , ,0P S t t S P S t t S t P S t S dS
∞

−∞
+ ∆ = + ∆∫  

 
(ii) by using the fact that when 0t∆ → , * **S S→   whence 
 

( ) ( ) ( ) ( )* * * ** ** **, ,0 , ,0S P S t S dS S P S t S dSρ ρ
∞ ∞

−∞ −∞
=∫ ∫  

 

(iii) used the fact that ( )* ** *, , 1P S t t S t dS
∞

−∞
+ ∆ =∫  
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( ) ( ) ( ) ( ) ( )** ** ** ** * ** ** * **, ,0 , ,0 , ,S P S t S dS P S t S P S t t S t S dS dSρ ρ
∞ ∞ ∞

−∞ −∞ −∞
= + ∆∫ ∫ ∫  

 

By a Taylor’s expansion, we can write, ( ) ( ) ( ) ( )* **
* ** **

1 !

n

n

n

S S
S S S

n
ρ ρ ρ

∞

=

−
= +∑  so that eq. 

(27) takes the form, 
 

( ) ( ) ( ) ( )* **
** * ** ** ** *

0 1

1lim , ,0 , ,
!

n

n

t n

S S
P S t S P S t t S t S dS dS

t n
ρ

∞ ∞
∞

∆ →
=

−∞−∞

  −  + ∆  ∆    

⌠ ⌠
 
 

⌡⌡
∑  

( ) ( ) ( ) ( ) ( )** ** ** **

1
, ,0 n n

n
P S t S D S S dSρ

∞ ∞

=−∞

= ⌠
⌡

∑      (28) 

 

where ( ) ( ) ( ) ( )** * ** * **, *

0

1 1lim , ,
!

nn

t
D S S S P S t t S t dS

n t
∞

−∞∆ →
= − + ∆

∆ ∫   whence  

 
( ) ( ) ( )

0

1 1lim
!

nn

t
D S S t t S

n t∆ →
= + ∆ −  ∆

 and ( ) ( ) ( )0 0 0

1 1lim
!

nn

t t
D S S t t S

n t∆ → =
= + ∆ −  ∆

 

 
From eqs. (27) & (28), we get 
 

( ) ( )*
* *, ,0P S t S

S dS
t

ρ
∞

−∞

∂

∂
⌠

⌡

( ) ( ) ( ) ( ) ( )** ** ** **

1
, ,0 n n

n
P S t S D S S dSρ

∞ ∞

=−∞

= ⌠
⌡

∑  (29) 

 

For the stock price model of eq. (22), we have ( )1D Sµ= , ( )2 2 21
2

D Sσ=  and ( )2 0nD > = . Eq. 

(29), therefore, reduces to, 
 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

*
1* * ** ** ** **

22 **2 ** ** **

, ,0
, ,0

1 , ,0
2

P S t S
S dS S P S t S S dS

t

S P S t S S dS

ρ µ ρ

σ ρ

∞
∞

−∞
−∞

∞

−∞

∂
= +

∂

 
 
 

⌠

⌡

⌠

⌡

∫
  (30) 
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Integrating by parts, the terms on the RHS, making use of the appropriate boundary conditions on 
( )Sρ , we obtain,    

 

( ) ( ) ( ) ( ) ( ) ( ) ( )1** ** ** ** ** ** ** **
**, ,0 , ,0S P S t S S dS S P S t S S dS

S
µ ρ µ ρ

∞∞

−∞ −∞

∂  = −  ∂
⌠
⌡∫  

( ) ( ) ( )

( ) ( )

22 **2 ** ** **

2
2 **2 ** ** **

**2

1 , ,0
2

1 , ,0
2

S P S t S S dS

S P S t S S dS
S

σ ρ

σ ρ

∞

−∞

∞

−∞

 
 
 

∂   =   ∂   

⌠

⌡

⌠

⌡

     (31)  

 
Since the function ( )Sρ  is arbitrary, it follows from eq. (30) & (31) that,  
 

( ) ( ) ( ) ( )
** 2

** ** 2 **2 **
** **2

, ,0 1, ,0 , ,0
2

P S t S
S P S t S S P S t S

t S S
µ σ

∂ ∂ ∂    = − +    ∂ ∂ ∂   
(32) 

 

using ( ) ( ) ( ) ( )* **
* * ** **

, ,0 , ,0P S t S P S t S
S dS S dS

t t
ρ ρ

∞ ∞

−∞ −∞

∂ ∂
=

∂ ∂
⌠ ⌠
 
⌡ ⌡

. 

 
This is the Fokker Planck equation for the stochastic process (22). In general, eq. (32) has the form,  
 

( ) ( ) ( ) ( ) ( )
2

2 2
2

1, ', ' , ', ' , ', '
2

p S t S t S t p S t S t S t p S t S t
t S S

µ σ∂ ∂ ∂   = − +   ∂ ∂ ∂
 or 

( ) ( ) ( )
2

22 2
2

12
2

p pp p S S
t S S

σ µ σ µ σ∂ ∂ ∂
= − + − +

∂ ∂ ∂
     (33) 

 
with the boundary conditions, 
 

( ) ( )' : , ', ' 't t p S t S t S Sδ= = −         (34a) 

( )0 : 0, ', ' 0S p t S t= =          (34b) 

( ): , ', ' 0S p S t S t→∞ →          (34c) 

 
Justification of the boundary conditions follows from (i) at 't t= , stock price 'S S= , (ii) if the 
stock price vanishes at any point in time, it stays zero thereafter & vice versa  and, and on the other 
hand, if ( )0 0S > , by assumption, it can never become zero at any later time so that 
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( )0, ', ' 0p t S t =  essentially for 0S =  and (iii) the stock price  cannot increase unboundedly in a 

finite time interval. 
  
To solve eq. (33) subject to the boundary conditions (34), we make the following substitutions,  
 

( ) ( )1, ', ' ,
'

p S t S t f x
S

τ=          (35a) 

' xS S e=            (35b) 

( )2'
2

t t τ
σ

= +           (35c) 

 
whence we get 
 

[ ] [ ]
2

2 3 2f f fk k f
x xτ

∂ ∂ ∂
= + − + −

∂ ∂ ∂
 with 2

2k µ
σ

=      (36) 

 
and boundary conditions 
 

( ) ( )0 : ,0 1xf x eτ δ= = −          (37a) 

( ): , 0x f x τ→ −∞ →          (37b) 

( ): , 0x f x τ→ +∞ →          (37c) 
 
To convert eq. (36) to a diffusion eq. we make a second substitution, 
 

( ) ( ), ,xf x e g xα βττ τ+=          (38a) 

( )1 3
2

kα = −           (38b) 

( ) ( )22 13 2 1
4

k k kβ α α= + − + − = − −       (38c) 

 
Substitution from eq. (38) in eq. (36) and simplification yields the diffusion eq. 
 

( ) ( )
2

2, , 0Lg x g x
x

τ τ
τ

 ∂ ∂
≡ − = ∂ ∂ 

       (39) 

 
with the boundary conditions, 
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( ) ( ) ( )3 /20 : ,0 1k x xg x e eτ δ− −= = −        (40a) 

( ) ( )2

0 : ,0 0 0
x

xg x e ατ α
→∞

−= → >         (40b) 

( ) ( )2

0 : , 0 0
x

xg x e ατ τ α
→∞

−> → >         (40c) 
 
To solve eq. (40), we consider the general diffusion eq.  
 

( ) ( ), ,Lg x f xτ τ=           (41) 
 
Let the Green function for the problem be  
 
( ), ; ', 'G x xτ τ           (42) 

 
satisfying  
 

( ) ( ) ( ), ; ', ' ' 'LG x x x xτ τ δ δ τ τ= − −        (43) 
 
We, then, have, from the theory of Green’s functions,   
 

( ) ( ) ( ) ( ) ( ), , ' ' ' ' ', 'Lg x f x dx dt x x t t f x tτ τ δ δ= = − −∫∫  

( ) ( ) ( ) ( )' ' , ; ', ' ', ' ' ' , ; ', ' ', 'dx dt LG x x f x t L dx dt G x x f x tτ τ τ τ= =∫∫ ∫∫  

( ) ( ) ( ), ' ' , ; ', ' ', 'g x dx dt G x x f x tτ τ τ= ∫∫       (44) 

 
where the penultimate step follows from the linearity of L  and the fact that its domain of action is 
on ( ),x τ  and not ( )', 'x τ . The final step follows from the completeness of the basis states. From 
eq. (43), we have 
 

( ) ( ) ( )
2

2 , ; ',0 'G x x x x
x

τ δ δ τ
τ

 ∂ ∂
− = − ∂ ∂ 

      (45) 

 
Taking Laplace transform in t space  and writing ( ) ( )L , ; ',0 , ; ',0G x x G x s xτ =  

 , we have 

( ) ( ), ; ',0
L , ; ',0

G x x
sG x s x

t
τ∂ 

= ∂ 
  so that eq. (45) reduces to, 
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( ) ( )
2

2 , ; ',0 's G x s x x x
x

δ
 ∂

− = − ∂ 
  since ( )L 1δ τ =   .    (46) 

 
Now, taking the Fourier transform in x space , we get 
 

( ) ( )1, ; ',0 , ; ',0
2

ikxG x s x dkF k s x e
π

= ∫          (47) 

 
with the inversion 
 

( ) ( ), ; ',0 , ; ',0 ikxF k s x dxG x s x e−= ∫         (48) 

 
whence  eq. (46) reduces to  
 

( ) ( )2 ', ; ',0 ikxs k F k s x e−+ =         (49) 

 

as 
( ) ( )

2
2

2

, ; ',0
F , ; ',0

G x s x
k F k s x

x
 ∂

= − ∂ 


  and ( ) 'F ' ikxx x eδ −− =   . 

 

From eq. (49) ( ) ( )
'

2

1, ; ',0 ikxF k s x e
s k

−=
+

  whence, inverting the Laplace transform, we get, 

 

( ) 2 ', ; ',0 k ikxF k x e eττ − −=          (50) 
 
Inversion of the Fourier transform yields, 
 

( ) ( )1, ; ',0 , ; ',0
2

ikxG x x dkF k x eτ τ
π

= ∫  

( ) 2'1
2

ik x x kdke τ

π
− −= ∫

( )2 '
1

2

x x
k ik

dke
τ

τ

π

 −
− − 

 = ⌠
⌡

( ) ( )
2

2'
'

4
2

2

x x
x x

k ie dke
ττ

τ

π

−
−  −

− − 
 = ⌠

⌡

( )2'
1 24

2

x x

e τ π
π τ

−
−

 =  
 

( )2'
4

4

x x

e τ

πτ

−
−

=         (51) 

  
Using the Green function obtained above, we can obtain the final solution as, 
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( ) ( ) ( ), ' , ; ',0 ',0g x dx G x x g xτ τ
+∞

−∞
= ∫

( )

( )
2'

41 ' ',0
4

x x

dx e g xτ

πτ

−+∞ −

−∞
= ⌠

⌡
 

( )
( ) ( )

1 3 ln 22 ln1 1 exp
44

y k u
u e x uedu u

u
δ

τπτ

+∞
− −

=

−∞

 −
= − − 

  

⌠


⌡

21 exp
44
x
τπτ

 
= − 

 
 (52) 

 
Substituting for ( ),g x τ  in eq. (38), we obtain,  
 

( ) ( ) ( )
2

21 1 1, exp 3 1 exp
2 4 44

xf x k x kτ τ
τπτ

  = − − − −     

( ) 2
1

exp
44

x x ke τ
τπτ

−  − −   = − 
  

       (53) 

 

Again, from eq.(35), using 2

2k µ
σ

= , so that, ( ) ( )( )21 2 'k t tτ µ σ− = − −  and, on simplification, 

we obtain,    
 

( )
( ) ( )

( )

( )

22

22

ln '
' 21, ', ' exp

2 '2 '

S t t
S

p S t S t
t tS t t

σµ

σπ σ

     − − −        = − −−  
 
 

  (54) 

 
In terms of ln Sξ =  , the transition probability takes a particularly simple form as, 
 

( )
( )

( ) ( )

( )

22

22

' '
21, ', ' exp

2 '2 '

t t
p t t

t tt t

σξ ξ µ
ξ ξ

σπσ

    − − − −  
   = − −−  
 
 

  (55) 

  
7. Finite-time Transition Probabilities and the Path Integral 
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Using the expression for the transition probability given by eq. (55), we can write the probability 
of a finite transition of stock price from ( )', 'S t  to ( )", "S t as, 
 

( ) ( ) ( )'', " ', ' '', " , , ', 'p t t d p t t p t tξ ξ ξ ξ ξ ξ ξ= ∫      (56) 

 
with " ln "Sξ =  and ' ln 'Sξ = . The integral represents summation of contributions of 
probabilities of the transition from ( )', 'S t  to ( )", "S t  by all possible intermediate paths from 

( )', 'S t  to ( )", "S t  i.e. ( ) ( ) ( )', ' , ", "S t S t S t→ → .  
 
Using eq. (55), we can write eq. (56) as, 
 

( ) ( ) ( )( )

( ) ( )

( )

( ) ( )

( )

2

22

2 22

1'', " ', '
2 " '

" "
2

"1exp
2

' '
2

'

p t t
t t t t

t t

t t
d

t t

t t

ξ ξ
πσ

σξ ξ µ

ξ
σ σξ ξ µ

= ×
− −

      − − − −       +  −  −      − − − −         −   

⌠








⌡

    (57) 

 

Partitioning the time interval ( )', "t t into ( )1n +  sub-intervals each of length 
" '

1
t tt
n
−

∆ =
+

, we can 

write, in a manner analogous to eq. (57), 
 

( ) ( ) ( ) ( )1 1 1 1 1", " ', ' ... ", " , , , ... , ', 'n n n n n n np t t d d p t t p t t p t tξ ξ ξ ξ ξ ξ ξ ξ ξ ξ
+∞

− −−∞
= ∫   

( )( ) ( )
221

1 121 22 1

1 1... exp
2 22

n

n k kn
k

d d t
tt

σξ ξ ξ ξ µ
σπσ

+∞
+

−+
=

−∞

    = − − − − ∆   ∆  ∆    

⌠


⌡

∑  

( )

( ) ( )

( )

1 2 1 22 2
1

2211 22 1
2

1

2 ... 2
1

12 exp
2 2

n

n
k k

k

d t d t

t t
t

πσ ξ πσ ξ

ξ ξ σπσ µ
σ

+∞ − −

+
−

=
−∞

   ∆ ∆ ×      
=   −   ∆ − − − ∆   ∆     

⌠




⌡

∑
   (58) 
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Now, in the limit n →∞ , 0t∆ →  with ( ) ( )1 " 'n t t t+ ∆ = − , we can write 
( )1k k

t
ξ ξ −−

∆
 as the 

differential 
t
ξ ξ∂
=

∂

  . This enables us to identify the equivalence 2

1
2

ξ
σ

with the kinetic energy 

term of a Lagrangian, 
 

( )
22

2

1, ,
2 2

t σξ ξ ξ µ
σ

  
= − −  

  
L            (59) 

 
In terms of this Lagrangian, the finite time transition probability takes the form,  
 

( )
( )

( )

( ) ( )( )
( )

( )" " 1 22

"1 22

'' '

2
1'', '' ', '

2 exp , ,

t

t

tt

t
p t t

t d

ξ ξ

ξ ξ

πσ ξ
ξ ξ

πσ ξ τ ξ τ τ τ

= −

=

 ∆ ×  
=

 ∆ − 
 

⌠



⌠
⌡⌡

L



 

D
  (60) 

It may be noted that the coupled term in the Lagrangian viz. 
2

2

1
2
σξ µ

σ
 

− 
 
  is independent of 

the paths and hence, can be taken outside the path integral. This is shown below: 
 

( )

( ) ( )

2 2 2" "

2 2 2' '

"2 2 2

2 2
'

1 1 1 " '
2 2 2

1 1 " '
2 2 2

t t

t t

t

t

d d

d d
d

σ σ σµ ξ τ µ ξ µ ξ ξ
σ σ σ

σ σµ ξ τ τ µ ξ ξ
ξ σ

     
− = − = − −     

     

   
− − = − −   

   

⌠

⌡

∫ ∫ 

  (61) 

 
We can, thus, write eq. (60) as, 
 

( )
( )

( )

( )
( )

( )

2

1 2 22

" " " 221 22 2
2

'' '

1 1'', '' ', ' exp " '
22

12 exp
2 2

t t

tt

p t t
t

t d

ξ ξ

ξ ξ

σξ ξ µ ξ ξ
σπσ

σπσ ξ ξ µ τ
σ

=

−

=

  
= − − ×  

 ∆  

     ∆ − + −           

⌠ ⌠
  ⌡⌡

 D

   (62) 
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( )
( )

( ) ( ) ( )
( )

( )

2

1 2 22

" " 22"1 22 2
2 '

' '

1 1exp " '
22

12 exp " '
2 2

t
t

t
t

t

t d t t

ξ ξ

ξ ξ

σµ ξ ξ
σπσ

σπσ ξ ξ τ µ
σ

=

−

=

  
= − − ×  

 ∆  

     ∆ − + − −           

⌠


⌡

∫  D

 

( )
( ) ( )

( ) ( )
( )

( )

22 2

1 2 2 22

" "
"1 22 2

2 '
' '

1 1 1exp " ' " '
2 2 22

12 exp
2

t
t

t
t

t t
t

t d
ξ ξ

ξ ξ

σ σµ ξ ξ µ
σ σπσ

πσ ξ ξ τ
σ

=
−

=

       = − − + − − − ×      
    ∆     

  ∆ −     
⌠

⌡ ∫  D

 (63) 

 
8. Evaluation of the Path Integral 
 
To evaluate the path integral (63), we consider the path integral 
 

( )
( )

( )

( )" "
"1 22 2

1 2 2 '2
' '

1 12 exp
22

t
t

t
t

t d
t

ξ ξ

ξ ξ

πσ ξ ξ τ
σπσ

=
−

=

  ∆ −     ∆

⌠

⌡ ∫  D  

( )
( ) ( )

( )

( )" " 2

1 2 12
1 2 22 01

' '

1 1lim 2 exp
22

t

N N
n n

N n
nn

t

d t t
tt

ξ ξ

ξ ξ

ξ ξ
πσ ξ

σπσ

=

− +
→∞

==
=

  −    = ∆ − ∆    ∆ ∆    

⌠


⌡

∑∏
 

  

( )
( ) ( )

( )

( )" "
21 22

11 2 22 01' '

1 1lim 2 exp
22

t N N

N n n n
nnt

d t
tt

ξ ξ

ξ ξ

πσ ξ ξ ξ
σπσ

=
−

→∞ +
===

  = ∆ − −    ∆ ∆

⌠

⌡

∑∏     (64) 

where the time interval ( ) ( )" ' 1t t N t− = + ∆ . The next step in the simplification involves the use 
of the following identity, 
 

( ) ( )2 2exp expn n a n n n bdξ α ξ ξ β ξ ξ
∞

+ −−∞
   − − − −   ∫  

( ) ( )
2

2exp n a n b
n n n a n bd αξ βξ αβξ α β ξ ξ ξ

α β α β

∞

+ −
+ −

−∞

  +
= − + − − −  + +   

⌠

⌡

 

( )2exp n a n b
αβ πξ ξ
α β α β+ −

 
= − − + + 

       (65) 
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For 1n = , using 2

1
2 t

α β
σ

= =
∆

, 1a b= = ,  we get, 

( ) ( )2 2

1 1 0 2 12 2

1 1exp exp
2 2

d
t t

ξ ξ ξ ξ ξ
σ σ

∞

−∞

   − − − −   ∆ ∆   
⌠

⌡

       

( )
1 2

2

2 02 2

1 1 1 1exp
2 2 22 t t

ξ ξ
πσ σ

−     = − −    ∆ ∆    
       (66) 

 
so that, 
 

( ) ( ) ( )2 21 22
1 0 2 12 2

1 12 exp exp
2 2

d t
t t

πσ ξ ξ ξ ξ ξ
σ σ

∞
−

−∞

    ∆ − − − −      ∆ ∆   
⌠

⌡

      

( )2

2 02

1 1 1exp
2 2 2t

ξ ξ
σ

  = − −  ∆   
         (67) 

 
Proceeding iteratively,  
 

( ) ( ) ( )2 21 22
2 2 0 3 22 2

1 1 1 12 exp exp
2 2 2 2

d t
t t

πσ ξ ξ ξ ξ ξ
σ σ

∞
−

−∞

     ∆ − − − −       ∆ ∆    

⌠

⌡

      

 

( )2

3 02

1 1 1exp
3 23 t

ξ ξ
σ

  = − −  ∆   
          (68) 

 
Performing all the N  integrals, we obtain, 
 

( )
( )

( )

( )" "
"1 22 2

1 2 2 '2
' '

1 12 exp
22

t
t

t
t

t d
t

ξ ξ

ξ ξ

πσ ξ ξ τ
σπσ

=
−

=

  ∆ −     ∆

⌠

⌡ ∫  D   

( ) ( ) ( )2

1 01 2 22

1 1 1exp
1 22 1

NN tN t
ξ ξ

σπσ
+

  = − −  + ∆   + ∆   

     (69) 

 
which on taking the limit N →∞  , ( )1 " 'N t t t+ ∆ = − gives 
   

( )
( )

( )

( )" "
"1 22 2

1 2 2 '2
' '

1 12 exp
22

t
t

t
t

t d
t

ξ ξ

ξ ξ

πσ ξ ξ τ
σπσ

=
−

=

  ∆ −     ∆

⌠

⌡ ∫  D     
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( ) ( ) ( )2

1 01 2 22

1 1 1exp
" ' 22 " '

Nt tt t
ξ ξ

σπσ
+

  = − −  −   −   

   

( ) ( ) ( )2

1 2 22

1 1 1exp " '
" ' 22 " ' t tt t

ξ ξ
σπσ

  = − −  −   −   

      (70) 

 
Substituting from eq. (70) in eq. (66), we obtain the expression for the finite time transition 
probability as, 
 

( )
( ) ( ) ( ) ( )

22

1 2 22

1 1'', '' ', ' exp " ' " '
2 " ' 22

p t t t t
t tt

σξ ξ ξ ξ µ
σπσ

    = − − − − −   −  ∆    
 (71) 

 
9. The Ito Lemma 
 
Let ( )ψ ξ  be a continuous, twice differentiable function of ξ  where ξ  follows the stochastic 

differential eq. (23) i.e. 
2

2
d dt dWσξ µ σ

 
= − + 
 

. Then, the transformation eqs. are given by, 

 

ψ ξ
ψ ψσ σ σ
ξ ξ

∂ ∂
= =
∂ ∂

 

22 2 1
2 2 2 2

ψ

ψ ξ

σσ ψ σµ µ
ξ ψ

    ∂ ∂
− = − +       ∂ ∂     

 

2 2 1
2 2 2

ψ
ψ

ψ ξ

σσ ψ σµ µ σ
ξ ψ

∂   ∂
− = − +   ∂ ∂   

 

2 1
2 2

ψ σ ξ ψ ψµ σ σ
ξ ψ ξ ξ ξ
     ∂ ∂ ∂ ∂ ∂

= − +     ∂ ∂ ∂ ∂ ∂    
 

2 2
2

2

1
2 2
σ ψ ψµ σ

ξ ξ
   ∂ ∂

= − +   ∂ ∂  
 since 0σ

ξ
∂

=
∂

. 

 



GESJ: Physics 2018|No.1(18) 
ISSN 1512-1461 

 

76 

Thus, the variable ψ  has the drift rate  
2 2

2
2

1
2 2
σ ψ ψµ σ

ξ ξ
   ∂ ∂

− +   ∂ ∂  
 and the variance rate  

ψ
ψσ σ
ξ

∂
=
∂

and, therefore follows the stochastic process given by the stochastic differential eq.  

 
2 2

2
2

1
2 2

d dt dWσ ψ ψ ψψ µ σ σ
ξ ξ ξ

   ∂ ∂ ∂
= − + +   ∂ ∂ ∂  

     (72) 

 
This is, precisely, Ito’s Lemma. 
 
10. The Path Integral Solution Satisfies Fokker Planck Equation 
 
The transition probability density of eq. (71) can be abbreviated by setting "t t t− = ∆   and writing 
it as, 
 

( )
( )

22

22

'
21", , exp

22

t
p t t t

tt

σξ ξ µ
ξ ξ

σπσ

    − − − ∆  
   + ∆ = − ∆∆  
 
 

    (73) 

 
Also, from eq. (56), we obtain 
 

( ) ( ) ( )'', " ', ' '', " , " , " ', 'p t t t d p t t t p t tξ ξ ξ ξ ξ ξ ξ+ ∆ = + ∆∫     (74) 

 
Writing "ξ ξ θ− =  , "ξ ξ θ= −  and using eqs. (73) & (74), we get, 
 

( ) ( )

22

22

21", " , exp " , " ', '
22

t
p t t t d p t t

tt

σθ µ
ξ ξ θ ξ θ ξ

σπσ

    − − − ∆  
   + ∆ = − + ∆∆  
 
 

⌠





⌡

 (75) 

 
Expanding the exponential in the integral to first order in t∆  , we get,  
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( ) ( )

22

22

21", " , exp " , " ', '
22

t
p t t t d p t t

tt

σθ µ
ξ ξ θ ξ θ ξ

σπσ

    − − − ∆  
   + ∆ = − + ∆∆  
 
 

⌠





⌡

 

( ) ( ) ( )

22 2 2 2

2 2 4

22

2 2

2 2

2

exp 1 ....
2 2 2

1 11 ....
2 2 2

", " ', ' ", " ', ' ", " ', '
2

d
t

t
t

p t t p t t p t t

θ θ σ θ σθ µ µ
σ σ σ

σµ
πσ σ

θξ ξ θ ξ ξ ξ ξ
ξ ξ

+∞

−∞

      
− × − − + − ×      ∆        

  
− − ∆ + ×  ∆    

 ∂ ∂
+ + ∂ ∂ 

⌠








⌡

  (76) 

 
Simplification of eq. (76) gives, 
 

 ( ) ( )

( )

( )

2

2
2

2

", " ', '
2

", " ', ' ", " ', '
", " ', '1

2

p t t

p t t t p t t t
p t t

ξ ξσµ
ξ

ξ ξ ξ ξ
ξ ξ

σ
ξ

 ∂ 
− −   ∂  + ∆ − ∆ ∂ 

 ∂ 

  (77) 

 
Expanding the LHS of eq. (77) in powers of t∆ , we get,  
 

( ) ( ) ( )", " ', ' ", " ', ' ", " ', '
"

p t t t p t t t p t t
t

ξ ξ ξ ξ ξ ξ∂
+ ∆ + ∆

∂
     (78) 

 
From eqs. (77) & (78), we obtain,  
 

( ) ( ) ( )22
2

2

", " ', ' ", " ', '1", " ', ' 0
2 2

p t t p t t
p t t

t
ξ ξ ξ ξσξ ξ µ σ

ξ ξ
∂ ∂ ∂

+ − − = ∂ ∂ ∂ 
 (79) 

 
which is the Fokker Planck eq. for the given process. Transforming to the original variables, we get 
the Fokker Planck equation (33).  
 
11. The Black Scholes Equation 
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The celebrated Black Scholes  equation for the pricing of contingent claims is given by, 
 

( ) ( ) ( ) ( )22
2

2

, , ,
,

2
C S t C S t C S t

S rS rC S t
S S t

σ ∂ ∂ ∂
+ − = −

∂ ∂ ∂
    (80) 

 
with the terminal condition ( ) ( )", " max 0, "C S t S K= −  where the symbols have their usual 
meaning.  In terms of ln Sξ = , eq. (80) takes the form,  
 

( ) ( ) ( ) ( )22 2

2

, , ,
,

2 2
t t t

t

C t C t C t
r rC t

t
ξ ξ ξσ σ ξ
ξ ξ

∂ ∂ ∂ 
+ − − = − ∂ ∂ ∂ 

   (81) 

 
The solution to the above eq. takes the form, 
 

( ) ( )
[ ] ( )" '

', '', ' ", "r t t
tC t e E C tξξ ξ− −=           (82) 

 
where the probability measure for the expectation value is the risk neutral measure conditioned 
upon the initial state  ' ln 'Sξ =  at time 't t= . 
 
In the path integral formalism, we can write the above solution as, 
 

( ) ( ) ( ) ( ) ( )
( )

( )" " "" '

'' '
', ' ", " exp "

t tr t t

tt
C t e C t dt t d

ξ ξ

ξ ξ
ξ ξ ξ ξ

+∞ =
− −

=−∞

 
= − 

 

⌠ ⌠ ⌡⌡
∫ L D    (83) 

 
where the Lagrangian is given by,  
 

22

2

1
2 2

d r
dt
ξ σ

σ
  

= − −  
  

L             

 
In terms of the transition probabilities ( )", " ', 'p t tξ ξ , we can write the solution for ( )', 'C tξ as, 
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+∞
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−∞

    − − − −  
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⌠





⌡

 (84) 

 
which can be performed as a Gaussian integral to obtain the Black Scholes formula for a European 
call option.     
 
12. Conclusion 
 
A comprehensive analysis of stock market price patterns has been empirically examined in [41-45]. 
A phenomenological study [45] reported that the tails of probability distributions of returns arising 
from stock price fluctuations of individual stocks over timescales that varied over periods of 5 min. 
to 16 days exhibited power law decay. However, for larger holding periods, a gradual shift towards 
Gaussian behavior was perceptible. For the purposes of this study, data encompassing three US 
stock markets extracted from two databases was considered. Similar patterns of returns were 
observed from price data obtained from the NIKKEI & Hang Sang indices [41]. 
 
Empirical research of stock price also evidences price patterns akin to the physical phenomena of 
anomalous diffusion. Super-diffusion with time dependent variance according as a power law tα 

with α > 1.0 is observed in some studies. In fact, many stock market indices are empirically shown 
to temporal evolution with variances undergoing anomalous super-diffusion [46-49]. It is pertinent 
to point out that numerous well-examined physical systems show properties of   anomalous 
diffusion.  Some instances of relevance include fluid motion in rapidly rotating annulus exhibiting 
chaotic dynamics [50], particle moving  in periodic potential [51], mass transfer of fluid through 
porous medium [52-53], dynamics of thin films, crystal growth [54,55], heat transfer by radiation 
[56] and many others. An immediate approach to modeling of such systems is facilitated by the 
Fokker Planck equation [35] that is a convenient formalism for describing anomalous diffusion 
under time evolution. There is no doubt that these empirical properties of price patterns lay strong 
ground for the adoption of the techniques of contemporary physics for the analysis and further 
development of this intriguing field.  
 



GESJ: Physics 2018|No.1(18) 
ISSN 1512-1461 

 

80 

References 
1. V. I. Man'ko et al, Phy. Lett. A, 176 (1993), 173; V.I. Man'ko & R.Vileta  Mendes, J. Phys. A, 31 

(1998), 6037. 
2. W. Paul & J. Nagel, Stochastic Processes, Springer, (1999). 
3. J. Voit, The Statistical Mechanics of Financial Markets, Springer, (2001). 
4. Jean-Philippe Bouchard & Marc Potters, Theory of Financial Risks, Press Syndicate of the 

University of Cambridge, (2000). 
5. J. Maskawa, Hamiltonian in Financial Markets, arXiv:cond-mat/0011149  v1, 9 Nov 2000. 
6. Z. Burda et al, Is Econophysics a Solid Science?, arXiv:cond-mat/0301069  v1, 8 Jan 2003. 
7. A. Dragulescu, Application of Physics to Economics and Finance: Money, Income, Wealth and 

the Stock Market, arXiv:cond-mat/0307341 v2, 16 July 2003. 
8. A. Dragulescu & M. Yakovenko, Statistical Mechanics of Money,  arXiv:cond-mat/0001432 v4, 

4 Mar 2000. 
9. B. Baaquie et al, Quantum Mechanics, Path Integration and Option Pricing:  

a. Reducing the Complexity of Finance, arXiv:cond-mat/0208191v2, 11 Aug 2002. 
10. G. Bonanno et al, Levels of Complexity in Financial Markets, arXiv:cond-mat/0104369 v1, 19 

Apr 2001. 
11. A. Dragulescu, & M. Yakovenko, Statistical Mechanics of money, incomeand wealth: A Short 

Survey, arXiv:cond-mat/0211175 v1, 9 Nov 2002. 
12. J. Doyne Farmer, Physics Attempt to Scale the Ivory Tower of Finance, adap-org/9912002, 10 

Dec 1999. 
13. V. Pareto, Cours d'Economie Politique (Lausannes and Paris), (1897). 
14. L. Batchlier, Annelas Scientifiques de l'Normal Superieure III-17, 21-86, (1900); P. Cootner, 

The Random Character of Stock Market Prices, Cambridge, MA: MIT Press, Reprint (1964). 
15. F. Black & M. Scholes, Journal of Political Economy, 81 (1973), 637. 
16. R. C. Merton, Journal of Financial Economics, (1976), 125. 
17. N. Wiener, Proc. Natl. Acad. Sci. 7 (1952), 253; Proc. Natl. Acad. Sci. 7 (1952), 294. 
18. M. Kac, Bull. Am. Math. Soc., 72 (1966), 52. 
19. R.P. Feynman, Rev. Mod. Phys. 20 (1948), 367.  
20. R.P. Feynman & A.R. Hibbs, Quantum Mechanics and Path Integrals, McGraw-Hill, New York, 

1965.  
21. J. Dash, Path Integrals and Options, Part I, CNRS Preprint CPT88/PE (1988), 2206; Path 

Integrals and Options, Part II, CNRS Preprint  CPT89/PE (1989), 2333;  
22. V. Linetsky, Computational Economics, 11 (1998), 129 and references therein; E. Bennati, M. 

Rosa-Clot, S. Taddei, Int. J. Theor. Appl. Finance 2 (1999), 381; B.E. Baaquie, J. Phys. I France 7 
(1997), 1733; A. Matacz, Path dependent option pricing: the path integral partial averaging 
method, cond-mat/0005319; L. Andersen & J. Andreasen, Review of Derivatives Research, 4 
(2000), 231; J.P. Bouchaud et al, Risk 93, (1996), 61; E. Eberlein et al, Journal of Business 71(3) 
(1998), 371. 

23. R. Esmailzadeh, Path Dependent Options, Morgan Stanley Report (1995). 
24. A. Eydeland, Computational Economics 7 (1994), 277. 



GESJ: Physics 2018|No.1(18) 
ISSN 1512-1461 

 

81 

25. M. Garman, Journal of Finance, 40 (1985), 847. 
26. D. Beaglehole, & M. Tenney, Journal of Fixed Income 1 (1991),  69. 
27. F. Jamshidian, Journal of Fixed Income 1 (1991), 62. 
28. D. Duffie, Dynamic Asset Pricing, 2nd ed., Princeton University Press, Princeton, New Jersey 

(1996). 
29. S.A. Ross, Journal of Economic Theory 13 (1976 December), 341. 
30. J.Cox, & S.Ross, Journal of Financial Economics 3 (1976), 145. 
31. J.M.Harrison & D.Kreps, Journal of Economic Theory 20 (1976 July), 381. 
32. J.M. Harrison & S.R. Pliska, Stochastic Processes and Applications, 11 (1981), 215. 
33. L.S. Schulman, Techniques and Applications of Path Integration, John Wiley (1981).  
34. J.C. Hull, Options, Futures & Other Derivatives, Pearson Education (2009). 
35. C.W. Gardiner, Handbook of Stochastic Methods, Springer, Berlin (2004). 
36. H. Risken, The Fokker-Planck Equation: Methods of Solution and Applications, Springer, 

Berlin (1996). 
37. W.T. Coffey, Y.P. Kalmykov & J.T. Waldron, The Langevin Equation: With Applications to 

Stochastic Problems in Physics, Chemistry, and Electrical Engineering, World Scientific, 
Singapore (2004). 

38. M. Baxter & E. Rennie, Financial Calculus, Cambridge University Press (1992). 
39. W.F. Sharpe, Portfolio Theory & Capital Markets, McGraw Hill (1970). 
40. E.J. Elton & M.J. Gruber, Modern Portfolio Theory & Investment Analysis, Wiley (1981). 
41. P. Gopikrishnan et al, Phys. Rev. E 60, (1999), 5305. 
42. P. Gopikrishnan et al, Phys. Rev. E 62, (2000) R4493. 
43. P. Gopikrishnan et al, Physica A, 299, (2001), 137. 
44. P. Gopikrishnan et al, Phys. Rev. E 60, (1999) 5305. 
45. V. Plerou et al, Phys. Rev. E 60, (1999) 6519. 
46. R.N. Mantegna & H.E. Stanley, An Introduction to Econophysics, Cambridge (2000). 
47. M.M. Dacrrogna et al, J. Int'l Money & Finance, 12 (1993), 413. 
48. R.N. Mantegna & H.E. Stanley, Nature, 383 (1996), 587. 
49. R.N. Mantegna, Physica A 179 (1991), 232. 
50. A. Ott el al, Phys. Rev.Lett. 65, (1990) 2201; J.P.Bouchaud et al, J. Phys. (France) II 1 (1991), 

1465; C.K. Peng et al, Phys. Rev. Lett. 70, (1993), 1343;  R.N Mantegna & H.E Stanley, Nature 
376, (1995) 46; T.H. Solomon et al, Phys. Rev. Lett.71, (1993), 3975; F. Bardou et al, ibid.72 
(1994), 203. 

51. J. Klafter & G. Zumofen, Phys. Rev E 49, (1994), 4873. 
52. H. Spohn, J. Phys. (France) I 3 (1993), 69. 
53. M. Muskat, The Flow of Homogeneous Fluids Through Porous Media, McGraw-Hill, New 

York, (1937). 
54. J. Buckmaster, J. Fluid Mech. 81 (1995), 735. 
55. E.W. Larsen and G.C. Pomraning, SIAM J. Appl. Math. 39 (1980), 201. 
56. W.L Kath, Physica D 12 (1984), 375. 


	FINANCIAL MODELLING WITH PATH INTEGRALS

