
GESJ: Computer Science and Telecommunications 2021|No.1(59)
ISSN 1512-1232

20

USING A GENETIC ALGORITHM TO BUILD SYMMETRIC
CRYPTALGORITHMS.

Zurab Kochladze
I. Javakhishvili Tbilisi State University Faculty of Exact and Natural Sciences, Department of Computer Science

0186.13 University street, Tbilisi, Georgia.

Abstract
The article discusses a symmetric encryption algorithm built using genetic algorithm
operations and a pseudo-random generator. An example of how the algorithm works is
given.

Keywords: genetic algorithm; crossover and mutasion operasions; cypher.

1. Introduction
It is known that the speed of open key crypto algorithms is very low. Because of this,

symmetric ciphers are mainly used to encrypt information [1,2]. As K. Shannon in his fundamental
work [3] showed that symmetric crypto algorithms (except one) allow information to be leaked in
encrypted text about plain text. So, if we do not want that the opponent to be able to crack the
algorithm in polynomial time, it is necessary to perform diffusion and sconfuzion processes in the
algorithm.

In modern cryptographic algorithms, in which both plain text and ciphertext represent by n-bit
lengths strimgs, this practically means that if the structure of bit string, whish correspondings to the
plain text is defined by plain text, the structure of the bit string, whish correspondings to the
ciphertext should be as close as possible to the random bit string. This causes the use such of
operations in algorithms that perform these conditions. It also causes the same text to be encrypted
several times with different keys.

2. Genetic alogorithms
Genetic algorithms allow a more accurate solution to a problem by performing certain

operations on candidate populations solving the problem [4]. The genetic algorithm for solving a
problem consists of three stages, the first of which is to present individual potential solutions in a
special form that is most convenient for performing evolutionary changes and sampling operations.
More often these are usually bit (binary) strings. In the second stage, cross-breeding and mutation
operations are carried out, which are characteristic of living biological forms. After using these
operations, a new generation is obtained with the recommended features of their parents. In the last,
third stage, based on any selection criteria, the best, ie the most accurately matching solution to the
given problem will be selected. These specimens are selected for multiplication, ie to obtain a new
generation of potential solutions. Eventually any generation will become the solution to the initial
task.

Use of genetic algorithms in cryptology began as early as the end of the last century. Initially,
genetic algorithms were actively used in cryptanalysis, in which quite good results were achieved
[5,6]. Then gradually they started to be used in cryptography and practically today genetic
algorithms are used in almost all directions of cryptology. Many symmetric algorithms have been
developed that use genetic algorithms to encrypt [7,8]. This can be explained by the fact that
genetic operations fully meet the above conditions required by symmetric cryptographic algorithms.

Today, most algorithms used for information security are based on mathematical operations
and transformations. However, with the development of artificial intelligence, which has activated
the principles of genetic learning based on the evolutionary model, and interest in GA, work is

GESJ: Computer Science and Telecommunications 2021|No.1(59)
ISSN 1512-1232

21

actively underway to use genetic algorithms to build crypto algorithms. Compared to modern crypto
algorithms, which mainly operate after the representation of information in a matrix form, the main
advantage of using genetic algorithms is the speed of genetic operations - their evaluation (Ō = n) is
linearly related to the size of the information (message).

3. Description of the new cryptographic algorithm
The algorithm uses a pseudo-random number generator (PRNG) and genetic algorithm

operations: crossover and mutation. Algorithm options: block size 128 bits, secret key length -128
bits, PRNG initial values: b,x,a 0 (these settings are also keys).

 On the first stage, the plain text is transformed through ASCII codes to the binary string
n)1,0(, which is divided into 128-bit blocks;

 Then by using the PRNG function ,baxx 1ii we must calculate 16 pseudo-random
numbers in decimal system. It is ouer secret key. None of the key elements should be equal
to 0. A piece of software code (example [1]) counts this numbers.

{ int a = 11, b = 5;
kay.push_back (19);
for (int i = 1; i <16; i ++)
{int y = a * (kay [i-1] + b)% (256 + i); (1)
while (y == 0) {
y = a * (kay [i-1] + b)% (256 + i); }
kay.push_back (y);}

 In the third step, these sixteen numbers are converted to 128-bit binary string via ASCII
codes. This is the secret key to a given plain text block. Using the Xor operation, the 128-bit
key and the corresponding 128-bit plain text will be assembled. The key for each block of
plain text is calculated again using the same function. But with each subsequent calculation
the free number b increases by the magnitude l . This l is also an integral part of the key.

 Software code snippet:

{ int e = 1, l = 0;
while(e<=k){
for(int i=0;i<128;i++)
int t=text[l]|binkay[i];
trans.push_back(t);
l++;}

e++;}
for(int i=0;i<(k*128);i++)
cout<<trans[i];
cout<<endl; }

The algorithm then starts using genetic surgeries. It takes the first number from the sixteen
calculations and uses the modulus and converts it to an interval [1,7].

The number obtained is the point of a single-point crossover operation. The algorithm takes
the first and second blocks of text assembled with the secret key and divides them into two parts by
means of crossover operation. Then attach the first part of the first block to the second part of the
second block and vice versa, attach the first part of the second block to the second part of the first
block. In order for the algorithm to use the mutation operation, the information exchange subjects
agree in advance on two numbers that they exchange with the key. For example

.8y,x0.yx.y,x The algorithm then moves to the already modified second and

GESJ: Computer Science and Telecommunications 2021|No.1(59)
ISSN 1512-1232

22

irreplaceable third bytes. So he continues to work until he considers the eighth and first bytes.
round.

Consider the process of working this algorithm on a simple example. Suppose we want to
encrypt open source text: domein parameters. The parameters of the pseudo-random number
generator mmod)bXa(X i1i should be as follows:

101m,11b,4x,37a 0 .

;58101mod)11374(X1 ;41101mod)11584(X 2
;74101mod)11414(X 3 ;4101mod)11744(X4
;27101mod)1144(X 5 ;18101mod)11274(X 6
;83101mod)1118.4(X7 ;40101mod)11834X 8
;70101mod)11404(X 9 ;89101mod)11704(X 10

;64101mod)11894(X11 ;65101mod)11644(X12
;mod)(X 691011165413 ;85101mod)11694(X14
;mod)(X 481011185415 .1101mod)11484(X 16

Add the numbers generated by the generator and the decimal numbers corresponding to the
plane text letters with modulus 256:

M[1] = (100 + 58)mod 256 = 158; M[2] = (111 + 41)mod 256 = 152;
M[3] = (109 + 74) mod 256 = 183; M[4] = (97 + 4)mod 256 = 101;

M[5] = (105 + 27)mod 256 = 132; M[6] = (110 + 18)mod 256 = 128;
M[7] = (32 + 83)mod 256 = 115; M[8] = (112 + 40)mod 256 = 152;
M[9] = (97 + 70)mod 256 = 167; M[10] = (114 + 89)mod 256 = 203;
M[11] = (97 + 64) mod 256 = 161; M[12] = (109 + 65) mod 256 = 174;
M[13] = (101 + 69)mod 256 = 170; M[14] = (116 + 85)mod 256 = 201;
M[15] = (101 + 48)mod 256 = 149; M[16] = (114 + 1)mod 256 = 115.

Convert the obtained numbers to a binary system and divide bytes. We get:

10011110, 10011000, 10110111, 01100101, 10000100, 10000000, 01110011, 10011000, 10100111,
11001011, 10100001, 10101110, 10101010, 11001001, 10010101, 01110011

Convert plain text to a binary string, we get:

01100100 01101110 01101101 01100101 01101001 01101110 01110000 01100001
01110010 01100001 01101101 01100101 01110100 01100101 01110000 01110011.

Assemble the first two blocks of the secret key and open text with the xor operation, we get:
11111010 11110101

Perform crossover operation on encrypted text. Let's take the first number ,x1 generated by
the PRNG and calculate .62mod158)8(modx1

The number obtained indicates the crossover position. Take the first and second blocks of
encrypted text and divide this point into two parts and exchange these parts

First block 111110 10 second block 111101 01

We get it: 11111001 11110110

Suppose there are mutation points (3,6) then we get new blocks:

11011101 1100010

GESJ: Computer Science and Telecommunications 2021|No.1(59)
ISSN 1512-1232

23

4. Conclusion and future work
As we can see, the algorithm consists of very simple operations, which means that the speed

of the algorithm will be high, which is one of the important features. The operations used satisfy K.
well. Shannon requirements. Experiments now need to be performed to determine how many
rounds we need to perform to make the bit string n)1,0(containing the received encrypted text as
close as possible to the random n)1,0(string.

REFERENCES:

1. A. G. Konheim Computer security and cryptography .A.J.Wiley &sons, 2007.

2.W. Stallings, L. Brown Computer Security Third Edition. Pearson, 2015.

3. C.Shannon Comunication theory of secrecy systems. Bell System Technology, J. 28, №4 (1949),
pp. 656-715.

4. Goldberg D.E. Genetic Algorithms in Search, Optimisation and Machine Learning, Boston,
Addison-Wesly, 1989.

5. Spillman R.,Janssen M., Nelson B., Kepner N.,, Use of Genetic Algorithm in Cryptanalysis of
Simple Substituion Cipher, Cryptologia, Vol.17, No.4, pp. 367-377, 1993.

6. Kochladze Z., Beselia L., Cracking of the Merkle–Hellman Cryptosystem Using Genetic
Algorithm, Transections on Sciense and Tecnology , Volume 3, No. 1-2: Science and Natural
Resources [pp. 291-296] .2016.

7. Sindhuja K , Pramela Devi S. “A Symmetric Key Encryption Technique Using Genetic
Algorithm”. (IJCSIT) International Journal of Computer Science and Information Technologies,
Vol. 5 (1), 414-416, 2014.

8. Tragha, A.; Omary, F.; Mouloudi, A. 2006. ICIGA: Improved Cryptography Inspired by Genetic
Algorithms, in Proc. International Conference on Hybrid Information Technology. Cheju Island,
335–341.

Article received: 2021-03-09

