
GESJ: Physics 2018 | No.2(20) 
ISSN 1512-1461 

24 

UDC 538.3 
 

STABLE PLASMA STRUCTURES AS AN ALTERNATIVE ENERGY SOURCE 
(METHOD FOR SOLVING THE NONLINEAR SCHRÖDINGER EQUATION) 

 
1,aM.S. Dvornikov, 2,bR.G. Jafarov, 2M.M. Mutallimov,  3A.A. Garibli, 2G.A. Bayramova 

 
1Pushkov Institute of Terrestrial Magnetism, Ionosphere 

and Radiowave Propagation (IZMIRAN), 108840 Troitsk, Moscow, Russia; 
Physics Faculty, National Research Tomsk State University, 

36 Leni3State Committee on Property Issues of Azerbaijan Republic,  Baku, Azerbaijan 
n Avenue, 634050 Tomsk, Russia, 

2Baku State University, 23 Z. Khalilov str., AZ1148 Baku, Azerbaijan 
3The National Center for Nuclear Research of the Ministry of Transport, Communications and High 

Technologies of the Republic of Azerbaijan, 4 Inshaatchylar Avenue, AZ1073 Baku, Azerbaijan 
 

amaxdvo@izmiran.ru, b r.g.jafarov@gmail.com,  
 

Abstract 
In this paper investigates the spectral problem for the nonlinear Schrödinger equation.  
The initial infinite region is replaced by a finite region where the grid is constructed  
and on this grid the Schrödinger equation is reduced to finite difference equations. To  
solve the spectral problem for the resulting finite-difference equation, the shooting  
method is used. 
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1. Introduction and Nonlinear oscillations in plasma. If we study electrostatic plasma  

oscillations, i.e. when the magnetic field is zero, 0=B
r

, the motion of the electron component of 
plasma obeys the following plasma hydrodynamics equations: 

( ) ,0=⋅Δ+
∂
∂

ee
e Vn
t

n
  ( ) ,1 p

mn
E

m
eVV

t
V

e
ee

e Δ−−=Δ+
∂
∂ r

                                   (1) 

where en is the number density of electrons, eV  is the electron velocity, m is mass of an electron, 

0>e  is the absolute value of the elementary charge, E
r

 is the strength of the electric field, and p is 
the pressure We should also consider Maxwell and Poisson equations for the electric field 
evolution, 
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where in  is the ion number density and iV
r

 is ion velocity. 
In the zeroth approximation only electrons participate in a plasma oscillation, with the number 

density of ions being approximately constant .0 constnni =≈  Thus we may present the electric 
field in the form, 

,11 ⋅⋅⋅++= ∗− titi ee eEeEE ωω
rrr

                                                  (3) 

where mnee /4 0
2πω =  is the Langmuir frequency for electrons and 1E

r
 is the amplitude of the 

electric field. It should be noted that, in the following, we shall study axially and spherically 
symmetric plasma oscillations. In this case one can find a scalar potential 1φ  such as 11 φ−∇=E

r
 in 

Eq.(3). 
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 In a realistic situation ions will also participate in a plasma oscillation. Thus the ion density 
becomes ),,(0 trnnni

r
+=  where n  is the perturbation of the ion density. It leads to the appearance 

of higher harmonics omitted in Eq.(3). The plasma hydrodynamic equations for the description of 
the ions evolution have the form[1], 
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where M is the ion mass, iF
r

 is the force acting of ions. The reason why one can omit the ion 
pressure term in Eq. (4) will be discussed bellow. 
 Using the quasineutrality of plasma we can find that [2] 
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where sϕ  is the slowly varyng part of the electric potential, eT  is the electron temperature, and 

( )0

2

1 4/ nEU pm π
r

=  is the potential of the ponderomotive force which acts on a charged particle in a 

rapidly oscillating electric field given in Eq. (3). Supposing that ions are mainly involved in the 
slow motion of plasma we get that si eF ϕ∇−=

r
. Finally, using Eqs. (1)-(5) one arrives to the system 

of Zakharov equations[2]. More detailed derivation of the nonlinear plasma evolution equations 
which include electron - ion and electron interactions can be found in Ref.[1]. 
 It should be noted that Eq. (4) is derived under the assumption of ions having point-like 
charges. However realistic atmospheric plasma contains mainly nitrogen or  oxygen ions, which are 
diatomic. In this case, the simplified ion hydrodynamics Eq. (4) is incomplete since it does not take 
into account the internal structure of ions. 
 A diatomic molecule is nonpolar, i.e. it cannot have an intrinsic EDM because of the 
symmetry reasons. Novertheless, this kind of molecules can acquire EDM, ,jijji Ep α=  in an 
external electric field. Here ( )ijα  is the polarizability tensor. Hence the additional force, 

( )EpFpol

rrr
∇= , will act on this particle placed in an external inhomogeneous electric field. Thus, if 

we study the plasma with diatomic ions, in Eq. (4) one should replace 
,/ ipolssi nfeeF

rr
+∇−→∇−= ϕϕ  where polf

r
 is the volume density of ponderomotive force related 

to the matter polarization. 
 If an ion is diatomic and possesses an axial symmetry, one can always reduce the 
polarizability tensor to the diagonal form, ( ) ( )||,, αααα ⊥⊥= diagij , where ⊥α  and ||α  are transversal 

and longitudinal polarizabilities. The expression for polf
r

 has the form[3], 
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where ε  is the permittivity of the ion component of plasma, iT  is the ion temperature, 
( ) 3/2 ||ααα += ⊥  is the mean polarizability of an ion, and ⊥−=Δ ααα || . It should be noted that 

the general expression for the ponderomotive force polf
r

 was derived under the assumption of static 

fields with ( ) 0=×∇ E
r

. However, as we mentioned above, we study electrostatic plasma oscillations 
with zero magnetic field. Thus Eq. (6) remains valid. 
 Combining Eqs. (1)-(6) we get the following nonlinear coupled equations for the amplitude 
of the electric field,  
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and for the perturbation of the ion density, 
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where 0
24/ neTr eD π=  is the Debye length and MTc es /=  is the should velocity in plasma. To 

derive Eq. (8) we take into account that 
4

1
4 6 EE

rr
= while averaging over the time interval ~ eω/1 . 

 The first quadratic term in the rhs of Eq. (8) corresponds to the direct interaction of charged 

ions with the electric field whereas the second quartic term there, ~
4

1
2 E
r

∇ , is related to the induced 

EDM interaction. Hence the contribution of this second term to the Langmuir waves dynamics 
should be typically smaller. However, as shown in Ref.[4], in some cases it is the EDM term which 
arrests the collapse of Langmuir waves. 
 It should be noted that in Eq.(8) we neglect the contribution of the ion temperature to the 
sound velocity. Such a contribution would correspond to a nonzero ion pressure term in Eq. (4). 
Since we suppose that ei TT 〈〈 , we can omit the ion pressure. However we keep the ion temperature 
in the quartic nonlinear term in Eq. (8). In the rhs of Eq.(8) we also neglect term ~ 

MEn /
2

1
2

0

r
∇− α  which is small compared to the contribution of the Miller force. Indeed, the 

ratio of these terms is ~ α0n . We shall use the following values of 0n  and α . We shall use the 

following values of 0n  and α : 321
0 10~ −cmn  and .10~ 324 −− cmα  For such a parameters, this 

ratio ~ ,10 3−  that justifies the validity of Eq.(8). 
2. Cubic-quintic nonlinear Schrödinger equation. Let us suggest that the density variation  

in Eq.(8) is slow, i.e. ./ 2222 nctn s∇<<∂∂  In tis subsonic regime Eqs. (7) and (8) can be cast in a  
single nonlinear Schrödinger equation (NLSE),  
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which has both cubic and quintic nonlinear terms. Note that in Eq.(9) we omit the index “1” in the 
amplitude of the electric field, i.e. ,1 EE

rr
≡  in order not to encumber the formulas. 

 We shall examine axially or spherically symmetric plasma oscillations, i.e. reEE rr
= , where 

rer  is a unit vector in radial direction and E is a scalar function. Introducing the following 
dimensionless variables: 
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we can represent Eq. (9) in the form [4], 
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which contains no dimensionless parameters. Here 3,2=d  is the dimension of space. Eq.(11) with 
boundary conditions: .0),(),0( =∞= τψτψ  
One can check by the direct calculation that the Plasmon number, 
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and the Hamiltonian 
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�are the integrals of Eq. (11). Here π22 =Ω � and π43 =Ω  are the solid angles in two and three 
dimensions. 
 Eq. (11) can be applied to model a rare natural atmospheric plasma phenomenon called a 
ball lighting (BL) [5]. There are indications that some BL can be rather powerful energy sources. 
Thus, if one succeeds to implement a BL in a laboratory, this plasma object can be an alternative 
source [6]. 

3. The algorithms for solution NLSE. To the study of such equations are devoted 
numerous works (see [7,8] and the literature cited there). In some special cases, one can obtain 
exact solutions of these equations. However, in the general case, finding the exact solution of such 
an equation is not possible, which forces us to turn to numerical methods. Below we propose a 
solution to the NLSE with partial derivatives in the form )(),( 0 xex i ψτψ λτ= , which leads to the 
ordinary Schrödinger differential equation with a spectral parameter λ . 

For constructing the algorithms for solving Eqs (11) 
( ) ( )xex i

0; ψτψ λτ= .                                                                 (14) 
we will require the following initial and boundary conditions: 
. 
 

( ) ( ) 0;;0 =∞=== τψτψ xx ,                                                         (15) 
( ) )(0; 0 xx ψτψ == .                                                                      (16) 

Using the obvious following expressions: 
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Let us rewritten Eqs. (11) as, 
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Considering the consequences of the boundary conditions (14) and (15) 
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in solution (14), taking into account (12) and (13) in the case of a condition 0)(0 =Lψ , the solution 
of problem (17) - (18) is already in the region { }LxG ≤≤= 0 . 
Approximating the following 
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and substituting them in Eqs.(17) for the points ixx =  we get the following finite difference 
equation: 
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Grouping the terms by  i

0ψ  we get:  
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Next, introducing the notation 
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as a result, from the primary problem (11)-(16), taking into account (20), we obtain the following 
spectral problem: 
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which, in principle, can allow one to find the corresponding eigenfunction, and in general, check the 
numerical results of [4]. 

Numerical analysis of Eq.(21) will be implemented in one of our forthcoming publications. 
Talk given at the 6th International Conference on Control and Optimization with Industrial 

Applications”.(11-13, July, 2018, Baku, Azerbaijan). 
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