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Abstract
Securing IoT (the Internet of Things) is critical issue concerning to data integrity and
the resources within enterprises. IoT security requires a systematic approach for
monitoring all possible threats and the methods to mitigate them. Encryption is main
requirement for securing IoT through secure communication. Key exchange plays a
crucial role in securing an information exchanging through IoT network. Neural
networks provide great strategy by synchronization process using Hebbian learning
rule by balancing weights. Neural networks synchronization gives us a cryptographic
key-exchange protocol. Main benefit of this process is that an attacker needs so long
time to guess the generated key.
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1. Introduction
IoT devices are prone to threats since they are managed by humans. The attacker may try to

theft confidential information by gaining unauthorized access to IoT devices. Prior to protect our
system or network against the threats first we need to identify the vulnerabilities and the threats
caused by Internet connection. Intruders may have the different purposes like to gain illegitimate
access to IoT device and therefore to gain confidential information [1-5]. Due to low power and less
computing opportunity, IoT devices cannot use complex protocols what gives intruders capable
having IoT as easy target. There are hardware and software vulnerabilities in IoT Devices. Most
challenging issue is a hardware vulnerability what is too hard to detect but harder to repair the
damaged part of the device. Poor algorithm causes software vulnerability providing a back door to
intruders to spy [6-8].

We may differentiate two types of threats to IoT: a natural and human threats. The threat that
may occur due to hurricanes or earthquakes can damage IoT devices and impossible to repair.
Human threats we need to localize are malicious attacks. There are main Attacks on IoT Devices:
cyber-attacks where intruder cracks encryption to obtain the keys and malicious software to gain
secret information; brute force attacks where intruder makes plenty of attempts using scanning
software to guess a password of specific user and third one is tracking where intruder captures
victim’s move using IoT device UID (Unique Identifier) [9-10].

The common vision of smart systems like smart grid, smart homes, smart water networks,
intelligent transportation is usually associated with the concept of the internet of things (IoT), where
through the use of sensors the entire physical infrastructure is closely coupled with information and
communication technologies.

Intelligent monitoring and management can be achieved using networked embedded devices
where devices are interconnected to transmit useful measurement information and control
instructions via distributed sensor networks [11-13].
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Pic. 1. Four Phases of Internet of things (IoT)

2. Major Human Attacks to IoT
Brute Force Attack: the attackers try to guess a password using specific software making

multiple attempts for gaining access.
Cyber Reconnaissance: the attacker trying to use malicious software and cracking technique

for spying to obtain about targeted user.
Tracking: each action of the targeted user is fixed using UID of IoT device. Tracking gives a

precise location of the targeted user.

3. General Cryptography Model
We know three general encryption forms: Symmetric key encryption, public Key encryption

and Cryptographic hash. Symmetric key encryption technique generates identical encryption and
decryption keys. The forms symmetric key encryption are AES, DES, 3DES and RC5. In public
Key or asymmetric encryption, encryption key is generated publicly and it could be used by anyone
for encrypting data but only the receiver having the private key can decrypt the message.
Asymmetric cryptography can control data security, authentication of participants. Asymmetric
encryption protocols are RSA, Elliptic Curve, TLS PGP and S/MIME.
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Pic. 2. General model of symmetric Cryptography
4. Neural Cryptography

Neural cryptography, the branch of cryptography, is capable to analyse ANN (artificial neural
network) algorithms in encryption process and cryptanalysis. ANNs are known as the best solution
in cryptanalysis for attack ciphering algorithms to find the inverse function of the cryptographic
algorithms. The ability of learning and self-learning as well as stochastic behavior of neural
networks is used in public-key cryptography. Mutual synchronization of ANNs, can solve the key
distribution problem generating pseudo-random numbers. In cryptanalysis main feature of ANNs is
they are capable to separate space in non-linear parts using bias [14-17].

An artificial neural network (ANN) is a math structure which can identify a nonlinear
relationships between input and output data sets.

5. Neural Key Exchange Protocol

Key exchange protocol between two parties is Diffie-Hellman protocol well known in
practice. For most security reasons we will use neural key exchange protocol using the
synchronization of two tree parity machines [18-19].

Pic. 3. Tree Parity Machine

We use feedforward neural network as the tree parity machine with one output layer, k hidden
layers and K×N input layers. Where output of each hidden neuron is sum of all multiplications of
input neurons and weights. Inputs and Outputs are binary.

Input values:
Weights:

Output of hidden layers is a sum of multiplications of input values and weights:

Signum:

Output value:

https://en.wikipedia.org/wiki/File:Tree_Parity_Machine.jpg
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What are main steps of key Exchange protocol: both A and B parties use their own tree parity
machines and synchronization of them can be achieved by doing the following steps by:
1) Initializing random weights; 2) executing all these steps until the synchronization is achieved; 3)
Generating input vector X; 4) Computing the values of hidden layers; 6) Computing output value; 7)
Comparing three parity machines values; 8) If outputs are different, go to 2.1; 9) If outputs are the
same, apply learning rules to weights.

When weights of both tree parity machines are equal what happens after completion of
synchronization, they will be used as keys by both sides. This is kind of bidirectional learning.

There are three rules can be used for synchronization:

Hebbian learning rule:
Anti-Hebbian learning rule:
Random Walk:

6. Wolfram Key Exchange Application
This application gives us an opportunity to use a key exchange protocol through the

synchronization of two neural networks for encrypting communication using the Hebbian learning
rule. The given model includes two parties A and B where the person A communicates with the
person B. They need to exchange a key through a secure channel what is impossible until both
parties set absolutely identical neural networks and the weights and inputs of both networks match.
Changing epoch value can change system using randomizing button creating new neural network
configuration. Number of epochs taken to get paired networks was equal to 1000 what was achieved
when the weights of the both neural networks matched.

In the given algorithm, A and B parties represent two similar neural networks with different
random values of weights: where L is the number of weight values. The
input values of the network are random: . The values of hidden layers is computed

using the formula: . Output value . After comparing the output
values of both parties and if they do match the Hebbian learning rule will be used where the
process is repeated until the weights of both neural networks get equal. These values of the weights
gives us the paired key.
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Pic.1. Synchronization of Tree Parity Machines Pic.2. Synchronization of Tree Parity Machines
(Epoch <1000) (Epoch >1000)

7. Conclusion
Neural key exchange protocol is good alternative for communication encryption using the

Hebbian learning rule. Where part A needs to establish secure communication with part B through
the secure channel. They need to exchange a key through this secure channel and they use two
neural networks with identical topology. These neural networks are evaluated with the same inputs
until their weights match. Neural networks were trained with the number of epochs equal to 1000.
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