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Abstract: 
Ferromagnetic films with bcc structure was investigated using fourth order perturbed 
Heisenberg Hamiltonian. Magnetic properties of ultrathin films with two spin layers 
were studied. Only spin exchange interaction, long range dipole interaction and second 
order magnetic anisotropy were taken into account. 3D plots of total magnetic energy 
versus angle and magnetic anisotropy constant of bottom spin layer were drawn for 
different values of magnetic anisotropy constant of top spin layer. When the magnetic 
anisotropy constant of top spin layer moderately increases, the total magnetic energy 
does not vary. On the other hand, when the magnetic anisotropy constant of top spin 
layer significantly increases, the total magnetic energy decreases. However, the gap 
between adjacent peaks does not vary with the increase of the magnetic anisotropy 
constant of top spin layer.  
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1. Introduction: 
Ferromagnetic ultrathin films are applied in field sensors, magnetic storage and electromagnets. 
Ultrathin ferromagnetic films have been investigated using various theoretical models. Theory of 
the extrinsic contributions to the ferromagnetic resonance in ultrathin films has been developed [1]. 
Two dimensional Heisenberg ferromagnets subject to uniaxial anisotropy in ultrathin films has been 
investigated [2]. Heisenberg Hamiltonian has been applied for EuTe films with surface elastic 
stresses [3]. The magnetostriction of dc magnetron sputtered FeTaN thin films has been described 
using De Vries theory [4]. The Korringa-Kohn-Rostoker Green’s function method has been 
employed to explain the magnetic layers of Ni on Cu [5]. Heisenberg model and transverse Ising 
model coupled with Green’s function technique have been employed to investigate the electric and 
magnetic properties of multiferroic thin films [6]. Ferromagnetic resonance has been used to 
measure the saturation magnetization of ultrathin ferromagnetic films [7]. Heisenberg Hamiltonian 
with terms of spin exchange interaction, magnetic dipole interaction, applied magnetic field, second 
and fourth order magnetic anisotropy terms has been appertained for ferromagnetic thin films [8, 9, 
10]. Computer simulations have been carried out for the domain structure and Magnetization 
reversal in thin magnetic films [11]. In-plane dipole coupling anisotropy of square ferromagnetic 
Heisenberg monolayers has been investigated [12].  
Variation of magnetostatic energy of domains and domain walls with film thickness has been 
theoretically investigated [13]. Magnetic thin films with thicknesses ranging from 2 to 4 layers have 
been modeled using anisotropic classical Heisenberg spins under the influence of mechanical 
uniaxial stresses [14]. Magnetic properties of bcc structured ultathin films have been investigated 
using the Monte carlo simulation [15]. Monte Carlo simulations and analytical Green’s function 
have been employed to find the properties of thin films made of stacked triangular layers of atoms 
bearing Heisenberg spins with an Ising like interaction anisotropy [16]. A Green’s function 
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technique has been applied to study the influence of the magnetic surface single ion anisotropy on 
the spin wave spectrum including damping effects in ferromagnetic thin films [17].            
 
According to some experimental studies, magnetic properties depend on the magnetic anisotropy 
[18, 19]. Ferrite thin and thick films have been elucidated using non-perturbed, second order 
perturbed and third order perturbed Heisenberg Hamiltonian [20-23]. Second and third order 
perturbed Heisenberg Hamiltonian was applied to explain ultrathin and thick ferromagnetic films 
[24, 25].  Furthermore, Heisenberg Hamiltonian was employed to describe the variation of magnetic 
easy axis orientation of experimentally deposited magnetic thin films with temperature [26, 27].  
 
2. Model: 
    Heisenberg Hamiltonian of ferromagnetic thin films can be expressed in terms of spin exchange 
interaction, long range dipole interaction and second order magnetic anisotropy as follows [20-25].       
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This equation can be deduced to following form for a unit spin [16-24]  
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All the terms in above equation have been defined in our previous publications [20-25]. For a  
ferromagnetic thin film with only two spin layers, N changes from 1 to 2.     
 
E(θ)=E0+E(ε)+E(ε2)+E(ε3)+E(ε4)                                                                                                                    (3) 
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First order perturbation term can be expressed as follows [20-25]. 
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Second order perturbation term can be rendered as follows [20-25]. 
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Third order perturbation can be expressed in terms of a two by two matrix, a row matrix and a 
column matrix as following. 
 

εβεε
.)( 23 =E  

 
Elements of two by two matrix (β) are given by 
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Fourth order perturbation can be expressed in terms of two by two matrices, row matrices and 
column matrices as following. 
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Elements of two by two matrices (F and G) are delineated by 
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After substituting above terms in the equation 3, 
 

E(θ)=E0+ εα
. + εβεεε
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For the minimum energy of the second order perturbed term [24, 25], 
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Here C+ is the pseudo inverse of matrix C, and C+ can be found using  
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Here E is the matrix with all elements given by Emn=1. 
 
3. Results and discussion: 
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ε1 and ε2 can be found using above equation (5). After substituting ε in equation 4, total energy can 
be found.     
From equation 5, ( ) +−= 11121 Cααε  and ( ) +−= 21122 Cααε  
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All the simulations were carried out for a film with two different magnetic anisotropy constants in 
two spin layers. 
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For bcc (001) structured ferromagnetic thin films, Z0=0, Z1=4, Z2=0, 8675.50 =Φ  and 

7126.21 =Φ  [8-10]. Figure 1 shows the 3D plot of 
ω
θ )(E  versus angle and 

ω

)2(
1D

. Here other 

parameters were chosen as 5
)2(
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ω

D
 and 
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 = 10. Energy maximums can be observed at 
ω

)2(
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= 

14, 18, 22, 26, ---- etc. Energy minimums can be observed at 
ω

)2(
1D

= 12, 16, 20, 24,  ---- etc. The 

graph of 
ω
θ )(E  versus angle was obtained by rotating the 3D plot in MATLAB. The peaks along 

the axis of angle are closely packed in that graph compared to the graphs obtained using second and 
third order perturbed Heisenberg Hamiltonian [20-25].           
 
 

 

Figure 1: 3D plot of 
ω
θ )(E  versus angle and 

ω

)2(
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 for 5
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 and 
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 = 10. 

 
 
 
 

Figure 2 represents the 3D plot of 
ω
θ )(E  versus angle and 

ω

)2(
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 for 50
)2(

2 =
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D
 and 
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 = 10. 

Energy maximums can be seen at 
ω

)2(
1D

= 5, 9, 13, 17,  ---- etc. Energy minimums can be seen at 
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ω

)2(
1D

= 8, 12, 16, 20, ---- etc. The peaks along the axis of angle are closely packed in that graph 

[20-25]. Order of energy (1020) in this case is close to the order of energy found using the second 
and third order perturbed Heisenberg Hamiltonian [24, 25]. The order of energy does not change 
when the second order magnetic anisotropy constant in the top layer increases from 5 to 50. 
Although the shape of this 3D plot is different from the 3D plot in figure 1, the gap between 

adjacent peaks does not change. Figure 3 shows the graph of 
ω
θ )(E  versus angle obtained by 

rotating 3D plot given figure 2 using MATLAB.   

 
 

Figure 2: 3D plot of 
ω
θ )(E  versus angle and 

ω

)2(
1D

 for 50
)2(

2 =
ω

D
 and 
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 = 10. 
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Figure 3: Graph of 
ω
θ )(E  versus angle obtained from figure 2. 

 
4. Conclusion: 
According to the 3D plot of total magnetic energy versus magnetic anisotropy constant of bottom 

spin layer and angle for 5
)2(

2 =
ω

D
 and 

ω
J

 = 10, energy maximums can be observed at 
ω

)2(
1D

= 14, 

18, 22, 26, ---- etc., and energy minimums can be observed at 
ω

)2(
1D

= 12, 16, 20, 24,  ---- etc. When 

the magnetic anisotropy constant of top spin layer increases from 5 to 50, the order of magnetic 
energy remains unchanged. However, when the magnetic anisotropy constant of top spin layer 
increases from 50 to 100, the order of magnetic energy decreases from 1020 to 1010. When the 
second order magnetic anisotropy dominates the spin exchange interaction, the total magnetic 
energy decreases.  
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