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Abstract

An elementary proof of a property of convergent series consisting of
non-increasing non-negative real numbers is proposed.
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It is known that a series consisting of a non-increasing sequence of non-negative numbers has
several properties. One of them is the statement as follows.
Proposition 1. Let (x,) be a nonincreasing sequence of nonnegative numbers and assume

that >.,— ; x,, < oo. Then the following is true lim n - x,, = 0.
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In this note, we consider one remarkable property of such series, which was proved in a more
general case in [1, Theorem 2]. We give another, more elementary proof of this property.
Proposition 2. Let 0 < p; < p, < o and (x,,) be a nonincreasing sequence of nonnegative

numbers. Then
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We need the following elementary lemma.

Lemma. (i) For any positive integer k we have

k -p1/pz « _P2 JP1/p2tl 1
-1n = .
211_1 P2—P1 ( )

(ii) For any nonincreasing sequence ay,a-,--- of nonnegative numbers the followin
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inequalities hold:

1t [ o0 o0 [
5 Limm+1 20 = Yitam @y = X2 2N, forany m=0,1,-, (2)

provided that all the series converge.

Proof. (i) (1) is easy consequence of the integral test.
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(ii) Let us prove (2). It is clear that

i+1
T oma ) Y 2 n2tay  forany m=0,1,-

On the other hand, forany m = 0, 1,--- we have

o 2!+1 1

i - 1 i+1 _ 1 i
gm a; = 2 ﬂzi+1_1 = E 2 ﬂzi+1 == E 2 (121' .

i=m j=2i i=m i=m i=m+1
Proof of Proposition 2. It is easy to see that, by assumption, the sequence of nonnegative

numbers

o P1/P2
n—Pif'Pz (Z x£2 )

k=n n=1

IS nonincreasing. Then, applying (2) we can obtain

oo o0 P1/P2 P P1/p2
0 > Z nP1/p2 (Z xzz) Z 2n(1-p1/pa) ( Z xﬁz) Z 2n 2n+1
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This proves the implication

o o0 P1/p2
Zn—ﬁy’m (Z xiz) <0 = Zx < .,

n=1 k=n
The proof of the inverse implication

me <o = Z —P1/P2 (Z

n=1 n=1 k=n

p1/p2
P2
xk ) < CO

is less obvious. From Lemma we get

o0 oo P1/p2 oo P1/pP2 o0 o0 P1/p2
Z n-P1/pz2 (Z xi;z) < (Z xiz) L Z 2n(1-p1/p2) ( Z x}jZ) <
: k=2n

n=1 k=n k=1

pri + 2xp1 + 22-P1/p2 Z kP1/p2— 1x'P1 1 ZZ 2n(l-py/pa) ( Z kplfpz_1x£1> <
k=1 n=2 k=2n-1

[e"s] =] k
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= (3 T 22—?’12’?12)2 x£1 1 23-P1/p2 ﬁk—?’1fpz+1kpifpz—1x£1 =
2 T /M1
= k=1
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= (2 + 22-P1/p2 +L23—p1/*pz)z xil < oo
Pz —P1 £t
which completes the proof.

It should be mentioned that this assertion can be found in [2], but, unfortunately, the proof
contains some misprints there.

If you take p; = 1 and p, = 2 then Proposition 2 immediately implies the following

Corololary. Let (x,,) be a nonincreasing sequence of nonnegative numbers. Then the series
n=1%n converges if and only if the following condition is valid
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