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The law of large numbers for weakly correlated random elements with values
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1. Introduction

In the paper [1 the law of large numbers is proved for weakly correlated random elements
with values in spaces [,, 1 = p < 0. In the present paper we prove this result for the case of

separable Hilbert space taking into account the specifics of the Hilbert space.

Let us consider a sequence of random variables &;,¢5, ..., &,, ... defined on a probability
space (Q, %, P) and suppose that the given random variables have finite expectations. Denote
Sp =21=1&,n=1,2,... We say that the sequence of random variables satisfies the law of large

. Sn—ES . . .
number (LLN) if the sequence (u) converges to zero in probability as n — oo, i.e.
mn

lim P

n—oo

Hsn — ES,
n

>:—:]:'D

for every € > 0, where E is the symbol of the expectation.

The LLN is extensively investigated in the literature especially for the case of a sequence
of independent (or uncorrelated) random variables. Introduction of the concepts of dependence
stimulated the study of LLN with this condition, e.g. for the random variables which have non-
zero correlations. In this direction one of the first result was obtained in 1928 by Khinchine [2]
(see also in [3], p. 62).

The purpose of this note is to prove an analogue of the abovementioned Khinchine’s result
for the case of an infinite-dimensional separable Hilbert space. For the concepts and auxiliary
facts about the probability distributions in infinite-dimensional spaces considered below, we
refer to the monograph [4].

2. Auxiliary concepts and facts
Let H be a real separable Hilbert space with an inner product (x,v), x, v € H. As we know

| =.(x,x), x EH.

the norm in the space H is given by the inner product by the way ||x
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Denote by B(H) the Borel g-algebra in H. The map £:02 — H is called a random element with
values in H, if £ ﬂ(‘B(H )) C 3. Hence £ is a random element if it is a measurable map &: 2 — H.

Recall some important characteristics of random elements with values in a Hilbert space.
We say that a random element & with values in H has a weak second order if E(h, £)? < o for
every h € H. It is well-known that if a random element ¢ has a weak second order, then the
expectation E{ exists and is defined as the Pettis integral of the random element & (see [4], p.
116). In the sequel, without loss of generality we assume that E& = 0 (otherwise instead of £ we
consider the random element & — E£). For every random element with a weak second order the
covariance operator Ry, R;:H — H, is defined by the following equation

(R¢h,h) = E(h, §)?, h € H.

It is easy to see that R; is positive ((R;’r h,h) = 0 for every h € H), symmetric
((R £h, g) = (R £9, h) for every h, g € H) and linear bounded operator. Note that the covariance
operator is a natural analogue of the variance of random variables. For a covariance operator the
following factorization is valid (see [4], Factorization lemma, p.149):

Lemma 2.1. /f R: H — H is a covariance operator, then there exists a Hilbert space H, and
a linear bounded operator A:H — H, such that R = A"A and A(H) is dense in H,.This
representation is unique in the following sense: if R = A1A,, where A, maps H onto a dense
subset of a Hilbert space H,, then there exists an isometry U of space H, onto H, such that
A, = UA.

The Hilbert space H, appearing in the formulation of Lemma 2.1 obviously is not unique:
if H, is an arbitrary Hilbert space and U: H; — H, is an isometry then for the operator A, = UA
we also have A74; = R. Therefore, in Lemma 2.1 as Hy, in particular, we can take the space H
itself and R /2 — the positive square root of R — as the operator A:H — H.

An operator T: H — H is said to be nuclear if it admits the representation

Th=3%72,(a;,h) b;, forall h€H,

where the two sequences {a;} and {b;} in H are such that 2,72, |la;|| || ;|| < oo.

Let {¢,} be an orthonormal basis of H. Then for an operator T: H — H we define

() = ) Tg 9
k=1

if the series is convergent.

This definition could depend on the choice of the orthonormal basis. However, note the
following result concerning the nuclear operators: if T: H — H is a nuclear operator then tr(T)
is well defined independently of the choice of the orthonormal basis {¢,} and is called the trace
of the operator T. If  is a random element with a strong second order (E||¢]|* < o) and R; is
its covariance operator, then obviously E||&[|? = tr(R £)-

Let &£ and n be a weak second order random elements with values in a separable Hilbert
space H. Without loss of generality we assume that E{ = En = 0. Its cross-covariance operator
R;, is defined by the equation [4]:

(Reph, g) = E(h,E)(g, 1), h,g € H.
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The cross-covariance operator Ry, is a linear bounded operator, which maps the Hilbert
space H in itself. Cross-covariance operator is an analog of the covariation of random variables
for the multidimensional case. It is proved that the cross-covariance operator admits the
representation

Rey = AfVeyAy, (2.1)

where A; (resp. 4,) is a linear bounded operator from H in some Hilbert space H; (resp. H,)
such that Ry = AzA; (resp R, = A,A}) and As(H) (resp. A,(H)) is dense in H; (resp. Hy),
Vgp: H — H is a linear bounded operator and ”Vfrr” < 1.

Operator V;, defined by the equation (2.1) is called a coefficient of correlation. Like in
one-dimensional case, the correlation coefficient is a measure of linear dependence of the
random elements [5].

3. Main result

The following theorem is the generalization of the Khinchin’s result mentioned above.

Theorem. Let &,,¢5, ..., &,, ... be a sequence of random elements with values in a separable
Hilbert space H. Let us further assume that each &, has a strong second order, EE,, = 0 and the
covariance operator R, exists, n = 1,2, ... Moreover, let there exists a non-negative real
function ¢, defined on the set of non-negative integers, such that for the coefficient of
correlation V,,,, of the random variables &, and &, the following inequality ||V, || = c(Jm —n|)
holds for anym,n = 1,2, .... Then the sequence{,,¢,, ..., &,, ... satisties the LLN if

lim Zieic(@) - Xis tr(Ry) o 3.1)

]":-’CO n.

Proof. Denote by {¢,} an orthonormal basis of a Hilbert space H, by R; — covariance
operator of &; and by A; — square root from the operator R;, i = 1,2,-:-. Keeping in mind (2.1),
for any i and j we have

(Ry@i @r) = (ViyAjoi Asor) < ||V |11 4s 0kl || 4; 0]

Hence,

n 2 oo oo
X RS ):ézz(%%){
=1 k=1 i=1 K=lii=

< _Z Z 1V, 14l |40 {%iz u)i(ﬁlmk o) =

=1ij=1 k=1i=0

——Zc@) Z[Z(m 00| == n c@-Ztr(RJ-

i= =1
By Chebyshev’s inequality
n
|
i=1

/n /n

Therefore
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Zn:fu”n
i=1

=>g|=0,

lim P [
n—oo

and the theorem is proved.
Corollary. If

lim (Z tr(R,) m) _0, (3.2)

i=1
Then the sequence &,,&,, ..., &, ... satisfies the LLN.
Proof. Indeed, since the correlation coefficients satisfy conditions ||¥,,|| = 1, then as a
function ¢ we can take the constant function c(k) =1 for any k = 0,1,... Hence (3.2)
immediately follows from (3.1).
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