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 Abstract: 
 Fourth order perturbed Heisenberg Hamiltonian was employed to determine the 
magnetic easy and hard directions of fcc structured ferromagnetic thin films with three 
spin layers. Only the spin exchange interaction, long range dipole interaction and 
second order magnetic anisotropy terms were taken into account. 3D graphs of total 
magnetic energy versus angle and spin exchange interaction were plotted for different 
values of second order magnetic anisotropy constants in three spin layers. In 3D plots, 
the peaks along the axis of angle are closely packed. However, some periodic variation 
of energy was observed along the axis of spin exchange interaction in 3D plots. The 
order of energy varies from 1014 to 1016 in these 3D plots. In addition, the graphs of 
energy versus angle were plotted in order to determine the magnetic easy and hard 
directions.   
Keywords: Heisenberg Hamiltonian, fourth order perturbation, fcc structure, 
ferromagnetic. 

 
 
1. Introduction: 
Ferromagnetic thin films are prime candidates in transformers, electromagnets, magnetic tape 
recording, sensors, actuators and hard drives. Landau Lifshitz Gilbert equation has been employed 
to study the surface acoustic wave driven ferromagnetic resonance [1]. The time and frequency 
domain method has been used to investigate precessional magnetization behavior and damping in 
ferromagnetic thin films [2]. EuTe films with surface elastic stresses have been theoretically studied 
using Heisenberg Hamiltonian [3]. De Vries theory was employed to explain the magnetostriction 
of dc magnetron sputtered FeTaN thin films [4]. Magnetic layers of Ni on Cu have been 
theoretically investigated using the Korringa-Kohn-Rostoker Green’s function method [5]. Electric 
and magnetic properties of multiferroic thin films have been theoretically described using modified 
Heisenberg model and transverse Ising model coupled with Green’s function technique [6].  
The interfacial coupling dependence of the magnetic ordering in ferro-antiferromagntic bilayers has 
been studied using the Heisenberg Hamiltonian [7]. Heisenberg Hamiltonian incorporated with spin 
exchange interaction, magnetic dipole interaction, applied magnetic field, second and fourth order 
magnetic anisotropy terms has been solved for ferromagnetic thin films [8, 9, 10]. The domain 
structure and Magnetization reversal in thin magnetic films was described using computer 
simulations [11]. Heisenberg Hamiltonian has been employed to theoretically describe in-plane 
dipole coupling anisotropy of a square ferromagnetic Heisenberg monolayer [12].  
Previously magnetic thin films have been fabricated using sputtering and pulse laser deposition 
techniques by us [13-15]. According to our experimental studies, some magnetic energy parameters 
were found to be important in the control of magnetic easy axis orientation. Ferrite films have been 
explained using second order perturbed Heisenberg Hamiltonian by us [16, 17]. In addition, 
Heisenberg Hamiltonian was employed to describe the variation of magnetic easy axis orientation 
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of experimentally deposited magnetic thin films with temperature [18]. Second and third order 
perturbed Heisenberg Hamiltonian was applied to explain the ferromagnetic films by us [19-22]. 
Unperturbed Heisenberg Hamiltonian was applied to describe ferrite thin films [23]. Magnetic 
properties of ferrite films have been elucidated using and third order perturbed Heisenberg 
Hamiltonian by us [24]. Magnetostatic energy of domains and domain walls has been theoretically 
investigated as a function of film thickness [25]. Magnetic thin films with thicknesses ranging from 
2 to 4 layers have been modeled using anisotropic classical Heisenberg spins under the influence of 
mechanical uniaxial stresses [26]. Monte carlo simulation has been employed to study magnetic 
properties of very thin films with bcc lattice [27]. The properties of thin films made of stacked 
triangular layers of atoms bearing Heisenberg spins with an Ising like interaction anisotropy have 
been investigated using extensive Monte Carlo simulations and analytical Green’s function [28]. 
Landau Lifshitz theory has been utilized to describe the initial complex permeability frequency 
spectra of thin soft ferromagnetic films with in-plane anisotropy [29].            
2. Model: 

 Heisenberg Hamiltonian of ferromagnetic thin films with spin exchange interaction, long range 
dipole interaction and second order magnetic anisotropy can be expressed as [16. 17, 21-24]. 
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After taking the dot products of spin vectors in above equation, it can be deduced to the following 
form per unit spin with [16. 17, 21-24]. 
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Where m and n are the indices of two different spin layers, N is the number of layers measured in 
the direction perpendicular to the film plane, J is the magnetic spin-exchange interaction, 

nmZ − stands for the number of nearest spin neighbors,  ω represents the strength of long-range 

dipole interaction, nm−Φ are constants for partial summation of dipole interaction, For non-oriented 

films, above angles θm and θn measured with film normal can be expressed in forms of mm εθθ +=  

and nn εθθ += , and cosine and sine terms can be expanded up to the fourth-order of ε as following. 
Here ε indicates the perturbation of the angle. For a ferromagnetic thin film with three spin layers, 
N varies from 1 to 3.  
 
    
E(θ)=E0+E(ε)+E(ε2)+E(ε3)+E(ε4)                                                                                                                    (3) 
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Where D1

(2), D2
(2) and D3

(2) represent the second-order anisotropy constants of bottom, middle and 
top spin layers, respectively.  
By comparing the coefficients in equation E(ε)= εα

. , α1, α2 and α3 can be found. 
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Matrix elements of matrix C can be determined by 
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Matrix elements of matrix β can be found using the following equation. 
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Matrix elements of matrices F and G can be found using 
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After substituting above equations in equation 3,  
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For the minimum energy of the second order-perturbed term [8-10] 
 
 αε
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Where C+ is the pseudo inverse of matrix C, and C+ can be found using  
 

N
ECC −=+ 1.                                                                                                                                         (11) 

 
Where E is the matrix with all elements given by Emn=1.  
 
3. Results and Discussion: 
 
Using a MATLAB program, terms in matrix C+ were found. After substituting elements of the 
matrix C+ in equation 10, ε

 could be determined. Finally total energy could be found after 
substituting ε

  in equation 9. Then equation 9 was divided by ω to write equation in terms of     

ω
θ )(E  , 
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J  , 
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1D  , 
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2D  and 
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3D  , which are dimensionless parameters. For fcc(001) lattice, 

Z0=4, Z1=4 ,Z2=0 and Φ0 = 9.0336 and   Φ1=1.4294 [8, 9, 10]. Figure 1 shows the 3D graph of total 

energy versus angle and spin exchange interaction for 5
)2(

1 =
ω

D , 10
)2(

2 =
ω

D
 and 10

)2(
3 =
ω

D  . 

Peaks along the axis of angle are closely packed in this case compared to the graphs of second and 
third order perturbed cases [21, 22]. In addition, the shape of this graph is different from the 3D plot 
of second order and third perturbed cases [21, 22]. One of the energy minimum in this 3D plot can 

be observed at 10=
ω
J . Therefore, the graph of total energy versus angle at 10=

ω
J  is given in 

figure 2. Energy minimums of this plot can be observed at 0.4084, 2.7332, 3.5500 and 5.8748 
radians. Energy maximums can be found at 1.5708, 3.1800 and 4.7124 radians. Major and minor 
energy maxima can be observed. Energy minima and maxima provide magnetic easy and hard 
directions, respectively. The angle between adjacent easy and hard directions related to first minima 
and maxima is 1.1624 radians. Similarly the angle between adjacent easy and hard directions related 
to second minima and maxima is 1.1624 radians (66.60). This implies that the separation between 
adjacent easy and hard directions remains the same.   
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Figure 1: 3D graph of total energy versus angle and spin exchange interaction for 
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Figure 2: Graph of total energy versus angle at 10=
ω
J . 
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Figure 3 shows the 3D graph of total energy versus angle and spin exchange interaction for 

10
)2(

1 =
ω

D , 5
)2(

2 =
ω

D  and 10
)2(

3 =
ω

D . The total energy in this case (1016) is higher than the total 

energy (1014) in the 3D plot in figure 1. This implies that when the second order magnetic 
anisotropy in the middle spin layer is less than those of other two spin layers the total magnetic 

energy is higher. One of the energy minimum in this graph also can be found at 10=
ω
J  .  Figure 4 

represents the graph of energy versus angle at 10=
ω
J . Minor energy maxima observed in figure 2 

can not be observed in figure 4. Energy minima can be observed at 0.1885, 3.110 and 6.0947 
radians. Energy maxima can be found at 1.5708 and 4.7124 radians. Angle between first adjacent 
magnetic easy and hard directions is 1.3823 radians (79.20). The value of the energy at each energy 
minimum (or each energy maximum) is the same by implying that the variation is exactly periodic.  
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Figure 3: 3D graph of total energy versus angle and spin exchange interaction for 10
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Figure 4: Graph of energy versus angle at 10=
ω
J . 

Figure 5 represents the 3D graph of total energy versus angle and spin exchange interaction for 

10
)2(

1 =
ω

D , 10
)2(

2 =
ω

D  and 5
)2(

3 =
ω

D  . The energy in this case is in the same order as in the figure 

3. These data imply that the energy is less only if the second order magnetic anisotropy constant in 
the bottom spin layer is less than those of other two spin layers. Thin films with less magnetic 
energies are said to be soft magnets. According to all the 3D plots given in this manuscript, the 
peaks along the axis of angle are closely packed. Cross sections of all the 3D plots along the axis of 

ω
J  are in the same shape. One of the energy minimums in the 3D plot given in the figure 5 can be 

found at 10=
ω
J  . Figure 6 shows the graph of total magnetic energy versus angle for 10=

ω
J . 

Minimums of this graph can be observed at 0.5341, 2.608, 3.676 and 5.718 radians. Energy 
maximums can be found at 1.571, 3.142 and 4.712 radians. Energy minima and maxima provide 
magnetic easy and hard directions. In three graphs given in figures 2, 4 and6, angles at maximums 
(or minimums) are slightly different. The angle between the first adjacent minima and maxima is 
1.037 radians (59.410). The angle between magnetic easy and hard directions is smallest, when the 
top spin layer has the lowest second order magnetic anisotropy constant. On the other hand, the 
angle between magnetic easy and hard directions is highest, when the middle spin layer has the 
lowest second order magnetic anisotropy constant.                          
According to experimental studies, the magnetic properties of thin films solely depend on second 
order magnetic anisotropy constant [30, 31].   
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Figure 5: 3D graph of total energy versus angle and spin exchange interaction for 10
)2(

1 =
ω

D , 
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2 =
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Figure 6: Graph of total magnetic energy versus angle for 10=
ω
J . 
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4. Conclusion: 

For 5
)2(

1 =
ω

D , 10
)2(

2 =
ω

D
, 10

)2(
3 =
ω

D
 and 10=

ω
J , energy minimums of the plot can be observed 

at 0.4084, 2.7332, 3.5500 and 5.8748 radians. Energy maximums can be found at 1.5708, 3.1800 
and 4.7124 radians. The angle between adjacent easy and hard directions related to first minima and 
maxima is 1.1624 radians. Similarly the angle between adjacent easy and hard directions related to 

second minima and maxima is 1.1624 radians (66.60) in this case. For 10
)2(

1 =
ω

D , 10
)2(

2 =
ω

D
, 

5
)2(

3 =
ω

D  and 10=
ω
J

, minimums of the graph can be observed at 0.5341, 2.608, 3.676 and 5.718 

radians. Energy maximums can be found at 1.571, 3.142 and 4.712 radians. The angle between the 
first adjacent minima and maxima is 1.037 radians (59.410) in this case. The angle between 
magnetic easy and hard directions is least, when the top spin layer has the lowest second order 
magnetic anisotropy constant. The angle between magnetic easy and hard directions is highest, 
when the middle spin layer has the lowest second order magnetic anisotropy constant.       
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