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Abstract 
It is shown that when choosing the crystal symmetry, if the wave vector of the 

wave and the temperature gradient are oriented arbitrarily, waves of a thermomagnetic 
nature of the same frequency and growth rate are possibly excited. During 
hydrodynamic motions of a non-equilibrium plasma, which are in a constant 
temperature gradient (i.e. T const∇ = ), an oscillation of physical quantities is excited, 
and the plasma has oscillatory properties. At the same time, plasma is very different 
from ordinary plasma. In such a plasma, a transverse thermomagnetic wave is excited 

Tk ∇


|| , in which only the magnetic field oscillates. When there is an external magnetic 
field, the wave vector of thermomagnetic waves is perpendicular to the magnetic field. 
In such a plasma, a weak magnetic field arises during hydrodynamic motion, i.e. 

1Ωτ << . (Ω -Larmar frequency of electrons, τ -time of collision of electrons). In these 
media, the Nernst-Ettingishausen coefficient and the differential thermoelectric power 
depend very strongly on the electric field voltage. Theoretical studies of excited 
thermomagnetic waves in the above media found the oscillation frequency of the 
corresponding physical quantities and the growth rate of these oscillations in certain 
directions of the crystals.  
Keywords: frequency, increment, excitation, symmetry, tensor, orientation. 

 
Introduction 

It was shown in [1] that hydrodynamic motions in a nonequilibrium plasma, in which there is 
a constant temperature gradient ( T const∇ = ), has oscillatory properties. This property of plasma is 
very different from ordinary plasma. Without an external magnetic field and hydrodynamic 
motions, transverse “thermomagnetic” waves are possible in it, in which only the magnetic field 
oscillates. In the presence of an external magnetic field, the wave vector of thermomagnetic waves 
is perpendicular to the magnetic field and lies in the plane (Н , T∇

 
). If a weak magnetic field appears 

in such a plasma, i.e. 1Ωτ <<  (Ω -Larmar frequency of electrons, τ -time of collision of electrons) 
inside the plasma arises in addition to the external electric field, the electric is proportional to the 
temperature gradient, the electric field is proportional to the magnetic field. Due to this complex 
electric field, thermomagnetic waves of a transverse k T⊥ ∇

 
 ( k


-wave vector) and longitudinal 

character Tk ∇


||  are excited. A theoretical study of these thermomagnetic waves in isotropic 
conducting media of the electric type of charge carriers was carried out in [2-5]. However, in 
anisotropic conducting media, there is no theoretical study of thermomagnetic waves. In this 
theoretical work, we will investigate thermomagnetic waves in anisotropic conducting media with 
selected samples. 

 
Basic equations of the problem 
In the presence of an external magnetic field and a temperature gradient in an isotropic solid, 

the total electric field has the form 

( ) ( )TE j jH jH H TH TH H
x

ξ ξ ξ Λ Λ Λ∂   ′ ′′ ′ ′′= + + + + ∇ + ∇   ∂

            (1) 

j
 - current flux density 



GESJ: Physics 2023 | No.1(28) 
ISSN 1512-1461 

 

13 

In anisotropic conducting media, all coefficients in equation (1) are tensors.  
Then the equations for anisotropic conducting media will have the form: 

( ) ( )i ik k ik ik k ik ik ik kk k
k

TE j jH jH H TH TH H
x

ξ ξ ξ Λ Λ Λ∂   ′ ′′ ′ ′′= + + + + ∇ + ∇   ∂

         (2) 

Here ikξ  is the tensor of the reciprocal of the ohmic resistance, ikΛ  is the differential 
thermoelectric power, and ikΛ′ is the Nernst-Ettinishausen coefficient. We will consider a solid 
external magnetic field 0Н 0=


. Then, in the equations, the terms containing are equal to zero. 

Taking into account Maxwell's equation, we obtain the following system of equations  

[ ]i ik k ik kE j TH

1 HrotE
c t

4 1 ErotH j
c c t

ξ Λ

π


′ ′ ′= + ∇


′∂ ′ = −

∂
 ′∂′ ′= +

∂





 

 (3) 

 
Assuming that all variable quantities are monochromatic in nature, i.e. 

( ) ( )i kr tE ,H , j ~ e ω−′ ′


 (4) 
From (3) it turns out: 

i ik ik ik k
E j THξ Λ  ′ ′ ′= + ∇ 

 
 (5) 

2

k kk

ic ij k kE E
4 4

ω
πω π

  ′ ′ ′= +  
 

 

(ω -oscillation frequency). 
Theory 

We (5) it turns out:   

( ) ( ) ( )
2 2 2 2

ik ik
i ik k ik k k

c cic i ic kE kE k E TE k k T E
4 4

Λ Λωξ ξ
πω πω ω ω

′ ′−′ ′ ′ ′ ′= + + ∇ − ∇
   

 (6) 

To obtain the dispersion equation from (6), you first need to choose a coordinate system. We 
will choose the following coordinate system 

1k 0≠ , 2 3k k 0= = , 
2

T 0
x
∂

≠
∂

, 
3

T 0
x
∂

=
∂

 (7) 

Taking into account (7), from (6) it turns out:: 
ik

i ik e k ik e k
k

c TE A k k B k E
x

Λ
ξ ξ

ω
′ ∂′ ′= + + ∂ 

 (8) 

When obtaining (8) from (7), we assumed that k T⊥ ∇
 

 i.e. the resulting thermomagnetic 
waves are transverse. 

At i ik kE Eδ′ ′= , ik
1,i k
0,i k

δ
=

=  ≠
 (9) 

From (8) we obtain the following dispersion equations in tensor form 
ie

ik ie e k ik e
k

c TN A k k B k
x

Λ
ξ ξ

ω
′ ∂

= + +
∂

 (10) 

2icA ,
4πω

=  
2 2 2i ic kB
4

ω
πω
−

=  

Expanding by components (10) it turns out: 
( ) ( )( )( )

( )
( ) ( )

ik ik 11 22 33

31 12 23 21 32 13 31 13 22

32 23 11 21 12 33

N N 1 N 1 N 1

N N N N N N N N N 1

N N N 1 N N N 1 0

δ− = − − − +

+ + − − −

− − − − =

 (11) 
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Here: 

11 11
iN ,
4
ω ξ
π

=   
( )2 2 2

12 11 2
12

i ic k 4 c k T
N

4

ω ξ π Λ

πω

′− + ∇
= , 

2 2 2

13 13
i ic kN

4
ω ξ

πω
−

= , 21 21
iN
4
ω ξ
π

= , 

( )2 2 2
22 21 2

22

i ic k 4 c k T
N

4

ω ξ π Λ

πω

′− + ∇
= , 

2 2 2

23 23
i ic kN

4
ω ξ

πω
−

= ,  (12) 

31 31
iN
4
ω ξ
π

= , 
( )2 2 2

32 31 2
32

i ic k 4 c k T
N

4

ω ξ π Λ

πω

′− + ∇
= , 

2 2 2

33 33
i ic kN

4
ω ξ

πω
−

=  

 
Putting (12) into (11), we obtain the following equation for the oscillation frequency inside an 

anisotropic body 
5 4 3 2

5 4 3 2 1 0Φ ω Φ ω Φ ω Φ ω Φ ω Φ+ + + + + =  (13) 
Solution (13) in a general form is not possible and therefore we will not write out the 

expression 1 2 3 4 5, , , , ,Φ Φ Φ Φ Φ Φ .  
To solve the dispersion equation (11), we will choose crystals satisfying the following 

conditions. 
1) 11 21 31N N N= = , 2) 21 32 22N N N= =  3) 13 23 33N N N= =  (14) 

A crystal satisfying conditions (14) is diagonal.  
Taking into account (14), from (11) we easily obtain 

11 22 33N N N 1+ + =  (15) 
If  

11 22 33ξ ξ ξ ξ= = =   (16) 
from (15) we get 

2 2
2

21
3 c k i 0

4 2
ξω ξ ω

π π
′− + =  (17) 

21 21 1 2c k Tω Λ′ ′= − ∇  
From (17) we get: 

1 1
2 2

21 212 2 2 2
0

6 62 2i c k i c k
3 3

π ω π ω
ω ω γ

ξ ξ
′ ′   

= + = + + −   
   

 (18) 

It can be seen from (18) that at 2 2 216c k πω
ξ
′

> , the exciting wave is of a purely electromagnetic 

nature.  
When 2 2

21c k 6ξ π ω′<   the excited wave is growing thermomagnetic with a frequency 
1 2 22

21
0

21

4 1 c k1
12

πω ξω
ξ π ω

 ′ 
= +    ′   

 and increment 
1 2 22

21

21

4 c k1
12

πω ξγ
ξ π ω

 ′ 
= −    ′   

 

For Tk ∇


|| from (11), consider the case 
1) 11 21 31N N N= = ,        2) 13 32 33 23 13N N N N N= = = =  (19) 

11 11
iN ,
4
ω ξ
π

=  ( )2 2 2
12 12 1 2

12

i ic k 4 c k T
N

4

ω ξ π Λ

πω

′− − ∇
=

 

, ( )2 2 2
13 12

13

i ic k 4 c k T
N

4

ω ξ π Λ

πω

′− − ∇
=

 

, 

21 21
iN
4
ω ξ
π

= , ( )2 2 2
22 22

22

i ic k 4 c k T
N

4

ω ξ π Λ

πω

′− − ∇
=

 

, ( )2 2 2
23 23

23

i ic k 4 c k T
N

4

ω ξ π Λ

πω

′− − ∇
=

 

,   

   (20) 

31 31
iN
4
ω ξ
π

= , ( )2 2 2
32 32

32

i ic k 4 c k T
N

4

ω ξ π Λ

πω

′− − ∇
=

 

, ( )2 2 2
33 33

33

i ic k 4 c k T
N

4

ω ξ π Λ

πω

′− − ∇
=

 

 

Taking into account (19-20) from (11) we get: 
11 11 22N 1 2N N 0− + =  (21) 
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11 22ξ ξ ξ= =  
2 2 2 2 2

21
2 2

ii c k 1
4 28 8

ω ξωξ ξ ω ξ
π ππ π

′
− + − −  (22) 

From solution (22) we obtain 
1 1

2 2
21 21

1
2 2i iω ξ ω ξπ π πω

ξ π ξ ξ π
′ ′   = − +   

   
 (23) 

1 1
2 2

21 21
2

2 2i iω ξ ω ξπ π πω
ξ π ξ ξ π

′ ′   = + −   
   

 

From (23) it can be seen that a wave with a frequency 
1

2
21

0
2 ω

ω
πξ
′ 

= − 
 

 is increasing, a wave 

with a frequency 21
0

2 ω
ω

πξ
′ 

= − 
 

 can grow if 212
2
πω ξ′ <  

For an arbitrary orientation of the wave vector relative to the temperature gradient, from 
tensor (10), we obtain 

2
11 11

11
iN ,

4
ω ξ ω

πω
+

=  
( )2 2 2

12 11 12
12

i ic k
N

4

ω ξ ω ω

πω

− − +
= , 

( )2 2 2
13 13

13

i ic k
N

4

ω ξ ω

πω

− +
= , 

2
21 21

21
iN ,

4
ω ξ ω

πω
+

=  
( )2 2 2

22 22
22

i ic k
N

4

ω ξ ω

πω

− +
= , 

( )2 2 2
23 23

23

i ic k
N

4

ω ξ ω

πω

− +
= ,  (24) 

2
31 31

31
i

N ,
4

ω ξ ω
πω
+

=  
( )2 2 2

32 32
32

i ic k
N

4

ω ξ ω

πω

− +
= , 

( )2 2 2
33 33

33

i ic k
N

4

ω ξ ω

πω

− +
= ,  

( )ik ik4 c k Tω π Λ′= − ∇
   

Choosing a crystal 
From (11), taking into account (24), we obtain the following dispersion equation for 

determining the frequency and growth rate of the excited waves inside an anisotropic crystal 
2 2 2 2

11 11 12 12 11 12

2 2 2 2
22 22 22 11 11

i i ic k 1
4 4

i ic k i 1
4 4

ω ξ ω ω ξ ξ ω ω
πω πω

ω ξ ξ ω ω ξ ω
πω πω

 − − − −
+ =  

 
 − + −

= −  
 

(25) 

At 12 11 22ω ω ω= +  and 11 22 12ξ ξ ξ= =  from (25) we get   
2 2 2 121 c k i

2
ω

ω
ξ

 
= + 

 
 (26) 

Solution (26) gives 

( )
1

2
12

2 2
ck 1 i
2 c k

ω
ω

ξ

 
= + 

 
 (27) 

or 0 iω ω γ= +  
1

2
12

0 4
ω

ω
ξ

 
=  
 

, 
1

2
12

4
ω

γ
ξ

 
=  
 

 (28) 

For any orientation of the wave vector with respect to the temperature gradient, the frequency 
and growth rate of the excited thermomagnetic are the same. 

 
Discussion of the results 

In anisotropic conducting media of the electric type of charge carriers in an external electric 
field in the presence of a constant temperature gradient, longitudinal Tk ∇


||  and transverse k T⊥ ∇

 
 

waves of a thermomagnetic nature are excited. The frequency and growth rate of this wave depend 
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on the conductivity of the medium. The conductivity of a medium is easily expressed in terms of the 
diagonal values of the conductivity. This creates a favorable condition for experimental verification 
of the exciting waves. If the wave vector of the excited waves has an arbitrary direction relative to a 
constant temperature gradient, then the frequency and growth rate have the same values. When 
calculating, we choose crystals of different symmetry. Of course, the conditions for the excitation 
and growth of the wave will be different if we choose different symmetries from the tensor (11). 

 
Conclusion 

It is proved that in anisotropic conducting media of electric type of charge carriers, different 
waves of a thermomagnetic nature are excited. With the longitudinal Tk ∇


||  and transverse k T⊥ ∇

 
 

orientation of the wave vector relative to the temperature gradient, waves of a thermomagnetic 
nature with different frequencies and increments are excited. 
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