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Abstract 

Using the known earlier formalism of the single transition operators and our original 
analytical technique, we have derived the equations of motion for the magnetization 
components, related to the separate transitions of the spin-triplet state (STS) spectrum 
in a single crystal. At that, we supposed that samples with STS are subjected to the 
action of the alternating magnetic field and of the non-weak constant field, the value of 
which is larger than the zero-field splitting of STS spectrum. However, only the 
components of the sample full magnetization, which are linearly connected with the 
single transition magnetization components, are the observable values.  We have 
demonstrated that at the fulfillment of the definite condition, the free motion of the 
sample full magnetization after the excitation of one of the transitions is the precession 
at the frequency of the excited transition with an ellipse in the plane transverse to the 
constant field. At that, the squared absolute value of the magnetization vector contains 
the part, oscillating at the double frequency of the excited transition. The tensor of the 
dynamic susceptibility, reflecting the elliptical character of the magnetization 
precession at the steady state electron paramagnetic resonance (EPR), is written at the 
creation of the resonance conditions for each of the STS transitions. The obtained 
analytical angular dependence of the EPR spectrum agrees qualitatively with the 
corresponding experimental results.  

Keywords: EPR, spin-triplet states, single transition operators, magnetization motion, 
elliptical precession. 

1  Introduction  

The materials with spin-triplet states (STS) of electron spins find wide application in science 
and technology. The monographs [1, 2] contain the information about the compounds, in which STS 
are present or they can be created by means of the different methods. STS are used at the realization of 
the nuclear dynamic polarization [3-5], in the molecular electronics [6, 7] and in such optoelectronic 
devices, as light emitting diodes, transistors and solar elements [8]. STS play important role at the 
photosynthesis [9] and at the creation of the entangled spin states, which are of interest at the producing 
of the quantum processors [10,11].  EPR is one of the most important methods of the STS study during 
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a few decades [12-21]; so, the investigation of the character of the sample magnetization motion under 
the action of the constant and the alternating magnetic fields in materials with STS has the great 
significance. In particular, the papers [12-18] are devoted to the EPR experiments on the STS in single 
crystals in the non-weak constant field (the value of this field is larger than the zero-field splitting of 
STS spectrum). Therefore, we would like to investigate the motion of the sample magnetization in such 
a case.   It is of interest also to reveal the peculiarities of the free motion of the sample magnetization.  

2  Materials and methods 

The materials are the object of our investigation, if they are single crystals and the paramagnetic 
resonance in them is characterized in the zero constant field by the quadrupolar Hamiltonian  

                                               ( ) ( ) ( )2 2 21/ 3 1  = − + + −Z X YQ D S S S E S SH ,                                                  (1) 

where , ,X Y ZS S S  are the projections of the STS spin S=1 onto the axes X,Y,Z – the main axes of the 
quadrupolar interaction tensor; ,D E are the parameters of the zero-field splitting of the spin levels 
(they are called also FS constants). At that, we suppose that these samples are subjected to the 
alternating and the non-weak constant fields1.  Here we have in mind the STS of electron spins of any 
origin (STS of photoexcited mobile excitons in the pure NaNO2 single crystal [12,13] and localized 
STS in organic molecular crystals [14-18]; of Cu2+ dimers [19]; of paramagnetic ions, for instance, of 
fulleride ions [19,20]). The main results are valid, in our opinion, also for the NMR on I=1 nuclei. 

Analogously to [22], we suppose at the first stage of our consideration that the constant field B  
is parallel to one of the X, Y, Z  axes (supposing that these axes coincide with the main axes of the g -
factor of STS). At B || Z , the Hamiltonian of the problem has the form: 

0
α= + sh

ZH H H ;              0 µ=Z Z
Z B Qg BS + HH                                              (2) 

2 2 2= + +X X Y Y Z ZQ D S D S D SH ;              12 cosα
α

αµ ω= Bsh g B S tH  .                              (3)
 

Here the main Hamiltonian 0
ZH  includes the following terms: µ Z

Z Bg BS is the Zeeman interaction 
with the constant magnetic field; αg  are the diagonal components of the g -factor tensor; α  takes the 
values , ,X Y Z , µB  is the Bohr magneton; QH  is the alternative form of (1), at which 0+ + =X Y ZD D D .  

α
shH , the interaction of spins with the alternating magnetic field, directed along the α  axis, is the 

perturbation of the main Hamiltonian. The transition to the other directions of the constant field can be 
realized with the help of the cyclic rearrangements of the indices in the sample parameters , ,X Y ZD D D  
and , ,X Y Zg gg  [22]. 

Analogously to the paper [23], we apply to the full Hamiltonian the standard unitary 
transformation [24], which rotates the eigenvectors of STS by the / 2ZΘ  angle. At the definite value of 
the ZΘ  angle this transformation diagonalizes the matrix of the main Hamiltonian 0

ZH . The used 
unitary operator U has the following matrix form 

                                                             
1 We would like to note that the theoretical questions related to the cases of the zero and the weak constant fields are 
considered in [2, pp. 181-185]; the case of the zero constant field is considered also, for instance, in [9]. 
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/ 2 / 2

/ 2 / 2

cos( ) 0 sin( )
0 1 0

sin( ) 0 cos( )

Z Z

Z Z

 
 
 
 
 

Θ Θ
=

− Θ Θ
U , 

 where       

                                           ( ) / 2 /Z X Y Z Btg D D g Bµ Θ  = − .                                                                       (4) 

Following [23], the transformed Hamiltonian is written in terms of the single transition operators Sα
−i j  

(or operators of the fictitious spin ½), described in [25]. Here, Sα
−i j   is the α -component of the 

fictitious spin  ½ related to the separate transition i-j between the STS levels i,j=1,2,3. The unitary 
transformed main Hamiltonian 1

0
ZU U −H , which defines the STS levels, has the form:   

                                                  
1 1 2 2 3

12 230 Z Z
ZU U − − −Ω + Ω=  S SH ,                                                            (5) 

where  

                     

1 2 2 1
1 0 0

1 0 1 0
2

0 0 0
Z Z
− −

 
 = − = − 
 
 

S S ;  2 3 3 2
0 0 0

1 0 1 0
2

0 0 1
Z Z
− −

 
 = − =  
 − 

S S ; 

                    
( ) ( ) ( )( )22 2 2

12
23

2 / 2 2 / 3Z Z B X Y z B
Z g B D D D g B ED µ µ± + + − ≡ ± + +  Ω = .                                (6) 

The unitary transformed perturbation 1
shU Uα −H , which is in the same representation, causes the 

transitions between the STS levels.  

Further, we introduce the following notations: '
, , , , , ,X Y Z X Y Z B X Y ZSM ng µ= −  are the original 

components of the sample full magnetization; , ,X Y ZM  are the unitary transformed components of the 
sample full magnetization. , ,X Y ZM  and '

, ,X Y ZM  are connected by the following formulae: 

                                           
( )' 1 1 2 2 32X X Z X Z XC M MUM UM A− − −≡ = +  

                                            ( )' 1 1 2 2 32Y Y Z Y Z YA M C MUM UM − − −≡ +=                                                        (7) 

                                   
( )( )' 1 1 3 1 3/2 cos sinZ Z Z XZ Z X Zg gUM UM M Mθ θ− − −≡ −=  

In  Eqs. (7) the values 

                                                                , , , , , ,
i j i j
X Y Z X Y Z B X Y ZSM ng µ− −= − ,                                                     (8) 

where n  is the STS concentration, are the magnetization components related to the separate STS 
transitions;  
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( ) ( )
( ) ( )

cos / 2 sin / 2

cos / 2 sin / 2

−

+

= Θ Θ

= Θ Θ
Z Z Z

Z Z ZC

A
.                                                          (9) 

With the help of the quantum operator equation, we have obtained the equations of motion for 
the operators Sα

−i j under the action of the full unitary transformed Hamiltonian. For this purpose, we 
have used the necessary commutation relations, which are brought in [25]. Then the conversion to 

, ,
i j
X Y ZM − has been done; the equations for them (see Section 3) are the initial point for the obtaining of 

all dynamical results; beginning from these equations, the values , ,
i j
X Y ZM −  are considered, as classical 

macroscopic values. However, only the components of sample full magnetization , ,X Y ZM  are the 
observable ones, they are used further for the description of effects. 

 

3  Results and discussion 

The equations of motion for the 3 components of the magnetization related to the 3 transitions 
of the FS of EPR, following from the equations for Sα

−i j , have the form (as an example, below these 
equations are brought for the case ||B Z , 1 ||B X ):  

( ) ( ) ( )1 2 1 2 1 3
12 1// /2 cosX BX X Y X Y
Z

Y Z Y gg g g gM M A M B tµω ω− − −+= −   

( ) ( ) ( )( ) ( )1 2 1 2 1 2 1 3
12 1/ / /2 2 / cosY X Z Y Z Y XY
Z

X Z Z X X Bg g g g g gM M C M A M g B tω µ ω− − − −− += 

 
( ) ( ) ( )1 2 1 2 2 3

1/2 2 / cosZ Y ZZ Y Z Y X Bg gM C M A M g B tµ ω− − −−= 
                                                                  

(10) 

( ) ( ) ( ) ( )1 3 1 3 2 3 1 2
13 1/ /2 / cosZX X Y X Y
Z

Y Y Z Y X Bg g g gM M C M A M g B tω µ ω− − − −− −= −   

( ) ( ) ( ) ( )1 3 1 3 2 3 1 2
13 1/ /2 / cosZY Y X Y X
Z

X X Z X X Bg g g gM M C M A M g B tω µ ω− − − −+ −=             

( ) ( ) ( )1 3 1 2 2 3
1/2 / cosZ Y ZZ Y Z Y X Bg g BM M A M g B tµ ω− − −+=            

The equations for 2 3 2 3,− − 
X YM M  can be obtained from the equations for 1 2 1 2,− − 

X YM M  at the index  
1 2 2 3− → −  replacements and the value ;→ − →Z Z Z ZA C C A  replacements. The equation for 2 3−

ZM  can be 
obtained from the equation for 1 2−

ZM  at the index  1 2 2 3− → −  replacements and the value ↔Z ZA C  
replacements. ω Z

ij  in Eqs. (10) are the notations for the quanta of the transitions between the STS 
levels i and j; they are equal to 

    
( ) ( ) ( ) ( )22 2 2

12
23

3/ 2 / 2µ µω  + − ≡ = ± + ± + + X YZ Z B Z B
Z D DD g B D g B E  ;                                    (11)       

                   ( ) ( ) ( )22 2 2
13 2 / 2 2µ µω  − ≡ = + + X YZ B Z B
Z D Dg B g B E    .                                             (12) 
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The Eqs. (10) with the definitions (4,8,9,11,12) are the main result of this paper and the basis for the 
study of the anisotropic evolution of the sample full magnetization M  with the components , ,X Y ZM  (see 
(7)) under the action of the magnetic fields2. At that, we suppose that the spectrum of the STS 
transitions is well resolved. 

For instance, with the help of Eqs. (10) it is possible to ascertain the character of the free 
motion of the full magnetization ( )free tM  of a sample with STS after the creation of the initial non-
zero values of magnetization components ( ), 0X YM . Since at our non-zero constant field 0, 0≠ ≠Z ZA C , 
the solution of these equations at the excitation of the transition with the frequency 12

Zω  describes the 

oscillations of the transverse components ( ),
free
X Y tM  of ( )free tM  with this frequency. These oscillations 

obey the following equation: 

                        

( ) ( )
2 2

2 2 2 2 2 2 1
/ /Z Y Z X

free free
X Yt t

C C g A C g

M M   
   + = ,     where     

( ) ( )2 2

2
2 2 2 2

0 0
/ /

      ≡ +
Z Y Z X

X YC
C g A g

M M
.                          (13) 

The equation (13) at 2 2 2 2/ /≠Z Y Z XC g A g  is the canonical equation of an ellipse. This equation demonstrates 
that the projection of the end of the vector ( )free tM  onto the XY plane circumscribes an ellipse in this 
plane. The longitudinal component of the vector ( )free tM  does not change at the free motion. At that, 
the squared absolute value of the magnetization vector contains both the constant part and the part, 
oscillating at the double frequency of the excited transition: 

( ) ( ) ( )( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( )
( )( )

2 2
2 2 2 2 2 2 2 2 2 2

2 2 2 2

2 2

12 122 2 2 2

0 0
0 1/ 2 / / 1 / 2 / /

/ /

0 0 0 0
cos2 2 sin 2

/ / / /

free X Y
Z Z Y Z X Z Y Z X

Z Y Z X

Z ZX Y X Y

Z Y Z X Z Y Z X

M M
M t M C g A g C g A g

C g A g

M M M M
t t

C g A g C g A g
ω ω

 
  = + + + + − ×  

 
   × − −  
                 

 (14)   

In the case of the excitation of the transition with the 23ωZ frequency, the replacements 2 2↔Z ZA C  should 
be made in Eqs. (13). Using the definition (9), the condition 2 2 2 2/ /≠Z Y Z XC g A g  can be written in the 
following form: ( ) ( )2 2 2 2/sinΘ ≠ − +Y X X YZ g g g g , suitable for the evaluations.  

At the studying of the steady state EPR, we have phenomenologically introduced the decays to 
the Eqs. (10). At that, we have supposed that the transverse magnetization components of an each 
transition decay exponentially with the rates ( ) 11 2

2

−−T , ( ) 12 3
2

−−T , ( ) 11 3
2

−−T . As is well known [26], the 
assumption about the exponential character of the transverse relaxation is valid, in particular, for the 
concentrated spin-systems with the averaging fast motion. Therefore, the results below, containing the 
transverse relaxation rates, are valid for the case of the fast motion in a concentrated STS system. Such 
situation takes place, for instance, in the pure NaNO2 single crystal [13], where the fast exciton jumps 

                                                             
2 It should be noted that the equations for 1 2 2 3 1 3, ,Z Z ZM M M− − −  are not independent from one another because of the existence 
of the following correlations for the single transition operators and the corresponding magnetization components: 

1 3 1 2 2 3i k i j j k
Z Z Z Z Z ZS S S M M M− − − − − −= + ⇒ = +   . 
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take place, and in the samples, studied in [14], where the role of the averaging fast motion is played by 
the isotropic exchange interaction. 

Further, we have applied the Eqs. (10) in the linearized form, i.e. at 
,eq neq

i j i j
Z ZM M− −≈ , for the 

calculation of the dynamic susceptibility tensor (DST) at the absence of the EPR saturation. The 
brackets 

,... eq neq
 denote ( ),... eq neqSp ρ , where ,eq neqρ is the statistical operator describing the level 

population distribution at thermal equilibrium (eq) or  non-equilibrium (neq) with the lattice;  in the 
latter case – with the account for the possibility of the forced population of the STS separate levels (see 
below). Using the Eqs. (10) with the above-mentioned decays, we have considered the motion of 
sample magnetization components ( ),

EPR
X YM t  at the steady state EPR on the 1-2 transition.  At the 

fulfillment of the same condition 2 2 2 2/ /≠Z Y Z XC g A g , the projection of  the end of the vector ( )EPR tM  onto 
the XY plane circumscribes an ellipse in this plane: 

                                                
( ) ( )2 2

2 2 2 2 2 2 1
EPR EPR
X Y

X Z Y Z

M t M t
g C m g A m

      + = ,                    (15)                                                                                                                       

where  
( )

( ) ( )

222 1 2
12

2 2 21 2
12 2

21 γ

ω ω

−

−−
≡

 − +  

Z X Z exc

ZZ

C B M
m

g T
. If the transition 2-3 is excited, then the same replacements should 

be made in Eq. (15), as at the magnetization free motion.  

The complex DST for all transitions, which follows from the expressions for ( ),
EPR
X YM t ,  can be 

presented in the form of a matrix: 

                     

( )

1 2
2 3

21 2 1 2
2 3 2 3

1 2 1 2
0

2 3 2 3
1 2

1 2 1 2
2 3 0

2 3 2 3
1 3

0 0 1 3

αβ

χ χ

χ χ

χ

−
−

− −
− −

 − −       − −    
 −   − −       − −       − −      −   
 − 
 
 

=

Y
Z

X

Y Y
Z Z

X X

Z Z

XX XX

Z
ZZ

XX XX

Z
ZZ

gi K
g

g gi K K
g g

χ                   (16) 

Here αβχ  is the complex dynamic susceptibility, describing the response of the α -th component of the 
sample magnetization to the action of the alternating field along the β  axis at the constant field along 
the Z axis, when the constant field value approximately corresponds to its resonance magnitude for the 

transition 1-2, 2-3, 1-3, respectively; ( ) ( )
1 2
2 3 1 sin / 1 sinZ Z ZK
−
− ≡ Θ ± Θ . At the constant field rotation in 

the ZX plane, the dynamic susceptibilities χXX  corresponding to the 1-2, 2-3 transitions are equal to 
(hereafter, θ  and ϕ  are the polar and the azimuthal angles of the vector B  with respect to the X, Y, Z

coordinate system; g-factor, for simplicity, is assumed to be isotropic): 
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( )

( )
( ) ( )

( ) ( )

1 2
2 30

,

11 2 1 2
2 3 2 3

2

2 21 2 1 2
2 2 3 2 3

2

1 2
, , cos
2 3

/ ,
1 sin ,

/ ,

ZX ZX

B
XX Z

eq neq

B res

ZX

B res

gB M B

g B B B i T
B

g B B B T

µ µ θ θ

µ θ
θ

µ θ

χ
−
−

−− −
− −

−− −
− −

− 
= × − 

   − −      × ± Θ  
   − +      







   ,                               (17) 

where   

                                   
( ) ( ) ( )

( ) ( ) ( ) 22

3 cos2
sin ,

4 3 cos2

θ
θ

µ θ

− − + +
Θ ≈

+ − − +  
ZX

B

D E D E
B

g B D E D E
 .                                        (18) 

At the obtaining of Eq. (17) we have assumed that at the constant field rotation the direction of the 
alternating field does not change and stays 12 cosωB Xt  (this fact is reflected also by the unchanged 
denotation χXX ). The DST matrix at the constant field rotation in the other planes can be obtained from 
(17) with the help of the cyclic rearrangements of indices and with the replacement θ ϕ→  for the XY 
plane.  It should be noted that at the constant field rotation in the ZX and ZY planes we exclude from 
the consideration the angles / 2θ π=  and 0θ = , respectively, and in the XY plane – the angle / 2ϕ π= .   

1 2
2 3
−
−

resB  are the resonance fields for the STS separate transitions (about their angular dependencies see 
below). 

The dynamic susceptibilities corresponding to the 1-3 transition at the application of the 
constant field in the ZX, XY, YZ planes are equal to              

                              

( )

( ) ( ) ( )
( ) ( ) ( )

1 3 20

,

11 3 1 3
2

2 22 1 3 1 3
2

, , ,1 3 2 cos( )sin

/ , , ,

/ , , ,

ZX
XY
YZ

B
Z ZX
X XY
Y YZeq neq

B res

B res

ZZ XX YY

ZX
XY
YZ
sf

gB M angle

g B B B i T

g B B B T

µ µ

µ θ ϕ θ

µ θ ϕ θ

χ −

−− −

−− −

− = Θ ×

 − − ×
 − + 







                                    (19) 

where ( )sin θΘZX  is defined above;  

                                             ( )
( ) [ ]2 2

cos2

2 cos2
sin ϕ

µ ϕ
ϕ +

≈ −
+ +

Θ
B

XY
E D

g B E D
;  

                                  
( ) ( ) ( )

( ) ( ) ( ) 22

3 cos2
sin ,

4 3 cos2

θ
θ

µ θ

+ − −
Θ ≈

+ + − +  
ZY

B

D E D E
B

g B D E D E
.                                        (20) 

cos( )angle means cosθ  and ( )cos / 2π θ−  at the constant field in the planes ZX and  ZY, correspondingly, 
and  cosϕ  in the  XY plane. It should be noted that ( ), , ,1 3χ −ZZ XX YY B  at , ,B || Z X Y , respectively,  are the 
EPR dynamic susceptibilities in the longitudinal geometry of an experiment, i.e. when an alternating 
magnetic field is  parallel to a constant one.  
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We would like to discuss now the application of our DST for the interpretation of the 
experimental angular dependence of EPR signal intensity from [13]. There, the EPR signal emerged 
from the excitonic STS in the molecular single crystal of the pure NaNO2, and the applied constant 
field was sufficiently larger than the FS constants. It should be noted here that the level 2 of the 
metastable triplet state of NaNO2 was optically excessively populated during the experiments of [12, 
13] at the constant field rotation from the X axis to the Y axis. We have calculated the average values 
of the longitudinal components of the fictitious spins, proportional to the population differences of the 
corresponding STS transitions, under such conditions. It can also be seen that in [13] the EPR spectra 
are the field derivatives of the absorption signals on the 1-2, 2-3 transitions, describing the response of 
the Y-th component of the sample magnetization to the action of the alternating field along the Y axis at 
the constant field in the XY  plane. We have calculated numerically these signals with the help of the 
FS constants, experimentally obtained in [13]. At that, we have used for the angular dependencies of 

the resonance fields ( )
1 2
2 3 ,θ
−
−

resB B , entering the Eq. (17), the well known results, obtained  in the first order 
of the perturbation theory for the case when the anisotropy terms are a perturbation to the Zeeman term 
(see, for instance, [27]).  In addition, we have supposed that the forced population of the STS level 2 is 
5 times more effective than the "depopulation" of an each level owing to the other causes. Then we 
were able to plot the angular dependence of these signals, which qualitatively agrees with Fig. 2 from 
из [13]: 

 

Fig. 1   The EPR spectra plotted according to Eqs. (17), (18) of this paper with the necessary cyclic 
rearrangements of the indices for the triplet excitons in the pure NaNO2 single crystal at 1.3 К under 
conditions of the optic excitation described in [12]. The spectra are calculated numerically with the 
help of the FS constants, experimentally obtained in [13]. The constant field rotates in the XY plane; at 

0ϕ =  it is parallel to the X  axis. For the lowest plot, the intensity is increased 10 times. Note the 
opposite character of the low-field (emissive) and high-field (absorptive) lines 
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The qualitative agreement of the shape and the intensity ratios of the separate lines of the EPR spectra 
(Fig. 1 from this paper) with the experimental shape and ratios of the Fig. 2 from [13] shows that our 
analytical investigation is carried out correctly. 
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4  Conclusions 

Summarizing, the following results are obtained in this paper: 

The method is suggested of the obtaining of the equations of motion for the magnetization 
components of the separate STS transitions of a single crystal under the action of the alternating and 
non-weak constant magnetic fields without accounting for the decay. It is demonstrated how these 
equations can be used for the revealing of the character of the full magnetization motion of a sample 
with STS at the excitation of the separate transitions of the FS.  The dynamic susceptibility tensor is 
calculated at the absence of the EPR saturation. The results of this calculation describe qualitatively the 
experimental angular dependence of the EPR spectra from the triplet excitons in the pure NaNO2 single 
crystal observed in [13] in the sufficiently strong constant field. 

It is possible that the results obtained here will be useful for the interpretation of the 
corresponding experiments on nuclear spins I=1, having quadrupolar moment and being under 
conditions of the non-zero electric field gradient.   

  

Acknowledgements: 

This work was supported by Shota Rustaveli National Science Foundation (SRNSF) [grant number № 
FR/299/6-110/14] 

 

 

 

REFERENCES 

1. A. Carrington, A.D. McLachlan, Introduction to Magnetic Resonance with Applications to 
Chemistry and Chemical Physics  (Harper & Row Publishers, New York, Evanston, and London, 
1967) pp. 115-129 

2. M. Schwoerer and H.C. Wolf, Organic Molecular Solids (Wiley-VCH, Weinheim, 2007) pp.177-
214  

3. V.A. Atsarkin, Dinamicheskaia poliarizatsiia iader v tverdykh dielektrikakh (Nauka, Moskva, 
1980) 

4. V.A. Atsarkin, Usp. Fiz. Nauk (1978), 126, 3-39 .  
5. V.A. Atsarkin, S.K. Morshnev, JETP 44, (1976), 795-800/ 
6. S. Richert, C.E. Tait, C.R. Timmel, J. Magn. Res. (2017) 280, 103-116. 
7. J.M. Tour, Acc. Chem. Res. (2000), 33, 791-804 .  
8. A. Köhler, H. Bässler, Materials Science and Engineering R 66, 71-109 (2009) 
9. D. Carbonera, Photosynth. Res. 102, 403-414 (2009)  
10. G. Kothe, T. Yago, J.-U. Weidner, G. Link, M. Lukaschek, and T.-S. Lin, Phys. Chem. (2010)  

B114, 14755-14762 . 
11. G. Kothe, T. Yago, J. Weidner, G. Link, M. Lukaschek, T-S. Lin, 7th Asia-Pacific EPR/ESR 

Symposium, (Edited by Hong In Lee, Jeju, Republic of Korea, 2010) 
12. W. Dietrich, F. Drissler, D. Schmid and H.C. Wolf, Z. Naturforsch (1973) 28a, 284-289.  



GESJ: Physics 2018 | No.1(18) 
ISSN 1512-1461 

 

96 
 

13. W. Dietrich and D. Schmid, Phys. Stat. Sol. (b) , (1976),74, 609-616. 
14. M. Schwoerer and H.C. Wolf, Mol. Cryst. (1967), 3, 177-213. 
15. P.H.H. Fischer and A.B. Denison, Mol. Phys. (1969) 17, 297-304. 
16. J.P. Wolfe, Chem. Phys. Lett. (1971), 10, 212-218 .  
17. R. Schmidberger and H.C. Wolf, Chem. Phys. Lett. (1972), 16, 402-408. 
18. S. Ghosh, M. Petrin, A. Maki, Biophys. J. of Biophysical Soc. (1986) , 49, 753-760. 
19. T. Jeyabalan and P. Praveen, Research Journal of Pharmaceutical, Biological and  Chemical 

Sciences (2013), 4, 326-334. 
20. S.K. Hoffmann, W. Hilczer, W. Kempinski and J. Stankowski, Solid State Commun. (1995) , 93, 

197-202  
21. P. Paul, K.-C. Kim, D. Sun, P.D.W. Boyd, and Ch.A. Reed, J. Am. Chem. Soc. (2002) , 124, 4394-

4401.  
22. A. Abragam, B. Bleaney, Electron Paramagnetic Resonance of Transition Ions (Clarendon Press, 

Oxford, 1970) pp. 151-155 
23. T.Sh. Abesadze, Z.A. Tsikoridze, Fizika Tverd. Tela (1992),34, 1153-1158.  
24. A.I. Lurie, Analytical mechanics (Springer, New York, 2002) pp. 19-46   
25. R.R. Ernst, G. Bodenhausen, A. Wokaun, Principles of Nuclear Magnetic Resonance in One and 

Two Dimensions (Oxford, Clarendon Press, 1990) pp. 34-37 
26. R. Kubo and K. Tomita, J. Phys. Soc. Jap. (1954), 9, 888-919.  
27. V.N. Glazkov, A.I. Smirnov, H. Tanaka, A. Oosawa, Phys. Rev. B(2004), 69, 184410-184422.  
 
 


	;   ;

