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Abstract 

In this article  some results are collected about finite orbits and orbits of 
observable operators at the states of quantum mechanical systems, orbital Hilbert 
spaces of finite orbits and Frechet-Hilbert spaces of all orbits, orbital operators acting 
in the Hilbert space of finite orbits and in the Frechet-Hilbert space of all orbits. 
Moreover, the problem of the approximate solution of equations containing orbital 
operators in the Hilbert space of finite orbits and in the Frechet-Hilbert space of all 
orbits is considered. The creation of operators orbits, orbital spaces, orbital operators, 
we call as orbitization of quantum mechanics or quantum mechanics with orbital 
operators and the totality of the results obtained as orbital quantum mechanics.   

 

Keywords: position operator, momentum operator, orbit of operator, Frechet-Hilbert 
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Introduction    
One of the axioms of quantum mechanics states, "To each real-valued function on the 

classical phase space there is associated a self-adjoint operator   on the quantum Hilbert space”. 
The operator  is called the quantization of  . There is considered the quantization’s of a few very 
special classical observables, such as position, momentum, and energy ([1], Sect. 13, p.255). For a 
particle moving in    the classical phase space is   with the pairs  ( ),   being the particle's 
position and    being its momentum. In that case if the function  is the position function, 

, then the associated operator    is the position operator , given by multiplication by 
, i.e. quantization of position function is position operator , defined by equality 

                                                                     (1) 

If    is the momentum function  ,  then  is the momentum operator , defined 
by the equality 

                                                                                                          (2) 

where  is the Plank's constant. Note that quantization of , i.e.  is neither  nor , they 
are not self-adjoint and . In this case a reasonable candidate for the quantization would be  

 
One of the important model systems in quantum mechanics is the harmonic oscillator. This is 

a system capable of performing harmonic oscillations. In physics, the model of a harmonic 
oscillator plays an important role, especially in the study of small oscillations of systems around a 
position of stable equilibrium. An example of such oscillations in quantum mechanics is the 



Georgian Electronic Scientific Journal: Computer Science and Telecommunications 2022|No.1(61) 
Georgian Technical University - 100 

 

  60  

oscillations of atoms in solids, molecules, etc.  The harmonic oscillator in quantum mechanics is the 
quantum analogue of the simple harmonic oscillator. However, here we consider not the forces 
acting on the particle, but the Hamiltonian, that is the total energy for a harmonic oscillator, in 
which there is a parabolic potential energy. For the Hamiltonian  of the quantum harmonic 
oscillator the following representation is valid  

 

                                     (3)  

where  is the mass of the particle,  is the frequency of oscillator    ,   

 and    . According to ([1], Sect. 13.1) the Hamiltonian  is a 
quantization of classical Hamiltonian ( ) =  , since each term contains only  or 
only . The first term in the Hamiltonian represents the kinetic energy of the particle, and the 
second term represents its potential energy. 

The mathematical model of quantum mechanics, created in the 30s of the XX century, 
describe quantum-mechanical systems by vectors of separable complex quantum Hilbert space ([1], 
Section 13.1, p.255)  and with unbounded self-adjoint operators defined on them. The quantum 
Hilbert space in this case is as usual the Hilbert space , the elements of which are called the 
states of quantum-mechanical systems. To each observable physical quantity it corresponds a self-
adjoint operator on . Such classical observables are above mentioned Hamiltonian   of the 
quantum harmonic oscillator, which corresponds to the observable "energy", the position operator X  
and the momentum operator P .  

In the case of particle moving in real line  the operators , X  and  are described by 
unbounded self-adjoint operators in  Neither the position nor the momentum operator 
are defined as mappings the entire Hilbert space  into itself. After all, for  the 
function  may fail to be in . Similarly, a function in   may fail to be 
differentiable, and even if it is differentiable, the derivative may fail to be in . The operators  
and  are unbounded operators in the space    

Later, in the 50s of the XX century, the basic concepts of quantum mechanics were 
represented by the methods of the theory of generalized functions. It is very important that in the 
space of generalized functions observable operators became continuous. But the application of the 
basic and generalized functions spaces are difficult because of the non-metrizability of their 
topologies. In [2] the topologies of basic and generalized functions are presented as projective and 
inductive limits of the family of Frechet-Hilbert spaces and their strong duals, which simplifies the 
use of these spaces. The Frechet-Hilbert spaces were originally defined by us as a strict projective 
limits of the sequence of Hilbert spaces [2], but now this concept has been extended by European 
mathematicians and it is widely used without this requirement. This definition of Frechet-Hilbert 
spaces contains the nuclear Frechet and countable Hilbert spaces. For the strict projective limit of 
the sequence of Hilbert spaces, we retained the name “strict Frechet-Hilbert spaces”.  

In this situation, it became necessary to replace the quantum Hilbert space by the Frechet-
Hilbert spaces, and to extend there the theories of self-adjoint operators and computational methods. 
For this purpose, we have developed the best approximation theory in Frechet spaces [3] and 
studied topological and geometric properties of strict Frechet-Hilbert spaces in [4]. The extention of 
selfadjoint operators theory in strict Frechet-Hilbert spaces was first investigated in [5], continued 
in [6] and, for the Frechet-Hilbert spaces, in [7]. It was extended the Ritz method ([8], see also [7]), 
the least squares method [9], the theories of spline [10] and central [11] algorithms.  

While strengthening the quantum Hilbert space topology, for the Hamiltonian  of quantum 
harmonic oscillator the Hilbert spaces of finite orbits  are obtained. This is the space 
of the states on which the operator  acts -times. is identified with the space of n-orbits 
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 ([12], see also [13]). In this case the particle that is in the state   
is subjected to potential energy and the observer gives us , which is still the state because 

. It is still instantly acted upon by the potential energy of   and the observer 
gives us the state 2 . After -action, the particle enters the  state. Totally these states can be 
described by an -orbit  ( ,ψ)=  2 , ..., .  

Continuing this process infinitely we get the infinite sequence 

 
which we call the orbit of operator  at the point [14].  
The unbounded self-adjoint operator  forms the self-adjoint orbital operators 

  
defined by the equality 

                       

The self-adjoint orbital operator  is defined by the equality 

                                            orb( , )=orb( , ),  

i.e. action of orbital operator on   orb( , )   means the action of   on all coordinates of the 

orbit in the space of all orbits .  is a well-known space and after the introduction of 

orbital operator , the space acquired new content. This Frechet-Hilbert space of all 

orbits coincides with the Schwartz space of rapidly decreasing functions . Significance of this 

space for quantum mechanics is also noted in [15].  is the projective limit of the sequence of 

spaces  i.e. the study of computational processes in the space can be reduced to 

the study of computational processes in  [14]. In the problems of computational 

mathematics, this means that the equation given in the Frechet-Hilbert space  is projected 

onto the spaces  and calculation of the ε-complexity in the Frechet space of all orbits is 

reduced to calculate the ε-complexity in some n-orbit Hilbert space. Note that the self-adjoint 
operator is a topological isomorphism onto the space . That is, the flaw of von 

Neumann's theory was somewhat corrected. This orbital operator  has also recently appeared in 

the paper [16].    
The equation  containing the operator , which in the space   (resp. in the 

space ( )) has the form ( ) =  (resp. orb( , =orb( )),  is 
considered. For the obtained equations, a linear spline central (strongly optimal) algorithm is 
constructed in the Hilbert space  (resp. in the Frechet space ( )) [14]. Construction of 
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the spline algorithms for the ill-posed problem of computerized tomography in the spaces of orbits 
) and ), where is Radon transform, is given in [17] and [11]. Similarly, the 

-complexity will be calculated for the computed tomography task according to finite orbits and 
spline algorithms built into the space of all orbits. The spaces ) and  operators  and 

for the position operator  are defined analogously. The spaces ) and , operators  
and  for the momentum operator  are defined as well.  

Generalization of canonical commutation relations between  and  in the space of orbits 
has the following form  

                                                ( )-  ( = ℏ  (   
and is given in ([18], see also [19]). In the paper [19] the generalization of Heisenberg uncertainty 
principle for the orbital operators is also given. The norms of orbital spaces ) and  are 

strengthening the topology of the space ( ). Creation of orbits of operators, orbital spaces and 

orbital operators, we call orbitization of quantum mechanics or quantum mechanics with orbital 
operators and the results obtained orbital quantum mechanics.   

Thus, the represented orbits and the orbital operators  
describe the state of the particle more adequately because we have the whole infinite sequence of 
observer data on the particle. For the required modeling accuracy, the study of computational 
processes associated with an infinite sequence of observer data is reduced to the study of 
computational processes with a finite data sequence. This was considered in [14] for calculation of 
the inverse of the harmonic oscillator in the spaces of orbits and in [11] for computerized 
tomography problem. This process is coordinated by a functional (quasinorm of metric) built 
specifically by us in [9]. That is, it is a matter of bringing an infinite coordinate computational 
process to a finite coordinate computational process based on certain requirements or other 
considerations for accuracy. Orbital quantum mechanics will similarly study orbits, orbital 
operators, orbital spaces and orbital equations for the position and momentum observables  and . 
As well as the orbits, orbital operators, orbital spaces and orbital equations for operators of creation 

, annihilation and numerical  are studied. Each of the considered operators produce -finite 
orbits orbn( , ),  orbn( ),  orbn( ),  orbn( ),  orbn( ),  orbn( ), ( ) and orbits 
orb( , ),  orb( ),  orb( ),  orb( ),  orb( ),  orb( ) in the state  of quantum Hilbert 
space. They also generate -finite orbital operators , , , , , , which act accordingly 
on the Hilbert space of finite -orbits  

 
. 

 
These operators also generate , , , , ,  orbital operators that operate 

accordingly  in the Frechet spaces of all orbits , . 
When  a classical case is obtained. 

This new mathematical model - orbital quantum mechanics essentially improved the 
possibilities of computations and gives possibility to consider new computational processes that not 
contained in the frames of Hilbert spaces and was not considered up to now.  

  While weakening the topology of quantum Hilbert space ( ), the quantum strict Frechet-
Hilbert spaces ( ) [20] are obtained as well,  that essentially extend the space of states of 
quantum mechanical systems. The space   contains the functions , which avoid the 
problems described in ([1], Sect. 3.4, p. 52). ( ) contains the algebraic polynomials and many 
other simple functions. Extension of the quantum Hilbert space is also driven by the demands of 
machine learning and with increase of the memory of continuous-variable quantum computers [21]. 
In [20] the position and momentum operator in the quantum Frechet-Hilbert space ( ) are 
extended. The general problem of extension of self-adjoint operator from Hilbert space to strict 



Georgian Electronic Scientific Journal: Computer Science and Telecommunications 2022|No.1(61) 
Georgian Technical University - 100 

 

  63  

Frechet-Hilbert space is considered in [5]. The selfadjointness and continuity of the extension of 
position and momentum operators in this space is proved due to  the generalization of the Hellinger-
Teoplitz theorem  for Frechet-Hilbert spaces [7]. Generalization of canonical commutation relation 
for extended operators in this space is proved as well [20]. Geometric and topological properties of 
strict Frechet-Hilbert spaces that are represented as strict projective limit of the sequence of Hilbert 
subspaces are given in more details in [4].  
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