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We have obtained an expression for retarded potential of electromagnetic field for 
arbitrary moving point charged particle having a magnetic moment (corresponding 
terms are added to Lienard-Wiechert potential). The radiation reaction force which 
corresponds to radiation part of this field is calculated as well. 
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I. INTRODUCTION 
 

It is well-known that classical electrodynamics contains some problems and contradictions, such 
as: a) for the hyperbolic motion the radiation reaction (RR) 4-force acting on accelerated charged 
particle is zero. The problem occurs especially for the time-like component of the RR force while 
power of radiated energy is not zero; b) self-acceleration phenomenon, when the speed of the 
charged particle increases under the action of RR force, etc. (see [1]-[5] and references cited there). 
As it is noted in [5, §75], the problem of a self-acceleration phenomenon has to be considered in 
connection with the known problems of so called electromagnetic mass (see e.g. [6] v.2]). In the 
articles [4] we have studied the next problem: the electromagnetic field (EMF) radiated by linearly 
moving accelerated charge at certain time  0 ,t  after time interval t∆  reaches the sphere with radius 
R c t= ∆  and creates an energy-momentum flux through this sphere. The problem is that the flux 
decreases as t∆  (and )R  increases. In order to clarify this problem most authors (see, e.g., [5]) 
consider such part of EMF that gives flux which does not change as sphere radius increases and call 
this part the radiation field. Some authors (e.g., [2]) combine the residual field with charged particle 
to create a “complex” and assume that this two objects somehow exchange an energy.  

Rather often (a lot of examples can be cited), problems and contradictions in theoretical Physics 
occur when and due to incorrect and/or incomplete theoretical model is used to describe a 
phenomenon. In this context we would like to note that there are no charged fundamental particles 
(quarks, leptons and gage bosons) without magnetic moment (we restrict ourselves by consideration 
of only fundamental particles known in the Standard model and found experimentally). So, we could 
expect that for charge having a magnetic moment the problems noted above will get an explanation. 
As it will be shown below, this expectation are not materialize. In spite of this, in our opinion, the 
expressions for retarded potentials and RR force for a charge particle having a magnetic moment are 
interesting.    

In order to calculate the potential of the field created by magnetic moment of arbitrary moving 
point particle, we start with expression given by J. Frenkel [7] 
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Here and below i i iX x x′= − ( 0,1, 2,3);i = ( , )ix ct xα=  stands for the observation point’s 4-coordinates 
and ( , )i αx ct x'′ ′=  – for the ones of the particle location point ( 1, 2,3);α =  83 10 /c m s= ⋅  is speed of 
light in vacuum; τ  denotes a proper time of the particle; k jµ  (see the formula (3.2) below) 
characterizes the magnetic moment of the particle; Γ is any closed counter on complex plane 
surrounding the origin. In (1.1) and below we omit the sign of summarization in expressions where 
indices are repeated.  

In the Sec. II, to check the correctness of this approach we consider the similar expression (2.1) 
for point charged particle and get the correct expression for corresponding potential – Lienard-
Wiechert potential (2.2) and correct expression for RR force associated with radiation field in co-
moving inertial reference frame (the Larmor’s formula). Having written it in covariant form and 
taking into account the known condition 0,i

iF u =  we obtain the expression for the Abraham-
Lorentz-Dirac (ALD) force. In the Sec. III the potential of EMF of point particle having magnetic 
moment is obtained using the formula (1.1). In the Sec. IV we repeat the Sec. II scenario for point 
particle having magnetic moment; in the Sec. V the same program is provided for charged point 
particle having magnetic moment. Some special regimes of motion are considered as well. 

In the units we use below 1;c =  the metric tensor is chosen as diag(1, 1, 1, 1),ik
ikg g= = − − −  

diag(1,1,1,1).i i
j jg δ= =  Then  

 2 2 2( )( ) ( ) .i k k k
ik k kX g X X x x x x t t R′ ′ ′= = − − = − −



 (1.2) 
Here 
 2 2, ( )( ).R x x R R x x x xα α α α′ ′ ′= − = = − −

 

   (1.3) 
Brackets  stands for a scalar product of 3- and 4-vectors; ( ) ( ) /f d f dτ τ τ=  for any function ( ).f τ  

  
II. THE RADIATION PART OF THE ELECTROMAGNETIC FIELD                                     

OF A POINT CHARGED PARTICLE AND CORRESPONGING RR FORCE 
 

a)  J. Frenkel [7] expressed the potential of the charged particle by integral on complex plane (we 
have changed the metric in the formula (24) of the article [7]): 

2 2

2 2 1( , ) ,
2 2

k k
k

dx dxe et x d
i X i d X

φ τ
π π τΓ Γ

′ ′− −
= =∫ ∫



 

  (2.1) 

There are two real poles 0 ( ),R X t t′= ± = ± −  ,t t′>  inside the closed curve .Γ  Below we consider 
only retarded potential. For this case, according to the residue theorem, one obtains the well-known 
Lienard-Wiechert potential: 

00

12

( , ) 2 ,k
k k

R XR X

udXt x e u e
d Xu

φ
τ

−

=+=+

   = − =  
   

   (2.2) 

where  
( ) / / .l l

k k kl klu u t g dx d g dX dτ τ′ ′= = = −  
b) Using ( , )k t xφ   one can calculate the EMF and associated with it 4-momentum passing through 

the R  radius sphere during the time interval dτ  (the charge was in the center of the sphere at time 
t′when the EMF were radiated). Let us consider only such part of the field that is proportional to 1R−  
(radiation field, see Sec. I; below we use the notation ˆ / , / ,r R R dx dtυ ′ ′= =



  / ,a d dtυ ′=
 / ).a da dt′ ′=
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. .
ˆ( , ) ( ).eRad eRadH t x r E= ×

 

    (2.4) 

where  ,x′  υ   and a  are taken at the retarded time .t t R′ = −  
The 4-momentum which is associated with the field passing through the R  radius sphere during the 

time interval dτ  does not depend on ,R so this 4-momentum is assumed to be the radiated 4-
momentum.  

Let us consider co-moving inertial reference frame – the proper frame (PF) where charge is at rest 
at the time .t′  In this reference frame one has 

( ). .
ˆ ˆ ˆ( , ) , ( , ) ( ) .

PF PF
PF PF
eRad eRad

e eE t x r ra a H t x a r
R R

= − = ×
 

         (2.5) 

Note, that the relations  
2 2

. . . ., 0,PF PF PF PF
eRad eRad eRad eRadE H E H= =

 

  (2.6)  

similar to ones for the plane wave are fulfilled. 
Densities of the energy and of the momentum corresponding to (2.5) can be expressed as follows: 

2 2 2 2
2. .

2
ˆ ,

8 4

PFPF PF
eRad eRadE H e a ra

Rπ π
+  = − 

 
   (2.7) 
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2
ˆ ˆ .

4 4

PFPF PF
eRad eRadE H e r a ra

Rπ π
×  = − 

 

 

    (2.8) 

Calculating the energy and the momentum which flow through the R  radius sphere during the 
proper time interval 2 1/2 1(1 )d dt dtτ υ γ −′ ′= − =  one gets (in spherical coordinates)  

2 2 2
2 2 2 2
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   (2.9) 
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  (2.10) 

Relation (2.9) is called the Larmor formula. According to the energy-momentum conservation law 
the formulas (2.9) and (2.10) mean that a 4-force acting on a charge when corresponding fields were 
radiated (at the retarded time )t t R′ = −  is: 

( )2 2
. . .( , ) (2 /3) , 0 .

PF
i PF PF PF

eRad eRad eRadF W P e a= − = −




   (2.11) 

Presenting (2.11) in covariant form (see App. A) one gets: 
2 2(2/3) ,i i

eRadF e uω=    (2.12) 
where 2 ,k

k uuω ω ω= =   / ( , ).k ku d dω τ γ γυ= =


   
Taking into consideration that 

1 (1/ 2) / 0uu u d d uuω τ= ⇒ = = ⇒  
2 2 2/ / ,k k

k ku d d u d u dω ω τ τ⇒ = − = −  (2.13) 
one can rewrite (2.12) as 

2 2 2(2 /3) / .i i k
eRad kF e u u d u dτ−=   (2.14) 

The expression (2.14) does not satisfy the condition 
 0i

iF u =  (2.15) 

(in 3-dimension form this condition is equivalent to obvious equality / ).dW dt Fυ− =


 The reason is 
we have omitted the non-radiation parts of EMF. Correct calculation of EMF at small distances from 
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a charge [8] shows that one has to assume for the RR force, which is associated with non-radiation 
part of EMF the following expression 

2 2 2
. (2 / ) / .3i i

enonRadF e d u dτ=   (2.16) 

(the Schott term). Then the force .
i i

e Rad enonRadF F+  will satisfy general condition (2.15). 
Finally, one obtains the well-known ALD force as follows: 

2 2 2
. 2 /( ( ) / .3)i i i ik i k

e e Rad enonRad kF F F e g u u d u dτ= −+ =  (2.17) 

Note, that to obtain the Schott term most authors (see, e.g. [9]) obtain the Larmor formula (2.9) 
([9], (19.19)) considering slowly ( )cυ <<  moving particle and using approximate expressions for 
EMF; hence, they assumed that obvious relation /dW dt Fυ− =



  is satisfied not instantly, but only 
when it is averaged over the time ([9], p. 346). In contrast, we have obtained the Larmore formula in 
PF using exact expressions for radiated EMF and then have obtained the Schott term assuming that 
the condition /dW dt Fυ− =



  is satisfied at any time moment.  
It should be noted that no other terms having a force dimension except terms given in the formula 

(2.17) can be constructed (using iu  and its time-derivatives). 

 
III. POTENTIAL OF THE ELECTROMAGNETIC FIELD OF THE POINT PARTICLE 

WITH A MAGNETIC MOMENT 
a) In order to calculate the potential of an EMF of the point particle having the magnetic moment          

J. Frenkel has used the expression similar to (2.1) ([7], the formula (25a)): 
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where ( )klµ τ  is defined as 
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 (3.2) 

Here d


 is similar to particle’s electric dipole moment [7]; d


 and ( )m υ  have to be find as Lorentz 
transformation of the following skew-symmetric 4-tensor: 

 ( ) ( )
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z x
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 − = =  −
  − 

 (3.3) 

So, in the reference frame where particle moves with the velocity υ  one has  
 ( ) ( ),d m u mγυ υ υ= × = ×



       (3.4) 
2( ) ( 1) .m m mυ γ γ υ υ υ−= − −

       (3.5) 
The only nonzero invariant of the skew-symmetric tensor ( )klµ τ  – the expression 

2 2 2 2 2 2 22 ( ) 2 ( ) ( ) 2kl
kl m d m m mµ µ µ υ υ υ υ⊥

   = = − = − =  


         

gives 
2 1/ 2( ) (1 ) ,m mυ υ −

⊥= −
     

where υ⊥

  is perpendicular to ( ).m υ   
Note, that 
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0,l
kl uµ =   (3.6) 

and therefore  
0, 2 0,l l l l l

kl kl kl kl klu uµ µ ω µ µ ω µ ω+ = + + =     (3.7) 
and so on. 

b) It is well-known ([10] p. 84, (3)) that if a function (z)F  has a second-order pole then one has 

( ){ }
0

2
0 0

1 ( ) lim ( ) , ( ).
2 z z

dI F z dz z z F z z
i dzπ →

Γ

= = − ∉Γ∫   (3.8) 

In a special case 
1 ( )

2 ( )
f zI dz

i zπ ψΓ

= ∫   (3.9) 

where (z)f  has no poles inside the closed curve Γ  while 

( )2 3 40 0
0 0 0

( ) ( )( ) ( ) ( ) ( ) ,
2! 3!

z zz z z z z O z zψ ψψ
′′ ′′′

= − + − + −  (3.10) 

the formula (3.9) gives  

0
2

0 0 0 0

( )lim
( ) / 2! ( ) ( ) /3! (( ) )z z

d f zI
dz z z z z O z zψ ψ→

 
= = ′′ ′′′+ − + − 

 

( )
0 0

02
0 0

2 ( ) 2 ( ) ( ).
( ) 3 ( )

f z f z z
z z

ψ
ψ ψ

′
′′′= −

′′ ′′
  (3.11) 

To use the last formula for calculating the potential (3.1) one has to consider the derivatives of 4X  
(see (1.2)): 

 0 0

4 2/ 4 0,
R X R X

X X Xuτ
= =

∂ ∂ = − =     (3.12) 

( )0 00

2 22 4 2 2/ 4 2 1 8 ,
R X R XR X

X Xu X X Xuτ ω
= ==

 ∂ ∂ = − − =    (3.13) 

( ) ( )0 00

3 4 3 2/ 4 6 1 / 24 1 .i
iR X R XR X

X Xu X X X Xu Xτ ω ω τ ω
= ==

 ∂ ∂ = − − ∂ ∂ = −   (3.14) 

So, according to formulas (3.1), (3.11)-(3.14) and taking into account the formula (3.6), one 
obtains 

0

2

1
( , ) ,k lk lkl

M

X R

XXt x
XuXu

ω
ϕ µ µ

=

  − = +  
   



   (3.15) 

where  , ,lk k kuµ ω  are taken at the retarded time , ( ).t t R R x x t′ ′ ′= − = −


   
Below for sake of brevity we use the following notations: 

( )0 ,
R X

Xu R Rρ γ υ
=

= = −


   (3.16) 

( ) ( ) ( )
0

1
1 1 ˆ ˆ, 1 1, .

l
l

R X

X R R r r
Xu

ξ ρ γ υ
−

− −

=

= = = −


    (3.17) 

Taking into account that [5, § 63]  

0
0

1 ,l
k lk kR X R X

g X Xuτ ξ−

= =
∂ = =   (3.18) 

it is easy to check that the following relations are valid: 

0 0/ ,i i i i i
k k k k kR X R X
X X uδ ξ τ δ ξ

= =
∂ = + ∂ ∂ = −   (3.19) 

( ) ( )0 1 1 ,k k k k kR X
u X uρ ξ ω ξ ρ ξω

=
∂ = + − = + −   (3.20) 
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1( ) ,l l l l l l
k k k k k ku uξ ρ δ ξ ξ ξ ξ ξ ξ ξω−∂ = − − + −   (3.21) 

2 1, 0, 1, 2 .k k k k k
n n k k ku uξ ω ξ ξ ξ ξ ξ ρ −∂ = = = = ∂ =   (3.22) 

Here and below all , ,k kuρ ξ  are taken at the retarded time ,t t R′ = −  unless otherwise is indicated. 
Using (3.6) and formulas (3.16)-(3.21) the potential (3.15) can be rewritten as follows: 

( , ) ( / ).k lk
M lt xϕ µ ρ= ∂

   (3.23) 

Note, that the formula (3.15) differs from one obtained by Frenkel [6, (26)]. In the notations used 
above the Frenkel’s result gets the form: 

3
( )

ˆ1
( , ) ,k lk lkl

M Fr

r
t x a

R

υξϕ µ µ γ γ υ
ρ

  +
  = + −
  

  



 

   (3.24) 

while the potential (3.15) we have obtained above in the same notations can be presented as: 
2

3
1

( , ) .k lk lkl
M

Ra
t x a

γξϕ µ µ γ υ
ρ ρ

  −
  = + −

    





 

   (3.25) 

It is obvious that potential (3.1) must satisfy a condition 
( , ) 0k

k M t xϕ∂ =
   (3.26) 

(Lorentz gauge) as far the integration in (3.1) is done over a closed curve. Using (3.16)-(3.22) it is 
easy to show that (3.15) satisfies this condition while the potential (3.24) does not. The contradiction 
is caused by incorrect transformations in [7] when the theory of residuals was used. Namely, in [7] 
the expansion (3.10) was hold the first addend only (other terms of the expansion were omitted) 
while, according to the general formula (3.8) the second term of (3.10) gives significant contribution 
in the final result (3.15) (or (3.23)). Therefore the formula (3.24) ((26) in [7]) does not correspond to 
the formula (3.1) ((25a) of [7]). 

c) For motionless particle the formula (3.15) (according to App. A and App. B) turns into  

     0
2

ˆ ˆ
0, ;m r m r

R R
ϕ ϕ × ×

= = +
   



   (3.27) 

if constm =
  then 

0
2

ˆ
0, ,m r

R
ϕ ϕ ×

= =
 

   (3.27')  

Below everywhere we shall assume that const.m =
  

Note, that (3.27') coincides with 4-potential of an elementary circular current.  
d) As far the potential (3.15) (and hence (3.23)) is in Lorentz gauge the Maxwell equation gets the 

form 
( , ) ( , ) 4 ( , ).nk n k k

n nt x t x j t xF ϕ π= ∂ ∂ =∂     
So, for the potential (3.23) we have 

1 1( ) ( ) 4 ( , ).n lk n lk k
n l l n j t xµ ρ µ ρ π− −∂ ∂ ∂ = ∂ ∂ ∂ =

   (3.28) 
Taking into consideration the Leibnitz formula one obtains 

1 1( , ) (4 ) ( )k n lk
l nj t x π µ ρ− −= ∂ ∂ ∂ =

  

( )1 1 1 1 1(4 ) (4 )( ) 2( )( ) .nlk n n lk lk
l n n nπ πµ ρ ρ µ ρ µ− − − − − ∂= ∂ ∂ ∂ + ∂ ∂ + ∂   (3.29) 

In order to calculate 1n
n ρ

−∂ ∂  one can use the known result [5, § 63] 
1 1( ) 4 ( ) ( ) ( ).n

n k ku t u t Rρ πγ δ− −∂ ∂ =
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It should be emphasized that in the last formula due to 0R =  time is not retarded, so we have 
dependence on the observer’s time: 1( ), ( ), ( ).lk

ku t t tγ µ−  Then, taking into account (2.13) and (3.22) 
one obtains  

1 1( )n n k
n n ku uρ ρ− −∂ ∂ = ∂ ∂ = 1 1 1( ) 2( ) ( )k n n k n k

n k n k k nu u u u u uρ ρ ρ− − −∂ ∂ + ∂ ∂ + ∂ ∂ =  

( )1 1( ) 4 ( ) ( ) ( ) 4 ( ) ( ).k
ku t t u t R t Rπγ δ πγ δ− −= =

 

  

Inserting this result and (3.20)-(3.22) in the formula (3.29), after obvious simplifications one finds 

( ) ( )1 1 1 2(4 )( , ) ( ) ( ) 2k lk n lk lk
l l nj t x R πµ γ δ ρ µ ξ ρ µ− − − −= ∂ + ∂ ∂ − =





    

( ) ( )1 1 1(4 )( ) 2 .lk lk n lk n lk
l l n nR πµ γ δ ρ µ ξ ξ µ ξ ρ µ− − −= ∂ + ∂ + ∂ −



    

Finally, according to (3.22) we find  
( )1( , ) ( ) ( ) ( ) .k lk

lj t x t t Rµ γ δ−= ∂


   (3.30) 

So, taking into account that 00 0µ =  (see (3.2)), one finds components of magnetic moment having 
particle’s current: 

( ) ( )0 00 1 1( , ) ( ) ( ) ( ) ( ) ( ) ( ) ,j t x t t x x t t t x x tα α
α αµ µγ δ γ δ− −′ ′ = ∂ − = ∂ − 

       (3.31) 

( ) ( )
0 0( ) ( ) ( ) ( )( , ) ( ) ( ) .
( ) ( )

t t t tj t x x x t x x t
t t t

α βα α
α

β

βµ µ µ υδ δ
γ γ

∂ −′ ′= − + ∂ −
∂

       (3.32) 

It is easy to show that the appropriate magnetic charge does not exist: calculating the space 
integral of the 0( , )j t x  according to the Gauss theorem we obtain 

( ) ( )0 00 1 1( , ) ( ) ( ) ( ) ( ) ( ) ( ) 0.
V V V

j t x dV t t x x t dV t t x x t dSα α α
α µ µγ δ γ δ− −

∂

′ ′ = ∂ − = − = ∫ ∫ ∫
    



   (3.33) 

 
IV. THE RADIATION PART OF EMF OF THE POINT PARTICLE HAVING A 

MAGNETIC MOMENT, AND THE RR FORCE 
Using (3.18)-(3.22) one can calculate EMF tensor corresponding to the potential (3.15) as follows: 

( , ) ( , ) ( , )ik i k k iF t x t x t xϕ ϕ= ∂ − ∂ =
    

( ){ [ ( ) ] }

{ ( ) }
3

2

1 3 1

3 1 2

n
i i nk ik

n n n n
ik i i i nk i nk

u

u u

ρ ρ ξω ρ ξω ξ ξ µ µ

ρ µ ξ ξ ρ ξω ξ ξ µ ω µ ξ

−

−

= − + − − +

 + − − + + − +  

 

[ ]1 n
i nk nkρ ξ ξ µ ξω µ−+ − − [ terms with ]i k . (4.1) 

Let us consider a part of the tensor ikF  that is proportional to 1R −  (the radiation part of the field):  
( , )ik RadF t x =
  

( )21 ( ) 3 3( ) ( ) .n
i nk k ni i nk k ni i nk k niξ ρ ξ µ ξ µ ξω ξω ξ µ ξ µ ξω ξ µ ξ µ− = − − − − + − 

        (4.2) 

So, in the co-moving inertial reference frame for .
PF

M RadE


 and .
PF

M RadH


 we obtain the following expressions: 

( ) ( )( )1
.

ˆ ˆ ˆ ˆ( , ) 3PF
M RadE t x R r ra m r a m r a−  ′= × + × +



          

( ) ( ) ( ) ( )( )2ˆ ˆ ˆ ˆ ˆ3 3 ,
PF

r a m a m a m a r a m r ra ra ′ ′+ × + × − × − × + 
               (4.3) 

{ ( )21
.

ˆ ˆ ˆ ˆ ˆ( , ) 3PF
M RadH t x R r mr ra ra am ra−  ′= + − + 


          

( ) }2ˆ ˆ ˆ3 .
PF

a mr ra ma ma a mr′+ − + + −
            (4.4) 

To obtain these formulas we have used results shown in App. A; a  and  /a da dt′ ′=
   are taken at 

retarded time .t t R′= −  
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Note, that similarly to (2.6) the following relations are fulfilled: 
2 2

. . . ., 0.PF PF PF PF
M Rad M Rad M Rad M RadE H E H= =

 

  (4.5) 
Repeating for these fields calculations performed in Sec. II, similarly to (2.9) and (2.10), one gets: 

( )2 2 2 2
. . .0 0

sin / 8PF PF PF
M Rad MRad MRaddW d d R d E H

π π
τ ϕ θ θ π= + =∫ ∫   

( ){ ( )}2 22 2 2 2 2(2/105) 2 9 7 2 ,
PF

a m a ad ma a m mτ ′− −′= +
     (4.6) 

( )2 2
. . .0 0

sin / 4PF PF PF
M Rad MRad M RaddP d d R d E H

π π
τ ϕ θ θ π= × =∫ ∫

  

  

( ){ ( ) ( )}22 2 2 2(2 /105) 2 3 3 5 3 .
PF

d m am aa a m am a am a m a aa a m a mτ ′ ′ ′ ′= − + −′ − −
                (4.7) 

 Similarly to (2.11) we get 

( ) ( )2 20 2 2 2 2 2
. (2 /105) 7 2 3 ,

PF
PF

M RadF a m a m a am a m  ′ ′= − − − 
       

( ) ( )22 2 2(2 /105) 2 3 3PF
M RadF m am a a a a m a a m a m ′ ′ ′= − − − −


            

( )25 3 .
PF

am a m m aa ′ ′− − 
     

     (4.8) 

Rewriting (4.8) in covariant form (see App. D) one gets: 

{ 2(1/105) 2 5 6i km n i
M Rad k mnF uω µ µ µ ωω ω = − + +   

2 4 2 2 2 227 ( 7 ) 14( ) 4( )k k i
nk nk uµ ω ω µ ω µ ω ω + − + + +     

( ) }2 2 2 24 3 2 4 ( ) .im n n k i
mn nkµ µ ωω ω ω ω µ ω µ ω ω + − + −     (4.9) 

The expression (4.9) does not satisfy the condition (2.15); the reason is the same as above (see Sec. 
III): we have not taken into account non-radiation parts of the field. If one assumes that Abraham-
Lorentz force associated with non-radiation part of the EMF gives the term 

2 2
. (1/15)(2 /15)i im n i

M nonRad mnF uµ µ ω µ ω= − ++      
2 2 2(1/105) 6( 19 ,)k i

nkµ ω µ ω ω + +           (4.10) 
then the force . .

i i
MRad M nonRadF F+ will satisfy the condition (2.15).  

Finally, the expression for the RR force in the case under consideration can be presented as 
. .

i i i
M M Rad M nonRadF F F= + =  

{ ( )2 2 2 2(1/105) 4 ( 3 ) 14( ) 27 4( )im n n i ml im i l
mn k k l mk k nluµ µ ω ω ω δ µ ω µ µ δ µ ω µ ω= − + − + + −    

( ) ( )}2 2 2 2 22 5 6 4( ) 27 .i lm k i k
l mk k nkuω ω µ µ µ ω ω ω µ ω µ ω− + + +    (4.11) 

The components of this force in proper frame are: 
0( , ) ;

PFi PF
MF F F=



 
0 0,PF

MF =    [ ( )2(1 /105) 1 30PF
MF a a a m am a m= ′ ′+ −−


         

( )2 2 2 22 ) 22 .(5 6 5
PF

a a mam m am aa a ma′ ′− ′ − + −
             (4.12) 

 
V. RR FORCE ACTING ON THE CHARGED POINT PARTICLE WITH A MAGNETIC 

MOMENT 
 

Let us consider now the general case - a particle having an electric charge e  and a magnetic 
moment  m  (in proper frame); correspondent fields are  

( , ) ( , ) ( , ),e ME t x E t x E t x= +
  

     (5.1) 
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  ( , ) ( , ) ( , ).e MH t x H t x H t x= +
  

     (5.2) 
Radiation part of these fields in proper frame, similarly to (2.6), satisfy relations  

2 2
. . . ., 0.PF PF PF PF

Rad Rad Rad RadE H E H= =
 

  (5.3) 
The density of energy is 

2 2
. .( ) / 8PF PF

Rad RadE H π+ =  

( )1 2 2 2 2
. . . . . . . .(8 ) 2 2 .PF PF PF PF PF PF PF PF

eRad e Rad MRad MRad eRad M Rad e Rad M RadE H E H E E H Hπ −= + + + + +
   

 (5.4) 

Let us calculate the energy which is flowing through the R radius sphere during time interval .dτ  
The integrals of the first two terms in the right hand side of (5.4) are given by (2.5), (4.3), (4.4); the 
last two terms are equal to 

( )1
. M . . M .(4 ) PF PF PF PF

eRad Rad eRad RadE E H Hπ − +
   

2 1 ˆ ˆ(2 ) ( ) .
PF

e R mr r a aπ − ′= ×
      (5.5) 

Hence, the energy flux corresponding to (5.4) is: 
2 2 2 2

. . .0 0
sin ( ) / (8 )PF PF PF

Rad Rad RaddW d d R d E H
π π

τ ϕ θ θ π= + =∫ ∫  

{ 2 2(2 /3) (2 /3) ( )a ed e m a aτ ′= + × +
    

( ) ( ) }2 22 2 2222 9 7(2 /10 ) 25 .
PF

a a m am ma a m ′− ′+ −+
 

      (5.6) 

The density of the field momentum can be presented as 
1

. .(4 ) ( )PF PF
Rad RadE Hπ − × =
 

  

{1
. . . .(4 ) ( )PF PF PF PF

eRad e Rad MRad M RadE H E Hπ −= × + × +
   

 

}. . . .( ) ( ) .PF PF PF PF
e Rad M Rad MRad eRadE H E H+ × + ×
   

 (5.7) 

In order to calculate the momentum flowing through the R  radius sphere during time interval dτ  
one has to use (2.10) and (4.7) for integrals of the first two terms in (5.7); the last two terms in the 
right hand side of (5.7) are equal to 

1 2 1
. . . .

ˆ ˆ ˆ(4 ) ( ) (4 ) ( ) ,
PFPF PF PF PF

eRad M Rad MRad eRadE H E H e R r r r a amπ π− − ′× + × = ×
   

    
   (5.8) 

So, the momentum flux corresponding to (5.7) is: 

{.
2 2 2(2/105) 3PF

RaddP d ama a mτ =  − ′ +
 



   

}2 25 3 2 3 .
PF

a aa a m am m am aa am a m′ ′ ′ ′+ −  +  −   
               (5.9) 

According to the energy-momentum conservation law this means that the RR force acted on the 
particle when correspondent fields were radiated (at the retarded time )t t R′= −  is: 

( )0
. .( , ) , ;PFiPF PF PF

Rad Rad RadF F F W P= = −
 



    (5.10) 

0 2 2
. (2 / 3) (2 /3) ( )PF

RadF e a e m a a′= − − × +
    

( ) ( )2 2 2 2 2 2 2(2 /105) 7 2 3 3 ,
PF

a m a m a am a m ′ ′+ − − + 
     

 

{ 2 2 2 2
. (2 /1 3 5 [05) [ ] 3 ]PF

RadF am aa a mm a am a m a′ ′= −′− + +−
  



          

}22 [ .3 ] PFm am a a aa m′ ′+ −
         (5.11) 

Rewriting this force in covariant form one gets (see details in App. C ): 
2 2

. (2 /3) (2 /3)( )i i n k i
Rad nkF e u e u uω µ ω= + +  
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{ 2 2 2 24 2(1/105) 3(9 7 ) 14( ) 4( )m
m

inm n
m uω ω µ ω µµ ωω + − + + −    

[ 22 222 46 ( )2 5 i kkm n
k mn n

i
nkωω µ µ µ ω µ ω µ ω ωω− +  + + −    

}24 ( 3 ) .n im k im
n mk mnω ω µ µ ω ω µ µ+ −   (5.12) 

The expressions (5.12) does not satisfy the condition (2.15). Assuming that a recoil force 
associated with non-radiation part of the fields E



 and H


contains the terms 
2

. (2 /3) (2 /3)ii
nonR

m
d ma

iF e eω µ ω= − +  { }22 2 2 27 14(1/10 6) 15 ( ) 9 ,i im n k i
mn nkuµ µ µ ωω µ ω µ ω ω − + +    

one gets the RR force which satisfies the condition (2.15): 

.
i i i

Rad nonRadF F F= + =  

{ 2 2 2 2( ) (2 /3) (9 /35) (2 /3) (4 /105)( )n ik m
kn kn kn lm kn

kig e g g e guuω µ ω µ µ ω = + − + + −    

( ) }2 (5 6 2(2/105) 7 ) .6 7i im kmmk im i im k
k mkmn k mn km nnu µ ω µ ω ω µ µ ω ωµ µ µ ω µ µ ω+ − − − + +    (5.13) 

So, based on (5.13), one can conclude that for a particle having nonzero magnetic moment the 
radiation reaction force vanishes if 0.nω = This is well-known “hyperbolic motion” problem [6]. 

Note, that the result obtained can be presented in some alternative form using identities (2.13), 
(3.6) and (3.7). 

In the co-moving system the expression (5.13) gets the following form (see App. E ) 

( )0, ;
PFi PFF F F=



   (5.14) 

  0 0,PFF =  
2 2(2 /3) (2 /3) ( )PF a ae e a mF ′ + × +=  



  

{ 22 2 25(1/105) 2 26 2 5am m am a a aa a m a m ′ −  ′ ′ + + − + 
           

}2310 .
PF

mam a m a aa ′ ′ +  − 
     

   (5.15) 

Example 1. Rectilinear motion. Lorentz transformations of (5.14) and (5.15) give (see details in 
App. A; here we use the ordinary space-time units); 

2 2 2
2 6 2 5

3 7 2

2 2 3 ˆ, .
3 7

i e m da aF a
c c dt cc

υ υγ γ γ υ
    = + + ⋅    ′    



   (5.16) 

Here and bellow ˆ / ;υ υ υ=
  ,a υ  are projections on the direction of motion. 

According to (5.16) the magnetic moment of a charged particle cannot be neglected when 
summands in the first brackets are of the same order: 

2 2 6 4 23 / 7 1,m a c eγ    23 / .c e maγ 

  
For electron it means that 

10 1/310 ,aγ −
  2 10 1/3 20 .1e e eam c m cγ −= E  

Assuming that 3 2(1 10 ) ,a ms−−  one gets the estimation of correspondent energy as 
5 316 41 10 ) 10 )(1 0 .0 (1e eV TeV−=−E  

Example 2. Uniform circular motion. The corresponding RR force (see App. F ) is: 
2 3 2 2 4 3

3 4 2 3 2

4 522 52 ˆ, .
3 3 105

i e m
c

e mF
c R c R c R

γ γ υυ γ υ υ υ
   = − + +   

  





   (5.17) 

Similarly to the previous example, one can estimate the energy when contribution of the magnetic 
moment becomes essential. For electron, assuming that 310R m  one gets: 

                   7 133 17 0 10 .10e eV TeVγ ⇒ ⋅⋅  E  
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The estimation obtained indicates that RR force due to nonzero magnetic moment may be essential 
just for next generation accelerators. Besides, the estimation indicates on a significance of this force 
in some relativistic astrophysical object. Say, some authors [11 a, b] have shown that  
electrons/positrons in Crab nebula have 6 910 10 .eγ −  
 

VI. CONCLUSIONS 
 

Expression derived for RR force acting on magnetic moment having particle demonstrates that 
this force increases rather fast as particle’s energy increases. Starting from some threshold, magnetic 
RR force becomes stronger then electric one and we could expect that it would be taken into account 
in next generation accelerators in order to choose optimal regime of acceleration. In our opinion, it 
has to be taken into consideration also in developments of synchrotronic radiation from vicinity of 
relativistic astrophysical objects (pulsars, magnetars, black holes), as well as in laboratory. 

It seems interesting to compare obtained classical results with correspondent calculations, based 
on quantum theory. 

In our opinion, the results obtained may be important in order to reproduce characteristics of 
cosmic rays having ultrahigh energies.    

APPENDIX  A 
 

Let us express  iu  and its derivatives by 3-vectors: 
( )4 2(1, ), / , ,i i i iu du d u a a aγ υ ω τ γ υ γ υ υ−= = = = +

     



( ) ( ) 20 0 2 5 7, , 4 ,i a a aαω ω ω ω υ γ υ γ′= = + +
  

   

( ) 23 2 5 73 4 .a a a a a aω γ υ υ υ υ γ υ υ γ′ ′= + + + +
          

  
It is obvious that 

20 0,i i
i iu uω ω ω= ⇒ + =  

2 20, 3 0, 4 3 0,...i i i i i
i i i i iu u uω ω ω ω ω ω ω ω ω+ = + = + + =       

In proper frame one has: 

( ) ( )2(1, 0), 0, , / , ,
PFPF PFPFi PF i PF i iu a d d a aω ω ωτ ′= = = =



 

  

2 2 2 4 2, )( ., k
k

PF PF PF
a a a a ω ωω ω ωωω′ ′= − = − = −= − 





  

 
APPENDIX B 

 
In order to find derivatives of the tensor ikµ (3.2) one has to calculate previously derivatives of 

( )d υ


  and ( ):m υ  

, ( ) ;d m d mω τ ω= × = ×
 

  

 

  

( ) ( )4 1ˆ ˆ ˆ ˆ(1 ) 2 ˆ ˆ( ) ;m a m a am m m maυ γ υ υ υ γυ υγ υ υ υ υ−− − −= + +
            

  



  

{ }225 2 2ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ( ( ) 4 4 2)m a a a a aa amm m mυ υ υ υ υ υ υ υ υ υγ υγ  × × + + − +
   ′= + +   

               
  



  

{ ( )2 2 2 ˆ ˆ ˆ ˆ ˆ(1 ) (4 5) (2 )a a a m maγ γ υ γ υ υ υ υ υ−+ − − − − +
           

( ) }2 2ˆ ˆ ˆ2 2 .a m m a a a m a maυ υ υ υ υ υ υ− ′ ′ ′+  − + + +  
                          ( )ˆ /υ υ υ≡

   

For d


 in the PF we obtain: 
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, .
PF PF

PF PFd a m d a m′= × = ×
 

   

   

In order to obtain derivatives of ( )m υ  in PF one has to direct the Ox  axis along the instantaneous 
velocity ( )tυ ′  and the Oy  axis in the plane which contains ( )tυ ′  and ( ).a t′  In this case, obviously, 
one has 

{ ( )0

4 1 )(ˆ ˆ ˆ 2 ˆ ˆ ˆ ˆ( ) lim
PF

m a m m m ma a ma
υ

υ υ υ υ υ υ υγ υ υ
υ
γγ

→

 = + = − −


−
+

             



       

0

1 ( ˆl )im 0a
υ

γ α
υ

βυ
→

= =
−

+
   

(here ( ), ( )t tα α β β=′ ′=  denote certain limited real functions).  
Similarly, 

2

0
( ) lim ( ) , 1, 2,3.

PFPFm m a ma a mα α α αυ
υ υ α

→
 = = − + = 

   

    

In order to obtain the last formula the obvious equality 

20

1l
2

m 1i
υ

γ
υ→

−
= −  

was used.  
In the PF one gets 

3 3

0
, .

(0)

PFPF
PF

ik ik

Ad A a m
d A

µ µ
τ

×

 −
= = = ×  

 





 




     

 
3 3

0
,

PF
PF

ik
B

B C
µ

×

 −
=  
 




    ( )3 3( ) , ,PFB a m C cαβ×′= × =



   

( )2, , 1, 2,3; .
PF

c D D a m a maαβ αβδ δε α β= − = = −


     

 
APPENDIX C 

 
Some obvious equality: 

2 ( 1/ 2) ;nm
mnPF

m µ µ= −
  

2 2 21/ 2( ) ;nm k
m n

F

k

P
m a µ ω ωµ ω µ= +
   

2 2 2 2 42( ) (1/ (1/2 ) ;) 2
PF nm

mm a µωω ωµ µ= +′ −
 

   
2(1/ 2) ,

PFm n
n

PF

mm maα α αµ µ ω µ ω′  = − 






  
2(1/ 2) ,

PFm n
mn

PFm maα α αµ µ ω µ ω − =
 

  

1, 2, 3;( ) ,PF l k
lkm a a u uα α αµ ω =′× = −

 

   
2(1/ 2) .

PF im n
mi nm a m a u µ µ ωω µ ω′ = +

   

  
Vice versa, one can express 4-dimensional relations using 3-vectors as follows: 

2 22 2( ) ;
PF

nm k nm
m nk m m a m aµ ω µ ω µ ω= =  − 

    

( )2 2 2 2 ;
PF

nm k nm
m nk m m a m aµ ω µ ω µ ω= =  ′ ′− 

  

    

( ) ( ) ( )2 224 ;
PF

nm k nm
m nk m a a m a a mµ ω µ ω µ ω ′= = − × + ×
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( ) ;
PFim

miu a a mµ ω ′= − ×
  

  
2 ;

PFim n
i mn a a m a m amω µ µ ω = −′ ′    



  

( )20, ;
PFPFim n

mn m m a amµ µ ω −=
     

( )20, .
PFPFim n

mn m m a a mµ µ ω ′ ′−=
   

  

( )2 2 2 2 2 22, .
PFPFim n

mn m a m a a ma a a m a a m a m amµ µ ω  = −  ′ ′ ′ ′  ′− − −
 



        



  

  

 
APPENDIX D 

 
Let us consider a charged particle with a magnetic moment moving uniformly along 

the circumference of a circle in a Lab frame. Suppose that the magnetic moment remains normal to 
the plane of the circle. If one directs the Ox  axis along the instantaneous velocity υ  (at the certain 
time moment) then 

2 3 20, / , / / , 0,x z y x x y za a a R a da dt R a aυ υ′ ′ ′= = = − = = − = =   
and, according to App. A, we find: 

2 2 3 3 2(0, 0, / , 0), (0, / , 0, 0).i iR Rω υ γ ω υ γ= − = −  
According to (3.5), we have 

(0, 0, ).m m γ=
   

In the PF (according to Lorentz transformations) we get: 
2 2 4 4 2 3 4 2(0, 0, / , 0), ( / , / , 0, 0).i PF i PFR R Rω υ γ ω υ γ υ γ= − = −  

So, according to App. A, we obtain:  
2 2 3 4 2(0, / , 0), ( / ) ( / , 0, 0);PFPF PFa R a da dt Rυ γ υ γ′= − = = −

    

(0, 0, ).PFm m=
   

According to (5.15) and (5.16) one has 
0 0( , ) ; 0,

PFi PF PFF F F F= =


 ( )2 2 2 2((2 /3) (2 /3 ) (52 /10) 5)
PFPF e aF e a a a ma m′ × ⇒′+ +=



    

( )( )2 3 2 1 2 4 4 2 3 4 20, 2 /3 (2 /3) (52/105) , 0, 0 / .i PFF e e m R m R Rυ γ υ γ υ γ− −= − + + ⋅
  

The expression for the last force in the Lab frame one gets using Lorentz transformations: 
3

5
3 ,iF

c c
υ υ υγ

υ
 = −  
 



( )2 2 3 3 2 2 4 4 4
2

1 2 /3 (2 /3)( / ) ( / ) (52 /105)( / ) ( / ) .e e m R c m R c
R

γ υ γ υ⋅ + +
   

 Here, as usual, 83 10 / .c m s= ⋅  
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