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1. Introduction 
In the paper [1 the law of large numbers is proved for weakly correlated random elements 

with values in spaces . In the present paper we prove this result for the case of 
separable Hilbert space taking into account the specifics of the Hilbert space. 

Let us consider a sequence of random variables   defined on a probability 
space  and suppose that the given random variables have finite expectations. Denote 

, . We say that the sequence of random variables satisfies the law of large 
number (LLN) if the sequence  converges to zero in probability as , i.e. 

 
for every , where  is the symbol of the expectation. 

The LLN is extensively investigated in the literature especially for the case of a sequence 
of independent (or uncorrelated) random variables. Introduction of the concepts of dependence 
stimulated the study of LLN with this condition, e.g. for the random variables which have non-
zero correlations. In this direction one of the first result was obtained in 1928 by Khinchine [2] 
(see also in [3], p. 62). 

The purpose of this note is to prove an analogue of the abovementioned Khinchine’s result 
for the case of an infinite-dimensional separable Hilbert space. For the concepts and auxiliary 
facts about the probability distributions in infinite-dimensional spaces considered below, we 
refer to the monograph [4]. 

 
2. Auxiliary concepts and facts 
Let  be a real separable Hilbert space with an inner product , . As we know 

the norm in the space  is given by the inner product by the way ,  . 
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Denote by  the Borel -algebra in . The map  is called a random element with 
values in , if . Hence  is a random element if it is a measurable map . 

Recall some important characteristics of random elements with values in a Hilbert space. 
We say that a random element  with values in  has a weak second order if  for 
every . It is well-known that if a random element  has a weak second order, then the 
expectation  exists and is defined as the Pettis integral of the random element  (see [4], p. 
116). In the sequel, without loss of generality we assume that  (otherwise instead of  we 
consider the random element ). For every random element with a weak second order the 
covariance operator , is defined by the following equation  

 
 It is easy to see that  is positive (  for every ), symmetric 

(  for every ) and linear bounded operator. Note that the covariance 
operator is a natural analogue of the variance of random variables. For a covariance operator the 
following factorization is valid (see [4], Factorization lemma, p.149): 

Lemma 2.1. If   is a covariance operator, then there exists a Hilbert space  and 
a linear bounded operator  such that  and  is dense in .This 
representation is unique in the following sense: if , where  maps   onto a dense 
subset of a Hilbert space , then there exists an isometry  of space  onto  such that 

. 
The Hilbert space  appearing in the formulation of Lemma 2.1 obviously is not unique: 

if  is an arbitrary Hilbert space and  is an isometry then for the operator  
we also have . Therefore, in Lemma 2.1 as , in particular, we can take the space  
itself and  – the positive square root of  – as the operator . 

An operator  is said to be nuclear if it admits the representation 

    for all  , 

where the two sequences  and  in  are such that . 
Let  be an orthonormal basis of . Then for an operator  we define 

 
if the series is convergent.  

This definition could depend on the choice of the orthonormal basis. However, note the 
following result concerning the nuclear operators: if  is a nuclear operator then  
is well defined independently of the choice of the orthonormal basis  and is called the trace 
of the operator . If  is a random element with a strong second order  and  is 
its covariance operator, then obviously . 

Let  and  be a weak second order random elements with values in a separable Hilbert 
space . Without loss of generality we assume that . Its cross-covariance operator 

 is defined by the equation [4]: 
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The cross-covariance operator  is a linear bounded operator, which maps the Hilbert 
space  in itself. Cross-covariance operator is an analog of the covariation of random variables 
for the multidimensional case. It is proved that the cross-covariance operator admits the 
representation 

 
where  (resp. ) is a linear bounded operator from  in some Hilbert space  (resp. ) 
such that  (resp ) and  (resp. ) is dense in  (resp. ), 

 is a linear bounded operator and . 
Operator  defined by the equation (2.1) is called a coefficient of correlation. Like in 

one-dimensional case, the correlation coefficient is a measure of linear dependence of the 
random elements [5]. 
 

3. Main result 
The following theorem is the generalization of the Khinchin’s result mentioned above. 
Theorem. Let  be a sequence of random elements with values in a separable 

Hilbert space . Let us further assume that each  has a strong second order,  and the 
covariance operator  exists, . Moreover, let there exists a non-negative real 
function , defined on the set of non-negative integers, such that for the coefficient of 
correlation  of the random variables  and  the following inequality  
holds for any . Then the sequence  satisfies the LLN if 

 
Proof. Denote by  an orthonormal basis of a Hilbert space , by  – covariance 

operator of  and by  – square root from the operator . Keeping in mind (2.1), 
for any  and  we have 

. 

Hence, 

 

 

 
By Chebyshev’s inequality 

 
Therefore 
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and the theorem is proved. 

Corollary. If 

 
Then the sequence  satisfies the LLN. 

Proof. Indeed, since the correlation coefficients satisfy conditions , then as a 
function  we can take the constant function  for any . Hence (3.2) 
immediately follows from (3.1). 
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