ISSN 1512-1461 ИЗУЧЕНИЕ ЖЕСТКИХ И МЯГКИХ ПРОЦЕССОВ В π^- С – СОУДАРЕНИЯХ ПРИ ИМПУЛЬСЕ 40ГэВ/с

Л.Н.Абесалашвили, Л.Т.Ахобадзе, Ю.В.Тевзадзе

Институт Физики Высоких Энергий Тбилисского Государственного Университета им. И.Джавахишвили

<u>Аннотация</u>

Изучаются средние кинематические характеристики (скх) π^{\pm} -мезонов образованных в $\pi^{-}C$ – соударениях (при импульсе 40ГэВ/с) в жестких и мягких процессах. Жесткие – $N_{ev}(H)$ и мягкие – $N_{ev}(S)$ столкновения выделяются с помощью в лаб системе назад летящих π_b^{\pm} - мезонов.

Кроме этого исследуются распределение π^{\pm} -мезонов в пространстве быстроты -Y и проверяется признак по короткодействующим корреляциям $\Delta Y = |Y_i - Y_j| < 2$, который выделяет пионы, обязанные своим происхождением быстрому qкварку.

<u>Ключевые слова</u>: жёсткие и мягкие процессы, кумулятивные частицы, π_b мезоны, кварки, пространство быстроты.

Введение.

Одной из интересных задач физики высоких энергии (или физики элементарных частиц) является изучение кумулятивных процессов, выделение N_{ev}(H)- жёстких и N_{ev}(S)- мягких процессов и сравнение средних кинематических характеристик частиц образованных в этих соударениях.

Экспериментальный материал получен с помощью РВС-500-двухметровой пропановой пузырьковой камеры Лаборатории Высоких Энергии им. Векслера и Балдина Объединенного Института Ядерных Исследовании –ЛВЭ ОИЯИ, Дубна. Детектор облучался на ускорителе в Протвино, в ИФВЗ пучком π^- -мезонов с импульсом 40GeV/с. Методические вопросы связанные с обработкой и анализом данных рассмотрены в работах [1÷5]Наша статистика состоит из 8671 π ⁻С- взаимодействий. Полное число π^- мезонов равно 29053, а π^+ -мезонов – 32383.

<u>Анализ Экспериментальных Данных</u>

В физике высоких энергии особый интерес вызывают кумулятивные процессы [6-11]. Выделение кумулятивных процессов связано, выделением в событии кумулятивных частиц (в данном случае π_b^{\pm} - мезонов назад летящих в Lab -системе, т.е. θ_L >90град.). Со своей стороны возникновение кумулятивных частиц связано с образованием в ядре мишени (в нашем случае С-углероде) т.н. FL-флуктонов [12].

Вторичная частица считается кумулятивной если её скх не подчиняются кинематике NN- нуклон-нуклонного рассеяния.

Много кварковая система – FL образуется в ядре мишени из-за локальной флуктуации средней плотности нуклонов в ядре, когда два или больше нуклонов (в течение очень короткого времени) образуют единую систему (т.н. DQB-Dense Quark Bag) [9-12]. Падающая частица (или, частица которая образуется в ядре) взаимодействует с FL-флуктоном (размеры FL< 1F=10(-13)сm) и после рассеяния образуются кумулятивные

частицы $-\pi_b^{\pm}$ -мезоны в Lab-.системе летящие назад. Эти кумулятивные частицы создают jet –струи адронов (и, следовательно возникают т.н. N_{ev}(H)-жёсткие процессы; или кумулятивные процессы). Образование жестких процессов - N_{ev}(H) связано с жёстким рассеянием q - кварков и g-глюонов сталкивающихся объектов (т.е. столкновение AiFL-налетающей частицы с FL-флуктоном) [13,14]. Событие где среди вторичных частиц нет ни одой кумулятивные частицы (в нашем случае $-\pi_b^{\pm}$ -мезон) считается мягким- N_{ev}(S); а мезоны в мягких процессах называем π (S)-частицами.

FL-флуктоны многокварковые конфигурации в ядре мишени (Dense Quark Bag-DQB) могут возникнуть двух физических процессах. Первая модель – "холодная" происходит локальная флуктуация средней плотности нуклонов ядра – мишени. Вторая модель - "горячая" – связана с уплотнением нуклонов ядра мишени под давлением налетающей частицы (или, ядра), что и вызывает образование FL-флуктонов.

По современным теоретическим представлениям кумулятивная частица (в данном случае - π_b^{\pm} -в Lab системе назад летящие мезоны) образуется рассеянием налетающей частицы (или частицы которая рождается в ядре мишени) на FL-флуктоне. После рассеяния взаимодействующая частица теряет основную часть своего импульса (рассеивается на большой угол, см. табл.№2) теряет (временно) способность вторичного взаимодействия и выходит из ядра мишени и образуются jet-струя.

AiAt=(P,d,He,C)(C,Ta) столкновениях число образованных пи-плюс - мезонов больше (~на (20-25%)), чем число π^- мезонов. А в нашем случае (π -С-соударения при 40GeV/с) количество π^+ - мезонов ~ на 10% больше. Приблизительно такие результаты получены в работе – Балдина А. М., (ЯФ, 1975, 21,1008). Этот эффект (N(π^+)>N(π^-))можно объяснить тем, что у мишени С-углерода имеется положительный заряд (z(c)=6). С другой стороны нельзя исключить, что определенное влияние имеет асимметрия числа протонов и нейтронов в сталкивающихся ядрах(или, асимметрия числом π^- -мезонов и нуклонов в ядре углерода)

(Замечание. Большие размеры ядер позволяют изучать пространственно – временные характеристики взаимодействий частиц на очень маленьких расстояниях ($\Delta x \sim 10(-13)$ см=1F и при очень малых временах $\tau \sim 10(-24)$ sec). Действительно, пробег поглощения адронов в ядерном веществе равен (2-3)F=(2-3)фм. Это небольшие величины по сравнению с размерами ядер (ядро урана – 92U²³⁸ имеет диаметр ~15F; диаметр тантала 73Ta¹⁸¹ =13,70F, диаметр С –углерода =2.78F) Таким образом, ядро мишени можно использовать как анализатор развития процесса от точки взаимодействия еще на протяжении ~(10-12)ФМ. Появляется возможность исследовать "юные" состояния частиц, образующиеся сразу после взаимодействия, и изучать процессы формирования поля таких частиц [15].

Давно существовало подозрение (основываясь на определенные экспериментальные факты) что стабильные частицы, испытав неупругое взаимодействие в ядре, имеют пониженную способность взаимодействовать повторно.

Высказано предположение, что нуклон в момент неупругого взаимодействия " стряхивает" с себя ядерное поле и не может эффективно взаимодействовать, пока поле не восстановится. Можно сформулировать более общую гипотезу, введя понятие конечного времени формирования частиц (родившихся во взаимодействии) длительность которого много меньше времени формирования [16].

Множественное рождение частиц в hh-адрон-адронных, hAt-адрон-ядерных, AiAt- ядроядерных столкновениях можно представить так-сперва образуется промежуточное состояние CS-компаунд система, мгновенному распаду которой препятствует цветные силы. Время жизни CS достаточно для выхода частиц из ядра без взаимодействия).

Среди вторичных частиц в Nev(H)-жестких процессах, кроме кумулятивных (π_b^{\pm} - мезонов) возникают некумулятивные π^{\pm} - мезоны, которые летят вперед в Lab-системе (скх которых существенно отличаются от скх π_b^{\pm} - мезонов (см. табл. N°1°,1° и 2)). Эти π - мезоны называются $\pi(ass)$ –сопровождающимся π - мезонами, которые испытывают влияние Fl-ов, или π_b^{\pm} - мезонов. Что касается $\pi^{\pm}(S)$ - мезонов, мезонов из Nev(S)- событий , они не испытывают влияния FL-флуктонов (или, π_b^{\pm} - мезонов) потому , что в этих событиях нет π_b^{\pm} -частиц).

<u>I.Сравнение характеристик π^{\pm} - мезонов возникших в Nev(H)-жестких и Nev(S) –мягких процессах</u>

Средние инклюзивные характеристики π^{\pm} -мезонов приведены в табл.№1^а и №1^ь. См. также рис.1.

<u>Таблица №1</u>ª

π⁻-мезоны

		<pl>GeV/c</pl>	$< P_{\perp} > GeV/c$	degr	<yl></yl>	R	<nc></nc>
1	π ⁻ (t)	3.052±0.021	0.349 ± 0.004	22.160±0.132	2.120±0.015	0.11	0.092±0.002
2	π ⁻ (S)	3.217±0.023	0.355±0.004	17.420±0.120	2.250±0.017	0.11	0.075±0.002
3	π ⁻ (H)	2.287±0.045	0.315±0.009	44.01±0.67	1.515±0.027	0.14	0.17±0.003

Таблица №1б

Тоже что в таблице $N^{o}1^{a}$, только для π^{+} - мезонов

		<pl>GeV/c</pl>	$< P_{\perp} > GeV/c$	$<\Theta_{\perp}>$ degr	<yl></yl>	R	<nc></nc>
1	$\pi^{+}(t)$	2.324±0.015	0.326 ± 0.004	26.67±0.17	1.845 ± 0.013	0.17	0.131 ± 0.002
2	$\pi^{+}(S)$	2.449 ± 0.018	0.391±0.041	21.90±0.14	1.971±0.015	0.16	0.110±0.002
3	$\pi^+(H)$	1.887±0.013	0.369±0.039	43.26±0.546	1.418 ± 0.011	0.19	0.25±0.002

Рис.1 Импульсное распределение π- пи минус мезонов образованных π⁻С-соударениях при 40GeV/с.

Как выше было сказано Nev(H)-жесткие процессы возникают, когда на FL-флуктоне рассеиваются π^{\pm} -мезоны. После рассеяния на FL-флуктоне частица теряет основную часть импульса и рассеивается в Lab-системе назад (θ_L >90degr). Этот процесс называется жестким- Nev(H). Жестких процессах кроме π_b^{\pm} - мезонов возникают т.н. π^{\pm} (ass)-сопутствующие, ассоциированные частицы, которые испытывают влияние FL-флуктонного поля (или, π_b^{\pm} - мезонов), по этому <PL($\pi^-(ass)$)>-средний импульс $\pi^-(ass)$ -мезонов меньше, чем <PL($\pi^-(s)$)>- средний импульс $\pi^-(s)$ -мезонов в Nev(S)-событиях (см. табл.№2).

В жестких- Nev(H) и мягких- Nev(S) процессах скх π^{\pm} -мезонов друг от друга существенно отличаются (см.табл. .No1^a и No1^b); напр.:

 $<\Theta_{L}(\pi(S))>=(17.42\pm0.120)degr,$ $<P_{L}(\pi(S))>=(3.217\pm0.023)GeV/c,$ <Y_L(π ⁻(S))>=2.250±0.017, <nc(π⁻(S))>=0.075±0.002, <R(π⁻(S))>=0.11; Что касается - Nev(H)- жестких процессов - т.е. жестких процессах: $<P_{L}(\pi(H))>=(2.287\pm0.045)GeV/c,$ $\pi(H)$ характеристики $<\theta_{L}(\pi(H))>=(44.010\pm0.671)degr,$ $\langle Y_{L}(\pi^{-}(H)) \rangle = 1.515 \pm 0.027,$ $< n_c(\pi(H)) >= 0.170 \pm 0.003,$ <R(π -(H))>=0.14; из экспериментальных данных видно, что π -мезоны испытывают более сильное влияние FL-флуктонного поля (или, $\pi_{\rm b}$,-мезонов) чем, π⁻-мезоны. Напр.: $<P_{L}(\pi^{+}(S))>=(2.449\pm0.018)GeV/c,$ $<\Theta_{L}(\pi^{+}(S))>=(21.900\pm0.140)$ degr, <YL($\pi^{+}(S)$)>=1.971 \pm 0.015, <пс(*π*⁺(S))>=0.110±0.002, <R(*π*(S))>=0.16; а для *π*(S)-мезонов см. табл. .№1^аи №1^ь.

Флуктоны-FL (или, π_b -мезоны) существенное влияние оказывают на формирование характеристик сопутствующих, ассоциированных π -частиц, особенно, на формирование характеристик $\pi^+(ass)$ -мезонов: $\langle P_L(\pi^-(ass)) \rangle = (2.977 \pm 0.056) \text{GeV/c}, \langle \Theta_L(\pi^-(ass)) \rangle = (18.791 \pm 0.310) \text{degr}, \langle Y_L(\pi^-(ass)) \rangle = 2.168 \pm 0.042, \langle n_c(\pi^-(ass)) \rangle = 0.081 \pm 0.005,$

ISSN 1512-1461

<R(π -(ass))>=0.12; а скх π +(ass)-мезонов такие <Pl(π +(ass))>=(2.336±0.020)GeV/c, < θ l(π +(ass))>=(22.282±0.300)degr, <Yl(π +(ass))>=1.940±0.032, <nc(π +(ass))>=0.110±0.004, <R(π +(ass))>=0.17; (см. табл. .№2).

<u>Таблица №2</u>

Средние кинематичесие характеристики π^{\pm} - мезонов

		$< P_L > Gev/c$	$< P_{\perp} > Gev/c$	$\langle \Theta_L \rangle$ degr	<yl></yl>	<ΔY>	<nc></nc>	R
1	π ⁻ (t)	3.052 ± 0.021	0.349 ± 0.004	22.160±0.132	2.120±0.015	1.322 ± 0.007	0.092 ± 0.002	0.11
2	$\pi^{+}(t)$	2.324±0.015	0.386 ± 0.004	26. 670±0.170	1.845 ± 0.013	1.266 ± 0.007	0.131±0.002	0.17
3	π ⁻ (S)	3.217 ± 0.023	0.355 ± 0.004	17.420 ± 0.120	2.250±0.009	1.210±0.009	0.075±0.002	0.11
4	$\pi^+(S)$	2.449 ± 0.018	0.391 ± 0.004	21.900±0.140	1.971±0.010	1.155±0.011	0.110±0.002	0.16
5	π⁻(ass)	2.977±0.056	0.349±0.011	18.791±0.310	2.168±0.042	1.214 ± 0.021	0.081±0.005	0.12
6	π +(ass)	2.336 ± 0.020	0.388 ± 0.010	22.282±0.300	1.940±0.032	1.161±0.015	0.110±0.004	0.17
7	π -(b)	0.256±0.014	0.216±0.014	118.401 ± 2.180	-0.405±0.021	0.319 ± 0.010	0.430 ± 0.022	0.84
8	$\pi^{+}(b)$	0.238±0.017	0.214±0.015	115.602±2.880	-0.384±0.018	0.321±0.050	0.534±0.022	0.89

<u>Замечание -</u> $\pi^{-}(t)$ \mathfrak{Q} $\pi^{+}(t)$ ---инклюзивние π^{-} и π^{+} - мезоны

Из литературы известно, что hh-адрон-адронных, hA_t-адрон-ядернных и AiAt- ядроядерных столкновениях с ростом числа вторичных частиц уменьшается среднее значение импульса, увеличивается среднее значение угла вылета; но, для кумулятивных частиц существует исключение - средние характеристики кумулятивных частиц (π^{\pm} -мезонов, рпротонов) не зависят от количества возникших кумулятивных частиц (см. табл. .№З^а и №З^b).

<u>Таблица №3ª</u>

_		-					
		$< P_L > Gev/c$	$< P_{\perp} > Gev/c$	$<\Theta_{\perp}>$ degr	$\langle y_{L} \rangle$	R	<nc></nc>
	$N(\pi_b(t))$	0.256±0.014	0.216±0.014	118.400±2.200	-0.405±0.021	0.840±0.010	0.430±0.022
1	2 N(π ⁻ b=1)	0.255±0.016	0.212±0.015	118.400 ± 2.180	-0.405±0.020	0.840±0.015	0.430±0.022
5	$N(\pi_{b}=2)$	0.270±0.020	0.229±0.010	117.700±2.82	-0.400±0.017	0.850±0.037	0.450±0.020

Средние характеристики пъ-мезонов

<u>Таблица №3</u>6

Средние характеристики π_{b}^{+} -мезонов

		$< P_L > GeV/c$	$< P_{\perp} > GeV/c$	<\OmegaL>degr	<yl></yl>	R	<nc></nc>
1	$N(\pi_{b}^{+}(t))$	0.238±0.017	0.214±0.015	115.600±2.88	-0.384±0.018	0.900±0.010	0.534±0.022
2	$N(\pi_{b}^{+})=1$	0.241±0.018	0.216±0.014	115.900±2.150	-0.388±0.020	0.900±0.016	0.540±0.020
3	$N(\pi_{b}^{+})=2$	0.228±0.018	0.210±0.015	114.700±2.180	-0.360±0.016	0.920±0.017	0.520±0.010
4	$N(\pi_{b}^{+})=3$	0.219±0.020	0.200±0.016	110.600±3.100	-0.287±0.020	0.920±0.018	0.450±0.012

Характеристики π_b^{\pm} -мезонов (кумулятивных частиц) возникших в πC -соударениях при 40 GeV/с в пределах погрешности то же, что и характеристики π_b^{\pm} -мезонов возникших в pAt – протон-ядерных и A_iAt –ядро-ядерных столкновениях при разных энергиях. Не существует зависимость от первичной энергий (см. табл. .№З^аи №З^b).

ISSN 1512-1461

Возникновение - Nev(H) жестких процессов (как показывает анализ данных) в основном обусловлено само флуктуацией средней плотности нуклонов ядра мишени – "холодная" модель (определенную роль играет энергия налетающей частицы)

Что касается характеристик $\pi^+(ass)$ -мезонов, они существенно зависят от числа $N(\pi_b^{\pm})$ -в Lab системе назад летящих кумулятивных частиц (см. табл. $N^{\circ}4^a, N^{\circ}4^b, N^{\circ}5^a, N^{\circ}5^b$).

Таблица №4ª

Зависимость средних характеристик сопутствующих - $\pi^{-}(ass)$ -мезонов от числа π^{-}_{b} - мезонов

Ν		$< P_L(\pi^-(ass)) >$	$< P_{\perp}(\pi^{-}(ass)) >$	degr	<yl></yl>	R	<nc></nc>
		GeV/c	GeV/c				
1	$N(\pi_{b}(t))$	2.977±0.055	0.349±0.011	18.79±0.055	2.168±0.042	0.12	0.081±0.005
2	$N(\pi_b)=1$	3.001±0.058	0.349±0.006	18.80±0.320	2.171±0.043	0.12	0.082±0.005
3	$N(\pi_{b}^{-})=2$	2.618±0. 100	0.346±0.040	18.43±2.15	2.140±0.151	0.13	0.078±0.014
4	$N(\pi_{b}^{-})=3$	1.946±0.150	0.246±0.022	25.01±3.500	1.99±0.200	0.13	0.085±0.020

<u>Таблица №4⁶</u>

Зависимость средних характеристик сопутствующих - $\pi^+(ass)$ - мезонов от количества $\pi^+_{\ b}$ - мезонов

Ν		$< P_L(\pi^+(ass)) >$	$< P_{\perp}(\pi^{+}(ass)) >$	<\OmegaL>degr	<yl></yl>	R	<nc></nc>
		GeV/c	GeV/c				
1	$N(\pi_{b}^{+}(t))$	2.336±0.020	0.388±0.010	22.28±0.300	1.940 ± 0.032	0.12	0.081±0.005
2	$N(\pi_b^+)=1$	2.345±0.039	0.387 ± 0.006	22.12±0.92	1.951±0.034	0.12	0.082±0.005
3	$N(\pi_{b}^{+})=2$	2.271±0. 110	0.405 ± 0.033	22.99±1.09	1.867±0.110	0.13	0.078±0.014
4	$N(\pi_{b}^{+})=3$	2.030±0.300	0.376±0.070	26.38±4.10	1.727±0.200	0.13	0.085±0.020
5	$N(\pi_{b}^{+})=4$	1.878±0.350	0.343 ± 0.080	32.32±5.11	2.155±0.251	0.18	0.124±0.060

<u>Таблица №5ª</u>

Зависимость средних характеристик сопутствующих (ассоциированных) - π (ass) от

количества π^{\pm}_{b} -мезонов

Ν	$N(\pi^{\pm}_{b}(t))$	<pl(\(\pi \)="" \cdot=""></pl(\(\pi>	<p_(<math>\pi^{-})></p_(<math>	<\OmegaL>degr	<yl></yl>	R	<nc></nc>	частица
		GeV/c	GeV/c					
1	0	3.294 ± 0.082	0.345 ± 0.010	17.36±0.35	2.267	0.10	0.071	π ⁻ (S)
2	1	2.933±0.071	0.341±0.010	18.91±0.40	2.141	0.12	0.078	π -(ass)
3	2	2.572±0.081	0.339±0.012	19.80±0.60	2.058	0.13	0.082	π -(ass)
4	3	2.450±0.110	0.357±0.014	20.63±0.70	1.972	0.14	0.097	π -(ass)
5	4	2.451±0.150	0.365±0.015	21.54±0.90	2.027	0.15	0.094	π -(ass)
6	5	1.344±0.200	0.343±0.020	27.03±0.1.10	1.587	0.25	0.122	π -(ass)

Таблица №5б

Ν	$N(\pi^{\pm}(t))$	<pl(\pi +)="" ^=""></pl(\pi>	$< P_{\perp}(\pi^{+}) >$	<\OmegaL>degr	<yl></yl>	R	<nc></nc>	частица
		GeV/c	GeV/c					
1	0	2.616	0.383	20.66	2.04	0.15	0.100	π ⁺ (S)
2	1	2.260	0.391	22.81	2.90	0.17	0.111	π +(ass)
3	2	2.046	0.394	25.37	1.77	0.19	0.122	π +(ass)
4	3	1.997	0.421	24.93	1.76	0.21	0.128	π +(ass)
5	4	1.821	0.382	26.75	1.68	0.21	0.190	π +(ass)
6	5	1.774	0.386	27.61	1.65	0.22	0.130	π +(ass)
7	6	1.402	0.331	27.62	1.57	0.24	0.111	π +(ass)

Тоже что и в таблице $N^{o}5^{\circ}$, только для $\pi^{+}(s)$ и $\pi^{+}(ass)$ - мезонов

II.Распределение кумулятивных π_b^{\pm} - мезонов в пространстве быстроты и проверка гипотезы коротко действующих корреляции

Согласно современным теоретическим представлениям быстрый q-кварк возникаюший в жестких соударениях может адронизироваться не только в один кумулятивный пион, но и кумулятивную струю-jet. При этом выполняется естественный признак по короткодействующим корреляциям в пространстве быстроты

$$\Delta Y = |Yi - Yj| < 2$$
 (1)

Где Үі и Үј продольные быстроты і-го и ј-го частиц.

Условие (1) выделяет пионы обязанные своим происхождением быстрому(кварку) патрону.

Экспериментальные данные показывают, что подавляющее большинство π^{\pm} - мезонов удовлетворяют условию (1) SRC- признак по короткодействующим корреляциям (см. рис.№2).

Замечание :R=<P_⊥>/<P_L> n_с-кумулятивное число

Рис.2 распределение ΔY для инклюзивных $\pi^{\scriptscriptstyle +}$ -пи плюс мезонов

Что касается $\pi_{\rm b}^{\pm}$ - мезонов – все они не только удовлетворяют условие SRC, но все $<\Delta Y >$ средние значения ΔY меньше 1(рис № 3 и №4) ; и они создают јеt-струи из π_{b}^{\pm} - мезонов летящих назад в Lab-системе

Рис.3. Распределение ∆У для ть- - Lab в Рис.4. То же, что и на рис.3, только для системе назад летящих пи минус мезонов

 π_{b^+} - в Lab системе назад летящих пи плюс мезонов

III.Принцип неопределенности для импульса и Y – быстроты и быстрые процессы Принцип неопределенности для энергии и времени (а также для импульса и координаты) запишется так

$$\Delta E \Delta t \ge \hbar$$
 (2)

$$\Delta P \Delta x \ge \hbar$$
 (3)

Из 2-го уравнения видно, что чем больше выделенная (переданная) энергия тем быстрее происходит процесс столкновения , следовательно Δt малая величина. Из 3-го уравнения следует, что чем больше переданный импульс, тем близко подходят друг-другу взаимодействующие частицы, т.е. Δx -расстояние между частицами уменьшается . Δt определяет радиус взаимодействия

(4) $r_{in}=\Delta tc$ Если выделенная (переданная) энергия ∆Е=10GeV/с, тогда (см.2)

$$\Delta t = \frac{\hbar}{\Delta E} = \frac{1.05 \times 10(-27)erg.sec}{10(1.6 \times 10(-3))erg} = 0.065 \times 10(-24)sec = 6.5 \times 10(-26)sec$$
(5)
$$\Delta t = \frac{\hbar}{\Delta E} = \frac{1.05 \times 10(-27)erg.sec}{10(1.6 \times 10(-3))erg} = 0.065 \times 10(-24)sec = 6.5 \times 10(-26)sec$$
(5)

тогда, для радиуса взаимодействия получаем

 $r_{in}=6.5\times(-26)sec\times2.90\times10(10)cm\timessec^{-1}=18.85\times10(-16)cm\approx0.20\times10(-14)cm$ (6)

Соотношение неопределенности для импульса частиц и У – быстроты запишется так (см.З)

$$\Delta P \Delta Y \ge \hbar$$
 (6)

импульс, тем ближе подходят друг другу значит, чем больше переданный взаимодействующие частицы в пространстве быстроты и тем меньше значение ΔY . Маленькое значение ΔY означает, что налетающая частица теряет большую часть своего импульса и рассеялся на большой угол. Маленькое значение ΔY означает, что частица имеет маленький импульс и рассеивается на большой угол. Большое значение ΔY означает, что ΔP имеет маленькое значение (и, следовательно имеет большой импульс)и угол рассеяния уменьшается.

Согласно такой логике характеристики кумулятивных и не кумулятивных частиц (и, вообще частиц) отличаются настолько, насколько отличаются друг от друга их < ΔY >- средние значения в пространстве быстроты. Напр.:

 $<P_L(\pi^{-}(t))>=(3.052\pm0.021)GeV/c, <\theta_L(\pi^{-}(t))>=(22.160\pm0.132)degr, <\Delta Y>=(1.322\pm0.007), <P_L(\pi^{+}(t))>=(2.324\pm0.015)GeV/c, <\theta_L(\pi^{+}(t))>=(26.670\pm0.170)degr, <\Delta Y>=(1.266\pm0.007)$ (см.табл.№2)

 $<P_{L}(\pi^{-}(S)) >= (3.217\pm0.023)GeV/c, <\theta_{L}(\pi^{-}(S)) >= (17.420\pm0.120)degr, <\Delta Y(\pi^{-}(S)) >= (1.210\pm0.010), <P_{L}(\pi^{+}(S)) >= (2.449\pm0.018)GeV/c, <\theta_{L}(\pi^{+}(S)) >= (21.900\pm0.140)degr, <\Delta Y(\pi^{-}(S)) >= (1.155\pm0.021) (cm.tagn.N^{o}2)$

$$\begin{split} <& P_{L}(\pi^{-}(ass)) >= (2.977 \pm 0.026) \text{GeV/c}, <& \theta_{L}(\pi^{-}(ass)) >= (18.791 \pm 0.310) \text{degr}, \\ <& \Delta Y(\pi^{-}(ass)) >= (1.214 \pm 0.021) \\ <& P_{L}(\pi^{+}(ass)) >= (2.336 \pm 0.020) \text{GeV/c}, \\ <& \Theta_{L}(\pi^{+}(ass)) >= (22.282 \pm 0.300) \text{degr}, \\ <& \Delta Y(\pi^{+}(ass)) >= (1.161 \pm 0.015) \text{ (см.табл.N°2)} \end{split}$$

 $<P_{L}(\pi^{-}(b))>=(0.256\pm0.014)GeV/c, <\Theta_{L}(\pi^{-}(b))>=(118.401\pm2.180)degr, <\Delta Y(\pi^{-}(b))>=(0.319\pm0.010) (см.табл.№2)$

Заключение

Изучение кумулятивных процессов в π -С –соударениях при импульсе 40 GeV/с с помощью π_b^{\pm} - в Lab системе назад летящих пи мезонов показал:

- С помощью π[±]-мезонов можно выделить N_{ev}(H)- жёсткие и N_{ev}(S)- мягкие процессы. Средние кинематические характеристики π[±](S) и π[±](ass) – мезонов существенно отличаются друг от друга;
- Сравнение с результатами других экспериментов показывает , что скх πь⁻ мезонов не зависят ни от первичной енергии , ни от Аі –массы налетающей частицы, ни от Аt –массы мишени;
- 3. Возникновение FL флуктонов в основном обусловлено массой ядра мишени;
- 4. < $\Delta Y(\pi_b)$ >-среднее расстояние в пространстве быстроты для π_b -мезонов существенно меньше, чем соответствующие величины для $\pi^{\pm}(S)$ и $\pi^{\pm}(ass)$ мезонов;
- 5. Заключение пункта 4 указывает на то, что jet-струй мезонов образуются от π_b^{\pm} -мезонов;
- SRC-Short Range Correlation признак по короткодействующим корреляциям ΔY=|Yi-Yj|<2 выполняется для π_b[±]-мезонов (более того--- практически для всех π_b[±]-мезонов ΔY<1;

- 7. Соотношение неопределенности между Y и P импульсом в пространстве быстроты запишется так ΔРΔY≥ħ, т.е. уменьшение ΔY вызывает увеличение ΔP-переданного импульса и увеличение угла вылета;

 Из полученных данных можно заключить, что для πь-мезонов имеет место гипотеза "мягкого" обесцвечивания - или единый механизм адронизации qкварков и g-глюонов – Hypothesis of Soft Decoloration. Авторы выражают благодарность проф. Г. Девидзе за помощь в работе и

обсуждения Авторы выражают благодарность академику Б. Юлдашеву за предоставление DSTэкспериментального материала

Литература

- 1. BBCD SSTTU-BW, Collaboration. Phys. Lett., 1972, 39B, p.371;
- 2. Ангелов Н. и др. ЯФ, 1977,25,ст1013;
- 3. Ангелов Н. и др. ОИЯИ,1-12424,Дубна, 1979;
- 4. Abdurakhmanov E.O., ..., Tevzadze I., et al. JINR,E1-11517, Dubna, 1978; Yad. Fiz., 1978,28,1304;
- 5. Grigalashvili N.S., Tevzadze I.V.,,..., et.al.Yad . Fiz.1988, 48,476;Олимов К и др ЯФ, 2009, 72, №3, 604
- 6. Балдин А.М. ЭЧАЯ, 1977, 8, с. 429;
- 7. Балдин А.М. и др. Труды N международного семинара по проблемам физики высоких энергий. ОИЯИ,Д1,2-9224,Дубна,1975;
- 8. Ставинский В.С. ЭЧАЯ, 1979, 10, с, 949;
- 9. Baldin A.M. JINR, E1-80-545, Dubna, 1980;
- 10. Аношин А.И. и др. ЯФ,1982,36,с.685;
- 11. Аношин А.И. и др. ЯФ,1982,36,с.409;
- 12. Blokhintsev D.I.(1957), JETP, 42, Dubna, 1986; P1-89-488, 1986;
- 13. Блохинцев Д.И., ЖЭТФ, 1957, 33, 1205;
- 14. Балдин А.М., ЭЧАЯ,1977,8,429; Олимов К и др ЯФ, 2009, 72 ,№3, 604
- 15. В.С.Мурзин, Л.И. Сарычева. Взаимодействия адронов высоких энергий, Москва,1983;
- 16. Фейнберг Е.Д. Экспериментальная и Теоретическая Физика ,1966 23,с.132;
- 17. Zatzepin G.T. J.Phys. Soc. Japan Suppl. A III, 1962,17,p.494,Изв. АН СССР Сер. Физ. 1962,5,c.647.

Article received: 2019-04-06