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Abstract:
Ultra thin Fe3O4 films with 2 and 3 spin layers were described using third order
perturbed Heisenberg Hamiltonian. 3- D graphs of energy versus angle and stress
induced anisotropy were plotted for two and three spin layers in order to find the values
of stress induced anisotropy corresponding to energy minima. Both graphs have energy
minima at the same values of stress induced anisotropy. However, 3-D plots were
slightly different in two cases. Using the values of stress induced anisotropy
corresponding to energy minima, magnetic easy directions were found for films with
two and three spin layers. Curves of magnetic energy versus angle were plotted to find
magnetic easy and hard directions. Although a sin curve could be obtained for the film
with two layers, a curve with some sharp maxima appear in the graph of film plotted for
three layers. All the graphs were plotted using MATLAB software.
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1. Introduction:
Fe3O4 finds potential applications in magnetic storage, industrial catalysts, water purification and
drug delivery. Fe3O4 is a ferrite with inverse spinel structure. Magnetite (Fe3O4) and maghemite
(Fe2O3) are the most popular natural oxides. Spinel structure with tetrahedral and octahedral sites
can be found in detail in some previous publications [1, 2, 3, 4, 5]. Five of Fe3+ ions occupy
tetrahedral sites. Other five Fe3+ ions and four Fe2+ ions occupy octahedral sites. Because magnetic
moments of Fe3+ in tetrahedral and octahedral sites cancel each other, the net magnetic moment of
Fe3O4 is completely due to the magnetic moments of four Fe2+ ions. Therefore, the theoretical net
magnetic moment of Fe3O4 is 4 Bohr magnetons. However, experimental value of net magnetic
moment is approximately 4.1 Bohr magnetons. The spinel structure of this ferrite is represented by
Fe3+(Fe2+Fe3+)O4. The magnetic moments of Fe2+ and Fe3+ are 4 B and 5 B, respectively.
Surface spin waves in CsCl type ferrimagnet with a (001) surface has been studied by combining
Green function theory with the transfer matrix method [6]. Cation distribution of ferrite like
compounds has been found using Rietveld method [1, 2]. Anisotropy of ultrathin ferromagnetic
films and the spin reorientation transition have been investigated using Heisenberg Hamiltonian
with few terms [7]. In addition, the surface magnetism of ferrimagnet thin films has been studied
using Heisenberg method [8]. The surface spin wave spectra of both the simple cubic and body
centered ferrimagnets have been theoretically studied using Heisenberg Hamiltonian [9]. The cation
distribution and oxidation state of Mn-Fe spinel nanoparticles have been systematically studied at
various temperatures by using neutron diffraction and electron energy loss spectroscopy [4]. The
crystal structure of spinel type compounds has been found using single crystal X-ray diffraction
data [3]. The lattice parameter, anion parameter and the cation inversion parameter of spinel
structures have been presented [5]. Surface spin waves on the (001) free surface of semi-infinite two
lattice ferrimagnets on the Heisenberg model with nearest neighbor exchange interactions has been
investigated [10].
Ferromagnetic ultra-thin and thick films have been investigated using second order perturbed
Heisenberg Hamiltonian by us [11]. Previously ferromagnetic ultra thin and thick films have been
studied using third order perturbed Heisenberg Hamiltonian [12, 13]. Furthermore, ferrite ultra-thin
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and thick films have been investigated using second order perturbed Heisenberg Hamiltonian by us
[14, 15]. Ferrite ultra-thin and thick films have been investigated using third order perturbed
Heisenberg Hamiltonian [16, 17]. In this manuscript, the third order perturbed Heisenberg
Hamiltonian was used to describe Fe3O4 ultra thin films.

2. Model:

Classical Heisenberg Hamiltonian of a thin film can be written as following.
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Here J,  ,,,,, )4()2(
soutinmm KHHDD m, n and N are spin exchange interaction, strength of long

range dipole interaction, azimuthal angle of spin, second and fourth order anisotropy constants, in
plane and out of plane applied magnetic fields, stress induced anisotropy constant, spin plane
indices and total number of layers in film, respectively. When the stress applies normal to the film
plane, the angle between mth spin and the stress is m.

The cubic cell was divided into 8 spin layers with alternative A and Fe spins layers. The
spins of A and Fe will be taken as 1 and p, respectively. While the spins in one layer point in one
direction, spins in adjacent layers point in opposite directions. A thin film with (001) spinel cubic
cell orientation will be considered. The length of one side of unit cell will be taken as “a”. Within
the cell the spins orient in one direction due to the super exchange interaction between spins (or
magnetic moments). Therefore the results proven for oriented case in one of our early report [14]
will be used for following equations. But the angle  will vary from m to m+1 at the interface
between two cells.
For a thin film with thickness Na,
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Here the first and second term in each above equation represent the variation of energy within the
cell [14] and the interface of the cell, respectively. Then total energy is given by

E= N(-10J+72Jp-22Jp2)+8Jp
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Here the anisotropy energy term and the last term have been explained in our previous report for
oriented spinel ferrite [14]. If the angle is given by m=+m with perturbation m, after taking the
terms up to third order perturbation of ,
The total energy can be given as E()=E0+E()+E()+E(3)
Here
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E0= -10JN+72pNJ-22Jp2N+8Jp(N-1)-48.-145.cos(2)
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The sin and cosine terms in equation number 2 have been expanded to obtain above equations. Here
n=m+1.

Under the constraint
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Otherwise, Cmn=0
Also 
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Otherwise nm=0. Also nm=mn and matrix  is symmetric.

Therefore, the total magnetic energy given in equation 2 can be deduced to
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Because the derivation of a final equation for  with the third order of  in above equation is tedious,
only the second order of  will be considered for following derivation.
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3. Results and discussion:

The energy given in above equation 11 will be calculated for film with two layers (N=2). The
equations will be proven under the assumption of D1(2)=D2(2) and D1(4)=D2(4). According to above
equations, C11=C22 and C12=C21.

Therefore from equation 10, 2211
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If all the terms are considered, the C11C22 product will consist of 80 terms. Therefore, only the
magnetic exchange energy, second order anisotropy, and the stress induced anisotropy terms will be
considered for this simulation.
For Fe3O4, p=5/4=1.25.
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The total energy can be found from equation 11. Figure 1 shows the 3-D plot of

 )(E versus  and


sK for N=2. Other values were kept at 10
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sK =3, 5, 7, -----etc. Energy maxima could be observed at
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sK =2, 5, 6, ----etc. Energy

maxima and minima correspond to magnetic hard and easy directions. Magnetic easy directions can

be observed at

sK =3, 5, 7, -----etc. This means that the film can be easily magnetized along some

specific directions by applying a certain stress. The stress arises due to the difference between
thermal expansion coefficients of film and the substrate during the cooling or heating process.
Although this 3-D plot is similar to that of nickel ferrite ultra thin films obtained using the second
order perturbed Heisenberg Hamiltonian, the energy of nickel ferrite film is much higher than that
Fe3O4 films [14]. However, this 3-D plot is somewhat different from that of ultra thin ferromagnetic
films found using third order perturbed Heisenberg Hamiltonian [13].
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Figure 1: 3-D plot of

 )(E versus  and


sK for N=2.

Figure 2 shows the graph of energy versus angle for

sK =3. Energy minima can be observed at

=3.1, 6.2 radians, ---- etc. Energy maxima can be observed at 1.5, 2.7, 7.8 radians, ----- etc.
Magnetic easy directions are at =3.1, 6.2 radians, ---- etc. as measured with respect to the film
normal. This curve is entirely different from that of thick ferromagnetic films obtained using third
order perturbed Heisenberg Hamiltonian by us [12]. Similar to this curve, a smooth sin curve could
be observed for thick ferromagnetic films obtained using third order perturbed Heisenberg
Hamiltonian. According to our experimental data, the magnetic properties of nickel ferrite films
depend on the stress induced anisotropy [18].
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Figure 2: Graph of energy versus angle for
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sK =3.
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When N=3, the each C+nm element found using equation 10 is consist of more than 20 terms. To
avoid this problem, matrix elements were found using C.C+=1. Then C+mn is given by
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E , and the average value of first order

perturbation is zero. The second order anisotropy constant is assumed to be a constant within the
film for the convenience.
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Figure 3 shows the 3-D plot of

 )(E versus  and


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Although the shape of this 3-D plot is slightly different from that of nickel ferrite ultra thin films
obtained using third order perturbed Heisenberg Hamiltonian, both have almost the same maximum
energy [16]. However, the shape of this 3-D plot is entirely different from that of nickel ferrite thick
films obtained using third order perturbed Heisenberg Hamiltonian [17]. This graph is entirely
different from the same graphs obtained for the thick nickel ferrite using the second order perturbed
Heisenberg Hamiltonian [15]. In addition, the total energy of the thick film is 1011 time higher than
that of ultra-thin film.
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Figure 3: 3-D plot of

 )(E versus  and


sK for N=3.

Figure 4 shows the graph of

 )(E versus  for


sK =3. Energy minima can be observed at =0.75,

2.4, 3.9 radians, ----- etc. Energy maxima can be observed at =0.4, 3.5, 6.75 radians, ----- etc.
Magnetic easy directions are =0.75, 2.4, 3.9 radians, ----- etc with respect to film normal.
According to figures 2 and 4, the magnetic easy direction varies with the number of spin layers. The
variation of magnetic easy direction with deposition temperature can be explained using Heisenberg
Hamiltonian and idea of spin orientation [11, 19, 20].
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4. Conclusion:
According to 3-D plots, Fe3O4 thin films with two and three spin layers can be easily magnetized
along some directions under the influence of particular values of stress. For Fe3O4 films with two

layers, energy becomes minimum at

sK =3, 5, 7, -----etc. For


sK =3 and N=2, magnetic easy

directions were found to be =3.1, 6.2 radians, ---- etc. as measured with respect to the films normal.

For Fe3O4 films with three layers, Energy minima can be observed at

sK =3, 5, 7, ----- etc. For


sK =3 and N=3, magnetic easy directions are =0.75, 2.4, 3.9 radians, ----- etc with respect to film

normal. The shape of energy versus angle curve for N=2 is entirely different from that for N=3.
However, the 3-D plot of N=2 is slightly different from that of N=3.
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