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Abstract:
We show the existence of the unique motion regime for a point charged particle that
corresponds to zero radiation reaction force. The explicit expressions for the motion
law, for the trajectory and for the external electromagnetic field providing this motion
are find out. It is proved that there exists the reference frame where this motion is
rectilinear and has zero initial velocity.
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INTRODUCTION

The equation of motion of a radiating charged particle and problems relates to it is discussing
during long time (the nonrelativistic version of it was discussed by Lorentz [1], more than a hundred
years ago). The relativistic generalization of the equation was originally found by Abraham in 1905
[2]. A new deduction of the Lorentz covariant equation of motion was given by Dirac in 1938 [3].
This equation is therefore called the Lorentz-Abraham-Dirac equation, or for short, the LAD
equation. Gal’tsov and Spirin [4] have reviewed and compared two diff erent approaches to
radiation reaction in the classical electrodynamics of point charges: a local calculation of the self-
force, using the equation of motion and a global calculation consisting in integration of the
electromagnetic energy-momentum flux through a hypersurface encircling the world-line. With
reference to Dirac [3] and Teitelboim [5], they interpreted the so called Schott term [6] in radiation
reaction (RR) force physically in the following way: the Schott force is the finite part of the
derivative of the momentum of the electromagnetic field, which is bound to the charge.

It should be noted that many authors (see [7]-[8] and the sources cited there) define uniformly
accelerated motion in flat space-time as 0.ku  In the present article is shown that this definition is not
completely correct: the condition 0ku  corresponds to freely moving particle that does not radiate.
Nevertheless, we show that there exists another unique regime of point charge motion when the
LAD force is zero. Just this regime corresponds to a hyperbolic motion as it was introduced by M.
Born in 1909 [9] – the relativistic generalization of a uniformly accelerated motion. In the Sec. 1 we
derive the general motion law of the point charge that moves without radiation friction force and
prove that this law is unique. We present some useful mathematical transformation formulas for the
motion in such regime. In the Sec. 2 we find out the equation of the trajectory which corresponds to
zero LAD force and prove that in general it is a hyperbole. There is shown that there exists the
inertial Reference Frame (RF) such that the trajectory in this RF becomes rectilinear. The explicit
expression for the velocity of this RF respect to the Laboratory RF is find out. In the Sec. 3 we find
the configuration of the external electromagnetic field providing such motion. In the Sec. 4 we
compare the previous results with the case when the charge moves in a uniform electrostatic field.
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1. Motion Law

Let the radiation reaction force known as the Lorentz- Abraham-Dirac (LAD) force equals to zero:
2 2 2( ( ) / 0.2/3)i ik i k

e kF e g u u d u d  (1.1)
( 0,1,2,3)i 

The equations (1.1) is linear respect to 2 2/k kd u d   and obviously has a trivial (formal) solution
0, 0,1,2,3.k k   (1.2)

Then, taking into account the well-known restrictions
1k

ku u   0k
ku  (1.3)

we find
,k k

k ku    (1.4)
which shows that (1.2) leads to the condition

2 (0) (0)
00, | |.    

 (1.5)
It is well known that a 4-acceleration k is a space-like vector (see, e.g. [10] §7):

4 2 4
0 , ( ) ;a a a           

       2 4 2 2 2 2
0( ) 0a a a           (1.6)

(here and bellow a denotes a 3-acceleration vector of the particle, moving with a 3-velosity ;
2 1/2(1 )   stands for a relativistic factor; 0a denotes a magnitude of a 3-acceleration vector in

the particle’s Proper Frame, PF). So, the conditions (1.4)-(1.6) mean
2

00 0 0,k a a        


and we have to conclude that the following statements are true:

Statement 1. A trivial solution of the system of equations (1.1) corresponds to uniform motion
0,a  so a charged particle does not radiate in this case.

Statement 2. Except a trivial solution 0, 0,1, 2,3,k k  the system of equations (1.1) has
nontrivial solutions as well, when

0, 0,1,2,3.k k 

Proof. The system (1.1) consists of linear homogeneous equations respect to , 0,1, 2,3,k k 
and the determinant of the system is zero. In order to calculate it let us calculate previously a
characteristic polynomial of the system

4 3( ) det ( ) Tr( ).i i i
k k kP g u u u u     

All other summands of the characteristic polynomial ( )P  are zero. Taking into account that
2

0Tr( ) ( ) 1,i k
k ku u u u u u u    

one concludes that
det( ) (1) 0.i i

k kg u u P  (1.7)
It is easy to check that the rank of the system (1.1) is 3:

2
1 1 2 1 3

2 2
2 1 2 2 3 0

2
3 1 3 2 3

1 ( )
det ( ) det 1 ( ) 1 ( ) 0.

1 ( )

u u u u u
g u u u u u u u u u u

u u u u u

 
       
  

 
    (1.8)

Therefore, general solutions of the system of linear algebraic equations (1.1) form a 1-dimensional
linear space [11], (that contains the solution (1.2) as well as nontrivial solutions 0,k

0,1,2,3).k 
Rewriting the system of equations (1.1) as

0
0( )g u u u u  

      ( 1,2,3)
one can present general solution of the homogeneous linear system (1.1) as follows:

0 0 0( / ) , 0,1, 2,3 ( ).k ku u k        (1.9)
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Then, taking here into account the conditions (1.4) and (1.3) one finds
2

0 0 0 0( / ) /k k k
k k ku u u u u          

and therefore (1.9) (and equivalent to it the condition (1.1)) can be presented as follows:
2 , 0,1,2,3.k ku k    (1.10)

Multiplying the equations (1.10) by k and summarizing one gets:
2 21 0.

2
k k

k k
d u
d

       




Hence, according to the (1.6),
2 2

0 const.a   (1.11)
Taking into account that

, , 0,1, 2,3k k k ku x x k   

and integrating the equations (1.10) one can find
2 (0)
0 , 0,1,2,3,k k kx a x k   (1.12)

where (1.11) is used and we denoted
(0) ( 0), 0,1,2,3.k kx k   

Then, assuming that the initial conditions are
(0)( 0) 0, ( 0) ( 0) , 0,1,2,3,k k k k kx u x u k          

general solutions of the system (1.12)
(0) 2

0 0 0cosh( ) sinh( ) / ,k k k kx A a B a a     0,1, 2,3,k  (1.13)
can be presented as follows:

 (0) 2 1
0 0 0 0cosh( ) 1 sinh( ).k k kx a a a a       (1.14)

It should be emphasized that in the notations used bellow through this article 0 | 0 | 0, ( ) ,      
 

so, we have
2 2
0 1.k

k      


(1.15)
Thus,

(0) 1
0 0 0sinh( ) cosh ( ),k k k ku x a a a      (1.16)

(0) 2 (0)
0 0 0 0cosh( ) sinh( ) ( ),k k k k k k ku x a a a a x            (1.17)

2 (0) 1 2
0 0 0 0 0sinh( ) cosh( ) ( ),k k k ka a a a a u         (1.18)

which proves the Statement 2 is proved.

Note 1. It is easy to check that the solutions (1.16)-(1.17) satisfy all necessary conditions (1.3)-
(1.4). In the particle’s PF one has to assume in (1.16)-(1.17) the next: (0) (0)

0 0(1,0), 0, .k a    
  

Note 2. The formulas (1.14) and (1.16)-(1.18) are derived for the case 0 0.a  Nevertheless, they
have limit when 0 0.a  Namely, taking into account that in this case (0) 0k  and using (1.14)
and (1.16)-(1.18) we can find

, , 0, 0,1, 2,3.k k k k k kx u k        
Hence, a motion which satisfies the condition (1.1) is possible only if the initial value of
acceleration 0 0a  (except the trivial case of uniform motion without any radiation).

Below we assume 0 0a  and use a notation
(0)

0/ , 0,1, 2,3.k ka k   (1.19)
Taking into consideration the relations (1.3) and (1.6), obviously, one gets
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2 2
0 1,k

k       
 (1.20)

0 0 0.k
k         

 (1.21)
Therefore, based on the Cauchy-Bunyakovsky inequality [12] one should conclude that

2 2 2 2 2 2 2 2 2 2 2
0 0 0 0 0 0 0 0( ) ( 1)( 1) 1                    

  
 2 2

0 0 1 0.    (1.22)

Note 3. The motion laws (1.16) and (1.17) can be expressed in matrix form as follows:
1

0 cosh sinh( )
, 0,1, 2,3.

sinh cosh( )
kk

kk

a
k

u

    
     
   

  
  0( )a  (1.23)

So, one can consider these motion laws as an orthogonal transformation – rotation on the angle
0a  in 2-dimensional pseudo-Euclidean space 2

1,1.P Then one has to conclude that the following
relations must be true (taking into account that metric is pseudo-Euclidean)

 
1

1 0
0

( )
( ), ( )

( )
l

k k
l

a
a u

u


  

 
 

 
  


2

0 ( ) ( ) ( ) ( ) inv , , 0,1, 2,3.k l k l k l k la u u k l               (1.24)
Particularly, assuming here 0, 1,2,3,k l  one obtains the important relation that we shall use
bellow

2
0 0 0 0 0( ) ( ) ( ) ( ) .a u u            

  (1.25)
Assuming in (1.24) k l we obtain

2
0 ( ) ( ) ( ) ( ) , 0,1, 2,3,k k k k k k k ka u u k              (1.26)

which, after using a pseudo-Euclidean metric and summarizing by ,k gives us
2

0 ( ) ( ) ( ) ( ) .k k k k
k k k ka u u            

Taking here into account (1.3), (1.15) and (1.21) we easily obtain the known expression (1.6):
2 2 2 2

0 0( ) 1 2 ( ) .a a         
Obviously, the converse is not true: the general relation (1.6) does not give us neither 10 relations
(1.24) nor 4 relations (1.26) which are not valid in general case but for the charge’s motion in
accordance to the condition (1.1).

The next important relation is referred to the 6 skew-symmetric tensors 2
1,1,kl l kA A P

, 0,1,2,3,k l that must remain invariant (as a skew-symmetric rank 2 tensor in a 2-dimensional
space) under transformations induced by (1.23):

1 1
0 0( ) ( ) ( ) ( ) inv , , 0,1, 2,3.kl k l k l k l k lA a u a u k l                (1.27)

In particular, one has
 1

0 0 0 0 0( ) ( ) ( ) ( ) .a u u            
  (1.28)

Obviously, the modulus of the invariant Euclidean 3-vectors remain invariant under
transformation (1.23) as well. In particular, taking into account (1.15), (1.21) and (1.22), for the
squares of the vectors (1.25) and (1.28) one gets

2 2 2
0 0 0 0 0[ ( ) ( ) ( ) ( )] ( )a u u             

 

2 2 2 2 2 2 2 2 2 2 2
0 0 0 0 0 0 0 0 0 0( 1) 2 ( 1) ( )( 1),                  (1.29)

2 2 2
0 0 0 0 0[ ( ) ( ) ( ) ( )] ( )a u u             

 

2 2 2 2 2 2 2 2 2
0 0 0 0 0 0 0 0( 1) 2 ( 1) .              (1.30)

As well, we will use these relations below.
2. The trajectory.

https://int.search.myway.com/search/GGmain.jhtml?ct=ARS&n=785845fd&p2=%5EBNF%5Expt555%5ETTAB03%5Ege&pg=GGmain&pn=1&ptb=0570DBAF-B073-4BBA-832D-6A541FECEA5A&qs=&si=EAIaIQobChMI9P3w6IKR4gIVTSjgCh2ncw_6EAEYASAAEgL1lPD_BwE&ss=sub&st=tab&trs=wtt&searchfor=also+known+as+the+Cauchy%E2%80%93Bunyakovsky&feedurl=ars%252Ffeedback%253ForiginalQuery%253Dcauchy-bounjakowsky%252Binequality%2526relatedQuery%253Dalso%252Bknown%252Bas%252Bthe%252Bcauchy%2525E2%252580%252593bunyakovsky&tpr=jre10
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Using the motion laws (1.14) one can eliminate proper time and obtain an equation for a
trajectory which corresponds to the condition (1.1).

First of all, let us prove the next statement:

Statement 3. The trajectory of the motion corresponding to the condition (1.1) is a flat curve.
In order to proof the Statement 3, the next Lemma can be used:
Lemma 1. For the motion corresponding to the condition (1.1) the next relation is true:

 ( / ) ( ) ( ) 0.d d u      (2.1)

Proof of the Lemma. Based on the formulas (1.25) and (1.28) one can conclude that
   2 1

0 0 0 0 0 0 0 0 0 0( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )a u u a u u                          
     

  1 2 2 2 2 2
0 0 0 0 0 0( ) ( ) ( ) ( ) ( ) inv.a u a u               

 

Besides, using (1.26) and (1.22) one has
2 2 2 2 2
0 0 0 0 0( ) ( ) 1.u a         (2.2)

Therefore we get
0( ) ( ) ( ) inv.u a       
  (2.3)

So, the statement of the Lemma 1 is proved.

Proof of the Statement. Using expressions [13] for unit tangent ( ),t 


and for main normal ( )n 

of a curve in 3-dimensional Euclidean space we get for the trajectory under consideration
1 1 2( ) | | ( ) | | ( ) 1 ( ) ( ) 0t u u t t t              

       

2( ) | | ( ), 1.t t n n  
    

Then, calculating the derivative we find
  1

2

( )| ( ) | ( ) ( ) ( ) | ( ) |( )( ) ( )
| ( ) | ( )

u u u u u ud d ut t
d d u u

 
   

      
   

        
 

   2

3 3

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
.

| ( ) | | ( ) |
u u u u u

u u
   

 
          

 

      

  (2.4)

Let us assume firstly that 0.  
  Then, according to (2.3) we have

( ) ( ) 0, .u      

Therefore ( ) 0t 
 and one gets

 
 

 ( ) ( ) ( ) ( ) ( ) ( )( )( ) .
| ( ) ( ) ( ) | | ( ) | | ( ) ( ) || ( ) |
u u u utn
u u u ut

   
  

  
       
       

     
    

(2.5)

Calculating now the binormal ( ) ( ) ( )b t n   
   of the trajectory one gets

 ( ) ( ) ( )( )( ) ( ) ( )
| ( ) | | ( ) | | ( ) ( ) |

u uub t n
u u u

 
    


     

    

   
  

 2

2

( ) ( ) ( ) ( ) ( ) ( ) ( )( ) .
( ) | ( ) ( ) | | ( ) ( ) |

u u u uu
u u u

  
  

 
         

      

    


   

So, according to the Lemma
( ) ( )( ) inv

| ( ) ( ) | | |
ub

u
 

  
 

    
    

 
   (2.6)

and for the case 0  
  the Statement is proved.

If now 0,  
  then, according to (2.3),

( ) ( ) 0, .u      

Therefore, according to (2.4) we have
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const,0 ( ) 0 ( )t t        
    (2.7)

hence, the trajectory is rectilinear. So, the Statement is fair in this case too.

In order to find the explicit equation of the trajectory let us present (1.14) as follows:

 
 
1

0 0 0 0

1
0

1
0

(cosh 1) sinh ,

(cosh 1) sinh ,

sinh .

x a

x a

x a






 

  

  



   

   

 





(2.8)

0 0( , 0)a a  

Here we have denoted 2 2( ) , , ( ) , .x x x x x 
                  

              Besides, we
assume that 0 0.a  Then, introducing new dimensionless variables

0 0 0 0 0, , ,x a a x a x     
  

and rewrite (2.8) in the coordinate system having the spatial axes ( 0) as follows:

,Ox  ,Oy 


we get
0 0 0(cosh 1) sinh ,

(cosh 1) sinh ,

sinh .
( 0, 0)

 



  

  



 

    
    

  
 

(2.9)

Now, it is obvious that

 2 2
0 0 01 / 1 / ,             (2.10)

 2 21 / 1 / .             (2.11)
2 2 2
0( 0, 0; 1)         

The equation (2.11) gives us the trajectory of a charged particle which is moving in accordance to
the condition (1.1). Rewriting (2.11) as

2 2 2 2( / ) ( / ) ,              
or, equivalently,

2 1 2 2 2 2 12 ( ) 2 ( ) 0,  
                          (2.12)

one can conclude that the trajectory is a hyperbole as far the matrix of the quadratic form in the
square brackets (in respect with the variables ,   )

2 2 2 2

1 /
/ ( )

D 


 

 
    

 
    

has negative determinant:
2 2 2 2 2 2 2

2det ( ) 0.D   
             
( 0, 0)  

Hence, the eigenvalues of the matrix 2D are of opposite signs.

Note 4. The determinant of the full quadratic form matrix in the left hand side of (2.12) is
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 2 2 2 4 2
3

1 /

det det / / 0. ( 0, 0)

/ 0

D


 
    



 
 

        
   

  

          

  

Therefore under conditions 0, 0   the hyperbole is non degenerated [14].

The equation (2.10) easily can be solved in respect with the variable / sinh      as
follows:

2 2 2
0 0 0 0 0 0( ) 2 ( ) 0             

2 2 1 2 2 2
0 0 0 0 0 0 0 0 0 0( ) ( ) | | ( ) .                   

Then a charged particle’s motion law which corresponds to the condition (1.1) can be written down
in terms of lab time 1

0 0 0x a   as

2 2 2
0 0 0 0 0 0 0 02 2

0 0

( ) | | ( )


      
 

        
 

, (2.13)

0
0

0

.


 
  

 

   
 

2
0( 0, 0)a   (2.14)

In the case when 0  2
0( 0)a  the equations (2.8) reduce to the following ones:

0 0 0(cosh 1) sinh ,

(cosh 1) sinh ,

0.

  

   



    

     



   (2.15)

So, the trajectory is rectilinear, as far in this case . 
 

The correspondent motion law in terms of the lab time 1
0 0 0x a   is

2 2 2
0 0 0 0 0 0 0 0( ) ( ) ( ) ,                     
      

which can be presented equivalently as (here, as well as above, | |, | |, | |       
  )

2 2 2 2 2 2 2
0 0 0 0 0 0 0 0 0 0( ) 2 ( ) ( ) 2( )( ) 0.                           (2.16)

Taking into account (1.29), (1.30), (1.15), (1.20) and (1.22), in the case  
  one gets

2 2 2 2 2 2 2 2 2
0 0 0 0 0 0 0 0 0 01, 2 1, ( ) 1, 0.                            

Therefore, in the case  
  the motion law (2.16) has the form as follows:

2 2
0 0 02( ) 0.         (2.16')

The orthogonal invariants (see, e.g. [14]) of the quadratic form (2.16) are
2 2
0 0 0 0 0 0 0

2 2 2 2
0 0 0 0 0

0 0 0 0 0

( )
det ( ) 1 0,

( ) ( ) 0

    
        
    

          
            
         
2 2

0 0 0 0
2 2

0 0

1 0
det det 1 0,

0 1
    

          

     
     

so, the motion law (2.16) describes the dependence 0( )x x x
  as a non-degenerated hyperbole.

Theorem 1. If 0,  
 then there exists a Lorentz transformation that makes the 3-

dimensional vectors  and

 collinear.

Before proving we need two useful Lemmas:
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Lemma 2. If the 3-vectors  and 

are not collinear, so if 0  

 then the vectors

0 0 0 0
1 2 3

0 0 0 0

, ,
| | | | | |

e e e 
  


          
          

    
  

     (2.17)

form an orthonormal basis in 3-dimensional space.

Proof of the Lemma 2. According to (1.29), (1.30) and (1.22), one has:
2 2 2

0 0 0 0( ) 1 0,        
 

2 2 2 2 2
0 0 0 0 0 0( ) ( )( 1) 0,            

 (2.18)
2 2 2 2 2 2

0 0( ) ( ) 1 0.              
    

Equalities in the formulas (2.18) are reached for collinear vectors  and 

only. So, under the

condition of the Lemma 2, the definition (2.17) is correct. All three vectors 1 2,e e  and 3e
 are unit by

the definition.
According to (2.17), obviously,

1 3 2 30, 0.e e e e   
   

Let us check 1 2 .e e  Taking into account (1.15), (1.20) and (1.21), one gets
2 2 2 2 2 2 2 2

0 0 0 0 0 0 0 0 0 0 0 0( ) ( ) ( ) ( ) ( ) 0.                              
        

So, the Lemma 2 is proved.

Note 5. It is easy to check that the basis (2.17) is right oriented:
1 2 3 2 3 1 3 1 2, , .e e e e e e e e e     
         (2.19)

Lemma 3. Let us suppose 0  
 and in every point of the trajectory ( for any proper time )

let define the following 3-vectors
 1 2

0 0 0 0 0 0( ) ( ) ( ) ( ) , ( ) ( ) ( ) ( ), ,a u u a u u                      
       (2.20)

where ( )ku  and ( ),k  0,1,2,3,k  are defined by formulas (1.16)-(1.17). Then the vectors

/ | | , 
 

/ | | ,   / | |   form a uniform 3-dimensional orthonormal basis along the particle’s
trajectory and so form the global Cartesian coordinate system in 3-dimensional Euclidean space.

Proof of the Lemma 3. According to (1.25) and (1.28) we have

0 0 0 0, .           
    (2.21)

Therefore, according to the lemma 2, the vectors / | | 
 

and / | |   are correctly defined,
orthonormal and are invariant along the trajectory. Hence, in the arbitrary point of the trajectory the
vector

( / | | ) ( / | | ) / (| | | |) / | |          
      

is defined correctly and uniquely and give us (together with the vectors / | | 
 

and / | |   ) the third
vector of 3-dimensional orthonormal global basis. Thus, the Lemma 3 is proved.

Note that, according to (2.20), (2.21) and (2.18), one has
2 2

0 0 0 0 0 0

2 2 2 2 2 2 2 2 2 2 2 2
0 0 0 0 0 0

( ) ( ) ( ) ,

( ) ( ) ( ) ( 1) .

    

       

             

          

     

   

Proof of the Theorem. Using formulas (see, e.g. [15], §2.9) for an arbitrary oriented boost one
obtains

2
0( 1) ( ) ,                     2

0( 1) ( ) .             
      
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Assuming now that the 3-dimensional vectors  and 


become collinear we get a condition on
the parameter of the boost (the velocity) 

2 2
0 00 [( 1)] ] [( 1)] ],                                

            

that can be rearranged as follows:
2

0 00 ( 1) [( )( ) ( )( )] ( ) .                          
            

Then, one can transform the expression in square brackets:
2[ ( ) ( )] [ ( )] ( ) [ ( )].                              

                

Therefore, after obvious simplifications we obtain an equation
1 2

0 0( ) (1 ) [ ( )] 0.                     
         (2.22)

Now, expressing in the basis (2.17) the velocity we are looking for,

1 1 2 2 3 3 ,e e e     
   

and substituting it in the equation (2.22) we obtain:
2 2 1/2 2 2 1/2 1 2

0 0 2 3 3 2 0 0 1 1 2 2 3 3 3 3( ) ( ) ( 1) [(1 ) ( ) ] 0.e e e e e e                     
     

Therefore,
1

2 2 1/2 2 2 1/2 1 2
3 0 0 0 0 2 3

2 2 1/2 2 2 1/2 1 2 2
2 0 0 0 0 3

0,

( ) ( 1) (1 ) 0,

( ) ( 1) [(1 ) 1] 0.

 

 



     

      



        

       





These equations have unique solution (the case 3 0 leads to 1 21 2     and is impossible):
2 2 1/ 2
0 0

1 3 2 2 2 1/ 2
0 0

( 1)0, 0, .
( )

 
   


   
 

Therefore, in accordance with (2.18) we finally find
2 2 1/2

0 0 0 0 0 0
2 2 1/2 2 2 1/2 2 2 1/2 2 2

0 0 0 0 0 0 0 0

( 1) .
( ) ( 1) ( )

 
  

    
           
       

  
 (2.23)

Thus, the Theorem is proved.

As it was mentioned above, if 0  
 then, according to (1.22) and (2.18) one has

2 2
0 0 0 01, 0.        

 (2.24)
So, one has to conclude that the next statement is true:

Statement 4. If k 
 then 0 0/ :k   

0 00 ( / ) .        
   (2.25)

Corollary. If 0  
 then, according to the formula (2.24) one has

0 0 , 
 

and the relation (1.21) gives
2 2

0 0 0 0.       
  

Then, taking into account (2.25), the last relation leads to the equalities as follows:

0 0 0 0 0| |, / / | |, | | 0.              
     (2.26)

Note 6. Obviously, collinearity of the 3-dimensional vectors  and 


does not break under
any boost along the common direction of these vectors. But the magnitudes of the vectors  and



do change. According to the conditions (1.15), the 4-vector k is time-like (while, according to
(1.20),
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the 4-vector k is space-like). Therefore, it is clear that the boost with the parameters

0 0/ ,        


(2.27)

makes 0   
 

(obviously, this boost turns the charged particle in its instantaneously PF).
Then

(1, 0),k k   


(2.28)
and, based on (2.24), we find

(0, ),k k     


where, according to the Lorentz transformation formulas one has

0 0 0 0( / ) .                     
   

( 0, 0, 0)         
  

The condition 0   
 provides the necessary condition

2 2
0 0( ) 1.          

 

Besides, according to the Statement 4, the relations (2.24) and (2.25) give us the following ones:

0 0 0
0 0

.
 

       
 
     
 

   (2.29)

Of course, the relations similar to (2.26) are fulfilled in this case as well.

Note 7. Obviously, the condition (1.1) is not changing under any Lorentz transformation.
Therefore, the Theorem 1 provides the possibility to investigate all physically significant
phenomena of such motion in the special RF – in the instantaneously PRF of the charged particle.
This, according to (1.25), means that one can choose arbitrary point of the trajectory as initial one
and, according to Note 6, assume that the initial velocity of the motion is zero. Therefore, according
to (2.7), the trajectory (respect to such RF) must be rectilinear and the motion laws have to be
described by the formulas (2.15)-(2.16') where one has to assume

0 1, 0,
 

0 0, (1, 0, 0).

So, in this case one gets
0

2 2
0

sinh , cosh 1, 0.

( 1) 1.
x y z

x

    

  

     

 
(2.30)

Just this case of motion was called by M. Born [9] a hyperbolic motion.
In order to find physically significant features in any inertial RF it is enough to perform the

correspondent Lorentz transformation from instantaneously PF of the charge to the given RF.

3. The External Field Configuration

It seems rather interesting to find a configuration of external electromagnetic fields klF that
provide the motion law (1.14). As far in this case no LAD force exists one gets the exact equation
([10], §23)

.lk klmu eF u (3.1)

Theorem 2. The only field tensor klF that provides the motion satisfying the condition (1.1)
corresponds to static uniform electromagnetic fields.

Proof. Substituting into the motion equations (3.1) the motion laws (1.16) and (1.17) we find

0

cosh sinh ( sinh cosh ).l l
k k kl

e F
ma

          (3.2)
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The relation (3.2) can be satisfied identically if we choose the field tensor according to the
conditions

0 0

, .l l
kl k k l k

e eF F
ma ma

     (3.3)

Introducing dimensionless values

0

,kl kl
e F
ma

F (3.4)

the system of equations (3.3) can be rewritten in simpler form, namely,
, ,l l

k l k k l k    F F (3.5)
or, in detail

0 0 0 0

0 0 0 0

, ,
, .

   

   
     

     

    

    

F F F

F F F
(3.5')

As far for the field tensor klF one has the only equations (3.5) that contain only 4-vectors
,k ,k this tensor can to be expressed by some combinations of the (constant) 4-vectors ,k k

only. Let us look for the skew-symmetric tensor klF in the form

1 2( ) ,m n
kl k l k l klmnC C        F (3.6)

where 1C and 2C are arbitrary (real) functions (of 4-coordinates) should be found. Obviously, the
factor 1C must be a Lorentz scalar, while 2C must be Lorentz pseudoscalar. Substituting (3.6) into
(3.5) and taking into account the general conditions (1.15), (1.20) and (1.21) one obtains:

1 2 1

1 2 1

( ) ,

( ) .

l m n l
k l k l klmn k k k

l m n l
k l k l klmn k k k

C C C

C C C

    

    

           

           

Hence, the conditions (3.5) lead to 1 1,C  while the factor 2 1 2 3( , , , )C C t x x x remains undetermined
yet. So, we find (for sake of brevity bellow we omit the subindex at the 2)C

.m n
kl k l k l klmnC        F (3.7)

Using the notations (3.4) one gets from (3.7) an expressions for an electric and magnetic fields as
follows (we assume 0 ,F E 

0123
0123, 1,F H H     

       see [10]):

   0 0
0 0 0 0, ( ) .

ma maE C H C
e e

                  
        (3.8)

 0 0( , ), ( , )k k        


Based on the Lemma 3 one can rewrite (3.8) in more convenient form:
 
 

3
0

3
0

( / ) ( / ) ( ),

( / ) ( ) ( / ) ( )

E m e C m e a C a

H m e C m e a Ca

      

      

       

       

      

        (3.8')

(recall that 4 2 4
0 , ( ) ).a a a           

     

Based on (3.8), (3.8') one can conclude, first of all, that if 0 0a  then 0.E H 
 

This result is
physically clear and has to be expected.

The next observation refers to the Lorentz force acting on the moving charge

 0( ) ( )LF e E H m C C                       
           

   2 2 1 2
0(1 ) ( ) (1 ) ( )m m m m a a                                   (3.9)
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(recall that LF


does not coincide with spatial part of 4-force). So, in all points of the trajectory of
the charge moving in accordance with the condition (1.1) the Lorentz force acting on it does not
depend on undetermined (pseudo)scalar function 1 2 3( , , , ).C C t x x x

In order to find restrictions on the (pseudo)scalar function C one has to use Maxwell equations
for electromagnetic field [10]. Taking into consideration that we have no field sources in the region
under investigation (the region where the charged particle is moving), all Maxwell equations must
be uniform:

0, 0. ( 0,1, 2,3)klmn lk
l mn lF F k     (3.10)

Using the notation (3.4) and substituting the expression (3.7) into (3.10), we find the necessary
restrictions:

0, 0, ( 0,1, 2,3)klmn i j klmn
mnij l m n lC C k          

that, after obvious simplifications (see, e. g., [10], §6), can be presented as follows (here and
bellow we denote 0( / ) ):tx C C   

0 0 0 0( ) 0, ( ) ( ) 0;tC C C                 
    

(3.11)

0 0( ) 0, ( ) ( ) 0.tC C C               
    

(3.12)

Let us suppose firstly that 0.  
 According to the Lemma 2, from the firs equations of the

(3.11) and (3.12) follows (we assume that the spatial coordinate axes are directed along the (2.17)
basis vectors: 1 2 3, , ):Ox e Oy e Oz e  

2 , 0 ( , ).y x zC e C C C C C t y        
 (3.13)

Substituting these results into the second equations of the (3.11), (3.12) and using the Lemma 2
again, one gets

0 0 1 3 2

3 0 0 1 2

| | | | ( ) 0;

| | | | ( ) 0.
t y

t y

e C e e C

e C e e C

      

      

     

     

    

     (3.14)

According to (2.19), one has 1 2 3 3 2 2 3 1, .e e e e e e e e      
        Therefore the system (3.14)

reduces to the homogeneous system of linear equations respect to the variables tC and :yC

0 0

0 0

| | | | 0,

| | | | 0.
t y

t y

C C

C C

     

     

     

     

  

   (3.15)

According to (2.18), the system (3.15) has nonzero determinant:

0 0 2 2
0 0

0 0

| | | |
( ) ( ) 1,

| | | |

   
      

    

     
     

     

  
  

  

and therefore has a trivial solutions only:
0.t yC C    (3.16)

The last result together with (3.13) shows that if 0,  
 then the undetermined coefficient C

in (3.7) is constant and therefore the tensor (3.7) (see also (3.8)) describes a static and uniform
electromagnetic field.

Let us consider now the case when 0.  
 As it was shown above, in this case the relations

(2.24)-(2.26) are fulfilled. Applying these relations to the general formulas (3.8), one obtains
2 2

0 0 0 0 0 0( / ) ( ) / ( / | |)( / ) ( / | |)( / ) ,

.

E m e a ma e m e a

H CE

     

 

       
    

  (3.17)
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Thus, according to (2.7), in this case we have rectilinear motion along collinear uniform electric
and magnetic fields. As far parallel to charge’s velocity magnetic field does not affect on the
particle, therefore, the case reduces to the charge’s motion along a uniform electrostatic field. Let us
check that the magnetic field in (3.17) is static as well as electric one.

Indeed, if 0  
 then general equations (3.11) and (3.12) give us the restrictions on C as

follows:
0 0 0 0 0 0( ) 0, ( ) 0 ( ) 0.tC C C                   

    

As far, according to (2.18), 0 0( ) 0,    
 these restrictions give us

const0 .tC C C     
Thus, the electromagnetic field is static and uniform in this case as well.

In order to finish the proof of the Theorem 2, one has to show that the solution constructed above
is unique (no electromagnetic fields except constructed in (3.7) can exist). Indeed, let us assume that
there exists an extra electromagnetic field with a field tensor klF ' such that the motion equation

( ) l
kl kl ke F F u mu   (3.18)

is satisfied simultaneously with the equation (3.1). Here we assume that the tensor k lF is expressed
according to (3.7) with arbitrary constant C. Therefore we get for the field klF ' the following condition:

0
0( / ) 0 0l

kl k ke m F u F u F u     
 ( 0,1, 2,3)k  (3.19)

0E'  
  (for 0),k  (3.20)

0E' H'  
  (for 1,2,3)k  (3.20')

(one should note that the condition (3.20) follows to the conditions (3.20')).
For any point P of the particle’s trajectory we can assume 0p  

  (according to the Note 7
such RF can be chosen without loss of generality) and then the relation (3.20') gives

0P p pE' H'   
  ( ) .t P t p p p t pE' H' H'         

    (3.21)
Therefore, assuming

0t PE' 


(3.22)
we obtain

( ) 0.t p pH'  
 (3.23)

Taking into account that, according to (1.16) and (1.17) we have
1 1

1 2 (0) 2
0 0

( ) ( )

( ) ( ) 0,
t p t p p p t p p p t p

p p t p p

u u u

u a a

 

 

         

     

     

    

    

 

(3.23) leads to 0.pH' 


Therefore, in the chosen RF for any point P of the particle’s trajectory we have
( ) 0kl PF '  (3.24)

Being Lorentz covariant the condition (3.24) must be true in any inertial RF.
Hence, we have no extra field in the motion law (3.18) except static and uniform fields (3.8) or

(3.17). Thus, the Theorem 2 is completely proved.

It is instructive to compare Lorentz invariants of the electromagnetic fields (3.8) and (3.17). As
far for the invariants of the electromagnetic field we get

2 2 2 2 2 2
0 0 0

22 4 2 2 2
0 0 0

( / ) (1 ) ( ) ( ) ,

( ) ( / ) ( ) ( ) ( ) ,

E H ma e C

E H ma e C

       

       

     

     

    

     (3.25)
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then, according to (2.18) one obtains
2 2 2 2 2 4 2

0 0( / ) (1 ), ( ) ( / ) .E H ma e C E H ma e C    
   

(3.26)
Thus, the both Lorentz invariants of the electromagnetic fields (3.8) and (3.17) coincide; it does

not matter are the vectors  and 

collinear, or not. The reason of such coincidence is that one

always can transfer to the inertial RF such that in the chosen RF the (uniform) electric and the
magnetic fields become collinear, and so, in order to calculate invariants, we always can assume,
without loose of generality, that the fields have configuration (3.17). As it is known (see, e.g. [16],
problem 10.62), the velocity V


which provides such Lorentz transformation can be expressed (not

uniquely) as follows:

 1/22 2 2 2 2 2
2 ( ) 4( ) .

2( )
E HV E H E H E H
E H
         

 
      

  (3.27)

Using here the results (3.26) and (3.8) and taking into account (2.18), one gets

 
2 1/22 2 2 2 2 20 0

0 02 2 2 2
0 0

( ) ( )( 1) (2 2 1)( 1) (1 ) 4
2( ) ( ) ( 1)

CV C C C
C

                
       
     

  
  

2 20 0 0 0
0 02 2 2 2 2 2

0 0 0 0 0 0

(2 2 1) 1 .
2( )( 1)

          
        

     

  
(3.28)

Hence, the Lorentz transformation which makes the (uniform) electric and the magnetic fields
collinear is the same as was found in the Theorem 1 (see the formula (2.23)). Therefore, such
Lorentz transformation makes collinear four 3-vectors: , , E   

  and H 


(see (3.17)). Moreover, as
it is mentioned in the Note 6, one can perform the additional boost along the common direction of
these 3-vectors to transfer in the moving charge’s instantaneously PF. It must be emphasized that
such boost does not change the vectors E


and H 


while the vectors  and 


do change.

According to (2.28) and (2.29) one gets:

0 0(1, 0), (0, / ) (0, / ), | | 1.k k                     
     (3.29)

Obviously, one can choose this common direction as Ox axis. Then, according to (3.29), the fields
(3.17) get the form as follows:

   0 / , 0, 0 , , 0, 0 .E a m e H C  
 

(3.30)

 C 
Hence, we have proved the following

Theorem 3. Any motion of charged particle which corresponds to zero LAD force (hyperbolic
motion) can be studied in special Reference Frame where initial speed of the particle is zero and
initial acceleration is provided by the uniform electrostatic field. The permissible magnetic field is
static and uniform as well and is collinear with the electric field.
All other kinds of hyperbolic motion of a charged particle can be obtained from the previous

case by appropriate Lorentz transformation. The trajectory of charged particle motion obtained by
such Lorentz transformation is a hyperbole.

4. Motion in Purely Electrostatic (uniform) Field

It seems interesting to compare the results obtained above with a motion equations of point
charge in uniform electrostatic field constE 


(see, e. g., [10], §20):

0 0( / ) , ( / )u e m E u u e m Eu   
  
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2 2 2
0 0( / ) , ( / ) ( ).u e m E u u e m E E u  

   

If one supposes
2, ( ) / , ,u u u u E E u E u u u      

         

2 2 2 2
0 ( / ) ,a e m E  


0( )a a 

then
, 0E u E u E u    

    

and the motion equations can be rewritten as follows:
2 2

0 0( / ) ,u e m E u




2( / ) ( )u e m E E u 
   2 2( / ) ,e m E u

  (4.1)

0.u 


Thus, one can see that the known (see, e.g., [16], Chapt. IX, §2, problem № 692) motion law of a
charged particle in uniform electrostatic field that has a form:

0 0 0 0 0 0 02 2 3
0 0 0 0

0 0 0 0 0 0 0 2
0 0 0

0 0 0 0 0 0 0 0
0

cosh 1 sinh cosh 1 sinh, ( ) ,

sinh sinh cosh 1cosh , ( ) ,

sinhcosh sinh , cosh ( ) ,

(

x a x a a a
a a a a

u a u a a a
a a a

a a a a a
a

  
      


      

     

    

    

     

    

  

  

      

      

    

0 )a 

(4.2)

does not coincide with the expressions (1.14), (1.16) and (1.17) completely. Namely, in contrast
with the solutions (1.17) and (1.18) from the (4.2) we get the next relations:

2
0 0 0 0 0 0 0

2 2
0 0 0 0 0 0

( sinh cosh ) ( ),

( sinh cosh ) ( ),

a a a a u

a a a a u a 

   

    

    

     




    
(4.3)

where u 
  is defined according to (2.2). So, (4.2) satisfies the equation (1.11) if and only if

2
0 0 0

0,

( ) ,
0.

a a x a x
x







 






    


0( 0)a  (4.4)

If the condition (4.4) does not fulfill then the radiation reaction force (LAD force) is nonzero.

Hence, we have proved the following statement:

Statement 5. The radiation reaction force – the LAD force which acts on a point charge moving
in uniform electrostatic field equals to zero if and only if the particle is moving along the field.

Obviously, in such case (in the given reference frame) a trajectory is rectilinear and the motion
law is described by the equation (2.10). This is just the case which is called by M. Born [9]
“hyperbolic motion”.

Note 8. As far in a general case the LAD force is

 2 2
0 02/3) 2 /( ( ( 3)) ,i ik i k i i

e kF e g u u e u u u            

which for the motion described by equations (4.2) (in the reference frame where the strength of an
electric field is 0 / const)E a m e 

  gives us
0( , ),i

e e eF F F

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0 2 0 0 2 2 2 2 0 0 2
0 0( (1 )2 /3) 2 /3)( (1 )( ) ( )eF e u a u e a u u u         


2 2 0 2

02/3)( ,e a u u 
 (4.5)

   2 2 2 2 2 2
0 0( (12 )/ 3 ( (1 )) 2 / 3)eF e ua u e a u u u u         

       

2 2 2
0( (2 )./3)e a u uu   
   (4.5')

Obviously, this result satisfies the general condition
2 2 2 2 2

0 0 (2/3)( )i
e iF u e a u u u u u u        

    

2 2 2 2 2
0 0( (2 /3 1) ) 0.e a u u u    
 

The results (4.5)-(4.5') show again that the following statement is true:

Statement 6. If 0, 


then along the component 

except the uniform electric field constE 



acts a force 2 2 2
03)(2/eF e a u u

   that makes the motion along the field non hyperbolic.

5. Discussion and conclusion
The results obtained in the article show that the motion with zero radiation reaction force (the

Lorentz- Abraham-Dirac force) exists in the nontrivial case if and only if the motion is hyperbolic
(relativistic analogies of the uniformly accelerated motion). The trajectory of such motion is studied
as well. There is shown that in general this trajectory is a hyperbole. We have proven that in general
case one can study this motion in the special inertial RF where the motion of the charged particle is
rectilinear and the initial velocity of it is zero. For arbitrary initial conditions there is found the
explicit expression for the Lorentz transformation parameter that allows to perform transformation
to such RF. There is find out the necessary and sufficient configuration of the electromagnetic field
providing the correspondent motion law of the charge and explicit expressions for it in general RF
and in special one mentioned above.

There is shown that in general a uniform electrostatic field does not provide the motion with zero
LAD force. In order to find the exact motion law and to estimate the radiated energy-momentum
there is necessary to solve the third order differential equation that describes the motion with
nonzero LAD force. The relations obtained (see (4.5)-(4.5')) indicate that there is possible to use u



as a small parameter for built up the solution of that equation numerically or executing
corresponding decomposition.

On our opinion, it seems rather interesting to investigate how much does the radiated energy-
momentum intensity change when the charge motion slightly deviates from the hyperbolic regime.

Besides, there is interesting to study the influence of the particle’s own magnetic moment on the
phenomena considered above.
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