Dis-connectivity Parameter based Model for Call Transitions in Dual SIM Mobile

Akash Singh ${ }^{1}$, Mrs. Indira Chadar ${ }^{2}$,
${ }^{1}$ Deptt. of Computer Science and Engineering, BTIRT, Sagar, (M.P.), 470001, India
${ }^{2}$ Deptt. of Computer Science and Engineering, BTIRT, Sagar, (M.P.), 470001,India

Abstract

Many people are using dual-SIM mobile for a variety of reasons. A common problem observed is the continuity of connectivity of call during communication. Disconnectivity of call affects the market share of an operator. This paper suggests a model based on markov chain to check the relationship between call transitions and call attempts over SIM S_{1} and SIM S_{2} when congestion and disconnectivity parameter is high or low to complete the call. The assessment reveals that the transitions over SIMs vary at different attempt. Fig 1-4 reveals that the user tries to connect S_{1} and S_{2} till attempt 5. Fig 5-8 reveals that the user try to connect SIM S_{1} till attempt 6 and SIM S_{2} till attempt 8. When p (high), p_{L} (high), c_{1} (low), c_{2} (high) and d_{1} (high), and when p (low), p_{L} (low), c_{1} (low), c_{2} (low), d_{2} (high), the transition value is very high at attempt 2 over SIM S_{1} and SIM S_{2}. The graphical Study express the relationship between call transitions and attempts based on Markov chain using Excel tools with varying parameter values.

Keywords: Markov chain, Initial probability, Call attempts, Call transitions, Network Service Provider, Transition probability matrix.

1. Introduction

Call disconnectivity can have an impact on the traffic share between dual-SIM mobile phones. If one SIM experiences frequent call disconnectivity issues, the user may choose to switch to the other SIM for calls, which can result in a shift in traffic share between the two SIMs. This can be especially true if the user has different operators for each SIM. In such cases, if one operator experiences disconnectivity issues, the user may choose to make calls using the other operator's SIM.

Suppose $\mathrm{c}_{1}, \mathrm{c}_{2}$ are network congestion probabilities and $\mathrm{d}_{1}, \mathrm{~d}_{2}$ are disconnectivity probabilities then according to Chiang and Lin (2014) the quality of service (QoS) is a function of network congestion parameters.

$$
\mathrm{QoS}=\mathrm{f}\left(\mathrm{c}_{1}, \mathrm{c}_{2}\right)
$$

We consider a modified form of this function in light of disconnectivity as

$$
\mathrm{QoS}=\mathrm{f}\left(\mathrm{c}_{1}, \mathrm{c}_{2}, \mathrm{~d}_{1}, \mathrm{~d}_{2}\right)
$$

Tiwari Kumar Virendra and Shukla D. (2023) produced a cybercrime analysis of two call dimensional effects in internet traffic. The proposed work investigates the effect of different categories crime users on the internet traffic sharing under the markov chain model. Othman et al. (2021) suggested models for internet traffic sharing in computer network. This study suggests two models based on markov chain using three and four access attempts to solve the call blocked
problem, Model III perform two attempts and Model IV used three attempts to solve the call blocked problems.. More S. and Shukla D.(2019) submitted a review on internet traffic sharing using Markov Chain Model in Computer Network. This review study discussed various applications of markov chain model. This model is used to study about how the quality of service is obtained and the traffic share is distributed among the operators on the basis of different parameters. Thakur Sanjay and Jain Parag (2013) used a Prediction Model for User’s Share Analysis in Dual-sim Environment. Shukla et al. identified the Effects of Disconnectivity Analysis for Congestion Control in Internet Traffic Sharing. Deriving motivation from all these, this paper presents a relationship between call connectivity and call attempts with special reference to the disconnectivity event. A Markov chain model is used to explain the system as user behavior and to derive the mathematical expressions of transition probabilities.

The objective of this paper to study the effects of congestion and disconnectivity probability on the call connectivity with respect to call attempts over the SIM S $_{1}$ and SIM S $_{2}$ when the congestion and disconnectivity probability is high or low to complete the call.

2. Model and Proposed Methodology

Let S_{1} and S_{2} be two SIMs in a mobile. User is allowed to choose any of S1 and S_{2} based on faith, offers, reputation and quality of service. When he fails to connect any one SIM then shifts to other one. He toggles between two SIMs in n attempts if fails to connect or leaves the connecting process after any attempt. When connects, then faces disconnectivity problem.
Let $\left\{D^{(n)}, n \geq 0\right\}$ be a markov chain having transitions over the state space $\left\{S_{1}, S_{2}, Z, L\right\}$, where
State S_{1} : The user tries to connect through SIM S_{1}
State S_{2} : The user tries to connect through SIM S_{2}
State Z : success obtained in call connection
State L : Leaving the connecting process
The $D^{(n)}$ stands for state of random variable D at $n^{\text {th }}$ attempt ($n \geq 0$) by the user. Some underlying assumptions for the proposed model are:
(a) Initially user chooses one of the two SIM, SIM S_{1} with probability p and SIM S_{2} with probability $(1-p)$.
(b) User has two choices after each failed attempt:-
(i) Leaves with probability p_{L} or
(ii) Moves to the other SIM for a new attempt.
(c) When the call attempt fails through the SIM S_{1} the congestion probability is c_{1} and fails through the SIM S_{2} is c_{2}.
(d) The connectivity attempts of user between SIMs are on call-by-call basis, which means if the user attempt on S_{1} is congested in $k^{\text {th }}$ attempt $(k>0)$ then in $(k+1)^{\text {th }}$ attempt user moves to S_{2}. If this also fails, user switches to S_{1}.
(e) Whenever call connects either through SIM S_{1} or $\operatorname{SIM} S_{2}$, we say system reaches to the state of success.
(f) The user can terminate the connecting process to the leave state L at $n^{\text {th }}$ attempts with probability p_{L} either from SIM S_{1} or from SIM S_{2}.
(g) When connected call is suddenly disconnected either of SIM S_{1} or $\operatorname{SIM} S_{2}$ we say it is disconnectivity, it bears SIM S_{1} with probability d_{1} and SIM S_{2} with probability d_{2}.
(h) While occurring disconnectivity, the return back from success state to SIM $\mathrm{S}_{\mathrm{i}}(\mathrm{i}=1,2)$ is based on initial transition from S_{i}. By disconnectivity the system returns back to the same SIM from where it reaches again to the success state (Z).
(i) If user reach state Z or state L then he cannot leave it, this means the probability transfer to another state is zero and probability remaining in the same state is one.
The transition diagram for model is shown in Fig 1.

Fig 1 Transition Diagram for Model

3. Transition Probability Matrices

(i) The initial probabilities for user before the first call attempt selecting any one of SIMs are

$$
\begin{align*}
& P\left[D^{(0)}=S_{1}\right]=p \\
& P\left[D^{(0)}=S_{2}\right]=(1-p) \tag{1}
\end{align*}
$$

$$
\begin{aligned}
& P\left[D^{(0)}=Z\right]=0 \\
& P\left[D^{(0)}=L\right]=0
\end{aligned}
$$

(ii) If at $(n-1)^{\text {th }}$ attempt call for SIM S_{1} is congested, the user may leave the process in the $\mathrm{n}^{\text {th }}$ attempts.
Therefore, $\quad P\left[D^{(n)}=L / D^{(n-1)}=S_{1}\right]=P$ [congested at $\left.S_{1}\right]$. P [leave the

$$
\begin{equation*}
\text { process }]=c_{1} p_{L} \tag{2}
\end{equation*}
$$

Similar for S_{2},

$$
\begin{equation*}
P\left[D^{(n)}=L / D^{(n-1)}=S_{2}\right]=c_{2} p_{L} \tag{3}
\end{equation*}
$$

(iii) At SIM S_{1} in $n^{\text {th }}$ attempt call may be made successfully and system reaches to state Z from S_{1}.This happens only when call does not congest in $(n-1)^{\text {th }}$ attempt
$P\left[D^{(n)}=Z / D^{(n-1)}=S_{1}\right]=P\left[\right.$ does not congested at $\left.S_{1}\right]=1-c_{1}$
Similar for $S_{2}, \quad P\left[D^{(n)}=Z / D^{(n-1)}=S_{2}\right]=1-C_{2}$
(iv) If user is congested at SIM S_{1} in $(n-1)^{\text {th }}$ attempt, does not want leave, then in $n^{\text {th }}$ attempt he shifts to SIM S_{2}.

$$
\begin{gather*}
P\left[D^{(n)}=S_{2} / D^{(n-1)}=S_{1}\right]= \\
\text { leave }]=c_{1}\left(1-\mathrm{p}_{\mathrm{L}}\right) \tag{6}
\end{gather*}
$$

Similarly , $\quad P\left[D^{(n)}=S_{1} / D^{(n-1)}=S_{2}\right]=c_{2}\left(1-\mathrm{p}_{\mathrm{L}}\right)$
(v) Disconnectivity occurs when success achieved either through SIM S_{1} or SIM S_{2}. After disconnectivity , user return on SIM S_{1} with probability d_{1} and on SIM S_{2} with d_{2}.

$$
\left.\begin{array}{l}
P\left[D^{(n)}=S_{1} / D^{(n-1)}=Z\right]=d_{1} \tag{8}\\
P\left[D^{(n)}=S_{2} / D^{(n-1)}=Z\right]=d_{2}
\end{array}\right\}
$$

Incorporating all, the transition probability matrix is in the form

States

4. Transition Probabilities

In $n^{\text {th }}$ attempt the probabilities of ultimate state are derived in the following theorem
Theorem 4.1: If the user makes attempt between SIM S_{1} and SIM S_{2}, then the $n^{\text {th }}$ step transitions probability could be obtained as

$$
\begin{aligned}
& P\left[D^{(2 n)}=S_{1}\right]=p\left[\left(c_{1} c_{2}\right)^{n}\left(1-p_{L}\right)^{2 n}+\left(c_{1} c_{2}\right)^{n-1}\left(1-p_{L}\right)^{2(n-1)}\left(1-c_{1}\right) d_{1}\right] \\
& P\left[D^{(2 n+1)}=S_{1}\right]=(1-p) c_{2}\left[\left(c_{1} c_{2}\right)^{n}\left(1-p_{L}\right)^{2 n+1}+\left(c_{1} c_{2}\right)^{n-1}\left(1-p_{L}\right)^{2 n-1}\left(1-c_{1}\right) d_{1}\right] \\
& P\left[D^{(2 n)}=S_{2}\right]=(1-p)\left[\left(c_{1} c_{2}\right)^{n}\left(1-p_{L}\right)^{2 n}+\left(c_{1} c_{2}\right)^{n-1}\left(1-p_{L}\right)^{2(n-1)}\left(1-c_{2}\right) d_{2}\right] \\
& P\left[D^{(2 n+1)}=S_{2}\right]=p c_{1}\left[\left(c_{1} c_{2}\right)^{n}\left(1-p_{L}\right)^{2 n+1}+\left(c_{1} c_{2}\right)^{n-1}\left(1-p_{L}\right)^{2 n-1}\left(1-c_{2}\right) d_{2}\right]
\end{aligned}
$$

Proof: At $n=0$, we have
$P\left[D^{(0)}=S_{1}\right]=p ; \quad P\left[D^{(0)}=S_{2}\right]=(1-p)$, the start may either from SIM S_{1} and SIM S_{2}, and we have:

For $\mathrm{n}=1$,

$$
\begin{aligned}
& P\left[D^{(1)}=S_{1}\right]=P\left[D^{(0)}=S_{2}\right] P\left[D^{(1)}=S_{1} / D^{(0)}=S_{2}\right]=(1-p) c_{2}\left(1-p_{L}\right) \\
& P\left[D^{(1)}=S_{2}\right]=P\left[D^{(0)}=S_{1}\right] P\left[D^{(1)}=S_{2} / D^{(0)}=S_{1}\right]=p c_{1}\left(1-p_{L}\right) \\
& P\left[D^{(1)}=Z\right]_{S_{1}}=P\left[D^{(0)}=S_{1}\right] P\left[D^{(1)}=Z / D^{(0)}=S_{1}\right]=p\left(1-c_{1}\right) \\
& P\left[D^{(1)}=Z\right]_{S_{2}}=P\left[D^{(0)}=S_{2}\right] P\left[D^{(1)}=Z / D^{(0)}=S_{2}\right]=(1-p)\left(1-c_{2}\right)
\end{aligned}
$$

For $\mathrm{n}=2$,

$$
\begin{aligned}
& P\left[D^{(2)}=S_{1}\right]=P\left[D^{(1)}=S_{2}\right] P\left[D^{(2)}=S_{1} / D^{(1)}=S_{2}\right]+P\left[D^{(1)}=Z\right]_{S_{1}} P\left[D^{(2)}=S_{1} / D^{(1)}=Z\right] \\
& =p\left[c_{1} c_{2}\left(1-p_{L}\right)^{2}+\left(1-c_{1}\right) d_{1}\right] \\
& P\left[D^{(2)}=S_{2}\right]=P\left[D^{(1)}=S_{1}\right] P\left[D^{(2)}=S_{2} / D^{(1)}=S_{1}\right]+P\left[D^{(1)}=Z\right]_{S_{2}} P\left[D^{(2)}=S_{2} / D^{(1)}=Z\right] \\
& =(1-p)\left[c_{1} C_{2}\left(1-p_{L}\right)^{2}+\left(1-c_{2}\right) d_{2}\right] \\
& P\left[D^{(2)}=Z\right]_{S_{1}}=P\left[D^{(1)}=S_{1}\right] P\left[D^{(2)}=Z / D^{(1)}=S_{1}\right]=(1-p) c_{2}\left(1-p_{L}\right)\left(1-c_{1}\right) \\
& P\left[D^{(2)}=S_{2}\right]=P\left[D^{(1)}=S_{1}\right] P\left[D^{(2)}=S_{2} / D^{(1)}=S_{1}\right]=(1-p) c_{1} C_{2}\left(1-p_{L}\right)^{2}
\end{aligned}
$$

$$
\begin{aligned}
& P\left[D^{(2)}=Z\right]_{S_{2}}=P\left[D^{(1)}=S_{2}\right] P\left[D^{(2)}=Z / D^{(1)}=S_{2}\right]=p c_{1}\left(1-p_{L}\right)\left(1-c_{2}\right) \\
& P\left[D^{(2)}=S_{1}\right]=P\left[D^{(1)}=S_{2}\right] P\left[D^{(2)}=S_{1} / D^{(1)}=S_{2}\right]=p c_{1} c_{2}\left(1-p_{L}\right)^{2}
\end{aligned}
$$

For $\mathrm{n}=3$,

$$
\begin{aligned}
& P\left[D^{(3)}=S_{1}\right]=P\left[D^{(2)}=S_{2}\right] P\left[D^{(3)}=S_{1} / D^{(2)}=S_{2}\right]+P\left[D^{(2)}=Z\right]_{S_{1}} P\left[D^{(3)}=S_{1} / D^{(2)}=Z\right] \\
&=(1-p) c_{2}\left(1-p_{L}\right)\left[c_{1} c_{2}\left(1-p_{L}\right)^{2}+\left(1-c_{1}\right) d_{1}\right] \\
& P\left[D^{(3)}=S_{2}\right]=P\left[D^{(2)}=S_{1}\right] P\left[D^{(3)}=S_{2} / D^{(2)}=S_{1}\right]+P\left[D^{(2)}=Z\right]_{S_{2}} P\left[D^{(3)}=S_{2} / D^{(2)}=Z\right] \\
&=p c_{1}\left(1-p_{L}\right)\left[c_{1} c_{2}\left(1-p_{L}\right)^{2}+\left(1-c_{2}\right) d_{2}\right] \\
& P\left[D^{(3)}=Z\right]_{S_{1}}=P\left[D^{(2)}=S_{1}\right] P\left[D^{(3)}=Z / D^{(2)}=S_{1}\right]=p c_{1} c_{2}\left(1-p_{L}\right)^{2}\left(1-c_{1}\right) \\
& P\left[D^{(3)}=S_{2}\right]=P\left[D^{21)}=S_{1}\right] P\left[D^{(3)}=S_{2} / D^{(2)}=S_{1}\right]=p c_{1}^{2} c_{2}\left(1-p_{L}\right)^{3} \\
& P\left[D^{(3)}=Z\right]_{S_{2}}=P\left[D^{(2)}=S_{2}\right] P\left[D^{(3)}=Z / D^{(2)}=S_{2}\right]=(1-p) c_{1} c_{2}\left(1-p_{L}\right)^{2}\left(1-c_{2}\right) \\
& P\left[D^{(3)}=S_{1}\right]=P\left[D^{(2)}=S_{2}\right] P\left[D^{(3)}=S_{1} / D^{(2)}=S_{2}\right]=(1-p) c_{1} C_{2}^{2}\left(1-p_{L}\right)^{3}
\end{aligned}
$$

For $\mathrm{n}=4$

$$
\begin{aligned}
& P\left[D^{(4)}=S_{1}\right]=P\left[D^{(3)}=S_{2}\right] P\left[D^{(4)}=S_{1} / D^{(3)}=S_{2}\right]+P\left[D^{(3)}=Z\right]_{S_{1}} P\left[D^{(4)}=S_{1} / D^{(3)}=Z\right] \\
& =p c_{1} c_{2}\left(1-p_{L}\right)^{2}\left[c_{1} c_{2}\left(1-p_{L}\right)^{2}+\left(1-c_{1}\right) d_{1}\right] \\
& P\left[D^{(4)}=S_{2}\right]=P\left[D^{(3)}=S_{1}\right] P\left[D^{(4)}=S_{2} / D^{(3)}=S_{1}\right]+P\left[D^{(3)}=Z\right]_{S_{2}} P\left[D^{(4)}=S_{2} / D^{(3)}=Z\right] \\
& =(1-p) c_{1} c_{2}\left(1-p_{L}\right)^{2}\left[c_{1} c_{2}\left(1-p_{L}\right)^{2}+\left(1-c_{2}\right) d_{2}\right]
\end{aligned}
$$

On continuation in similar way, the theorem exits.

Results

This section discusses the graphical comparison of the user call transitions between S_{1} (SIM S_{1}) and S_{2} (SIM S_{2}) using Excel application as shown in the figures (1-8). Parameters p, $\mathrm{p}_{\mathrm{L}}, \mathrm{c}_{1}, \mathrm{c}_{2}, \mathrm{~d}_{1}$ and d_{2} are selected to compare SIM S_{1} and SIM S_{2} using various values once with high numbers and once with low numbers and these numbers were selected randomly.
Figures (1-8), shows user call transitions over the SIM S_{1} and SIM $_{2}$ at 10 attempts using Model.

Fig. $1\left(p=0.8, p_{L}=0.8, c_{1}=0.8, c_{2}=0.8, d_{1}=0.8, d_{2}=0.8\right)$

Fig. 1 shows the relation between the call transition and call attempts for S_{1} (SIM S_{1}) and S_{2} (SIM S_{2}) when p (high), p_{L} (high), c_{1} (high), c_{2} (high), d_{1} (high) and d_{2} (high). The user call transitions over SIM S_{1} is rapidly increases between attempt 1 and 2 . After attempt 2 call transitions is gradually decreases and stops after attempt 5 . The transition over S_{2} is fluctuating between odd and even attempts then stop after attempt 5 .

Fig. $2\left(p=0.8, p_{L}=0.8, c_{1}=0.2, c_{2}=0.8, d_{1}=0.8, d_{2}=0.8\right)$
Fig. 2 shows the relation between the call transition and call attempts for S1 (SIM S1) and S2 (SIM S2) when p (high), pL (high), c1 (low), c2 (high), d1 (high) and d2 (high). Figure shows the transitions over S1 are rapidly increases from attempt 1 to attempt 2. After attempt 3 transitions are gradually decreases and stop after attempt 5 . The transition over S2 is fluctuating between odd and even attempts then stop after attempt 3.

Fig. $3\left(p=0.8, p_{L}=0.8, c_{1}=0.8, c_{2}=0.2, d_{1}=0.8, d_{2}=0.8\right)$
Fig. 3 shows the comparison when p (high), p_{L} (high), c_{1} (high), c_{2} (low), d_{1} (high) and d_{2} (high). The transition over S_{1} is increases from attempt 1 to attempt 2 then transition is rapidly decreases and stop after attempt 4 . The transition over S_{2} is fluctuating with small variations and stop after attempt 5.

Fig. $4\left(p=0.8, p_{L}=0.8, c_{1}=0.8, c_{2}=0.8, d_{1}=0.2, d_{2}=0.2\right)$
Fig. 4 shows the comparison between S_{1} and S_{2} when p (high), p_{L} (high), c_{1} (high), c_{2} (high), d_{1} (low) and d_{2} (low). It is clear from figure that transition over S_{1} is slightly increases from attempt 1
to attempt 2 then slightly decreases and stop after attempt 4 . Over S_{2}, the call transition is rapidly fluctuating and stop after attempt 5.

Fig. $5\left(p=0.2, p_{L}=0.2, c_{1}=0.2, c_{2}=0.2, d_{1}=0.2, d_{2}=0.2\right)$
Fig. 5 shows the comparison between S_{1} and S_{2} when p (low), p_{L} (low), c_{1} (low), c_{2} (low), d_{1} (low) and d_{2} (low). Figure shows that the call transition over SIM S_{1} gently decreases and stop after attempt 5. Over SIM S_{2}, the call transition is increases from attempt 1 to 2 . After then start decreasing steadily and stop after attempt 5 .

Fig. $6\left(p=0.2, p_{L}=0.2, c_{1}=0.8, c_{2}=0.2, d_{1}=0.2, d_{2}=0.2\right)$

Fig. 6 shows the comparison between S1 and S2 when p (low), pL (low), c1 (high), c2 (low), d1 (low) and d2 (low).The call transitions over SIM S1 is decreases from attempt 1 to attempt 2 then
fluctuate and stops after attempt 6 but over SIM S2 call transition is increases from attempt 1 to attempt 2 then fluctuate and stops after attempt 8.

Fig. $7\left(p=0.2, p_{L}=0.2, c_{1}=0.2, c_{2}=0.8, d_{1}=0.2, d_{2}=0.2\right)$

Fig. 7 shows the comparison between S_{1} and S_{2} when p (low), p_{L} (low), c_{1} (low), c_{2} (high), d_{1} (low) and d_{2} (low), the transition is rapidly increases at high level at attempt 1 then stop over SIM S_{1}. The transitions is rapidly increases from attempt 1 to attempt 2 then rapidly fluctuate and stop after attempt 8 over SIM S $_{2}$.

Fig. $8\left(p=0.2, p_{L}=0.2, c_{1}=0.2, c_{2}=0.2, d_{1}=0.8, d_{2}=0.8\right)$

Fig. 8 shows the comparison between S1 and S2 when p (low), pL (low), c1 (low), c1 (low), c2 (low), d1 (high) and d2 (high). The transition is rapidly increases at low level at attempt 1 and stop
over SIM S1. The transitions is rapidly increases form low level to high level form attempt 1 to attempt 2 then fluttered and stops after attempt 6 over SIM S2.

Table 1: Call Transition over SIM S 1

Attempt	1	2	3	4	5	6	7	8	9	10
$\begin{aligned} & \text { when } \\ & \mathrm{p}=\text { high } \mathrm{p}_{\mathrm{L}}=\text { high, } \\ & \mathrm{c}_{1}=\text { high, } \mathrm{c}_{2}=\text { high } \\ & \mathrm{d}_{1}=\text { high, } \mathrm{d}_{2}=\text { high } \end{aligned}$	Increase	Increase	Decrease	Decrease	Decrease	stop	stop	stop	stop	stop
when $\mathrm{p}=$ high $\mathrm{p}_{\mathrm{L}}=$ high, $\mathrm{c}_{1}=$ low, $\mathrm{c}_{2}=$ high $\mathrm{d}_{1}=$ high, $\mathrm{d}_{2}=$ high	Increase	Increase	Increase	Decrease	Decrease	stop	stop	stop	stop	stop
$\begin{aligned} & \text { when } \\ & \mathrm{p}=\text { high } \mathrm{p}_{\mathrm{L}}=\text { high, } \\ & \mathrm{c}_{1}=\text { high, } \mathrm{c}_{2}=\text { low } \\ & \mathrm{d}_{1}=\text { high, } \mathrm{d}_{2}=\text { high } \end{aligned}$	Increase	Increase	Decrease	Decrease	stop	stop	stop	stop	stop	stop
$\begin{aligned} & \text { when } \\ & \mathrm{p}=\text { high } \mathrm{p}_{\mathrm{L}}=\text { high, } \\ & \mathrm{c}_{1}=\text { high }, \mathrm{c}_{2}=\text { high } \\ & \mathrm{d}_{1}=\text { low, } \mathrm{d}_{2}=\text { low } \end{aligned}$	Increase	Increase	Decrease	Decrease	stop	stop	stop	stop	stop	stop
when $\begin{aligned} & \mathrm{p}=\text { low } \mathrm{p}_{\mathrm{L}}=\text { low }, \\ & \mathrm{c}_{1}=\text { low }, \mathrm{c}_{2}=\text { low } \\ & \mathrm{d}_{1}=\text { low }, \mathrm{d}_{2}=\text { low } \end{aligned}$	Decrease	Decrease	Decrease	Decrease	Decrease	stop	stop	stop	stop	stop
when $\begin{aligned} & \mathrm{p}=\text { low } \mathrm{p}_{\mathrm{L}}=\text { low } \\ & \mathrm{c}_{1}=\text { high }, \mathrm{c}_{2} \text { = low } \\ & \mathrm{d}_{1}=\text { low, } \mathrm{d}_{2}=\text { low } \end{aligned}$	Decrease	Decrease	Fluctuate	Fluctuate	Fluctuate	Fluctuate	stop	stop	stop	stop
when $\begin{aligned} & \mathrm{p}=\text { low } \mathrm{p}_{\mathrm{L}}=\text { low }, \\ & \mathrm{c}_{1}=\text { low, } \mathrm{c}_{2}=\text { high } \\ & \mathrm{d}_{1}=\text { low, } \mathrm{d}_{2}=\text { low } \end{aligned}$	Increase at high level	stop								
when $\begin{aligned} & \mathrm{p}=\text { low } \mathrm{p}_{\mathrm{L}}=\text { low }, \\ & \mathrm{c}_{1}=\text { low, } \mathrm{c}_{2}=\text { low } \\ & \mathrm{d}_{1}=\text { high }, \mathrm{d}_{2}=\text { high } \end{aligned}$	Increase at low level	stop								

Table 2: Call Transition over SIM S ${ }_{2}$

Table 3: Comparison of Call Transition over SIM S $\boldsymbol{1}_{1}$ and SIM S $\boldsymbol{2}_{\mathbf{2}}$

Attempt		1	2	3	4	5	6	7	8	9	10
when$\begin{aligned} & \mathrm{p}=\text { high } \mathrm{p}_{\mathrm{L}}=\text { high }, \\ & \mathrm{c}_{1}=\text { high }, \mathrm{c}_{2}=\text { high } \\ & \mathrm{d}_{1}=\text { high }, \mathrm{d}_{2}=\text { high } \end{aligned}$	S1	Increase	$\begin{aligned} & \text { Incr } \\ & \text { ease } \end{aligned}$	Decr ease	$\begin{aligned} & \text { Decr } \\ & \text { ease } \end{aligned}$	$\begin{aligned} & \text { Decr } \\ & \text { ease } \end{aligned}$	stop	stop	stop	stop	stop
	S2	Fluctuate	Fluc tuate	Fluc tuate	Fluc tuate	Fluc tuate	stop	stop	stop	stop	stop
when $\mathrm{p}=$ high $\mathrm{p}_{\mathrm{L}}=$ high, $\mathrm{c}_{1}=$ low, $\mathrm{c}_{2}=$ high $\mathrm{d}_{1}=$ high, $\mathrm{d}_{2}=$ high	S1	Increase	$\begin{aligned} & \hline \text { Incr } \\ & \text { ease } \end{aligned}$	$\begin{aligned} & \hline \text { Incr } \\ & \text { ease } \end{aligned}$	$\begin{aligned} & \hline \text { Decr } \\ & \text { ease } \end{aligned}$	Decr ease	stop	stop	stop	stop	stop
	S2	Fluctuate	Fluc tuate	Fluc tuate	stop	stop	stop	stop	stop	Fluc tuate	Fluc tuate
when $\mathrm{p}=$ high $\mathrm{p}_{\mathrm{L}}=$ high, $\begin{aligned} & \mathrm{c}_{1}=\text { high }, \mathrm{c}_{2}=\text { low } \\ & \mathrm{d}_{1}=\text { high }, \mathrm{d}_{2}=\text { high } \end{aligned}$	S1	Increase	$\begin{aligned} & \text { Incr } \\ & \text { ease } \end{aligned}$	$\begin{aligned} & \text { Decr } \\ & \text { ease } \end{aligned}$	Decr ease	stop	stop	stop	stop	stop	stop
	S2	Fluctuate	Fluc tuate	Fluc tuate	Fluc tuate	Fluc tuate	stop	stop	stop	stop	stop
when $\mathrm{p}=$ high $\mathrm{p}_{\mathrm{L}}=$ high, $\begin{aligned} & \mathrm{c}_{1}=\text { high }, \mathrm{c}_{2}=\text { high } \\ & \mathrm{d}_{1}=\text { low }, \mathrm{d}_{2}=\text { low } \end{aligned}$	S1	Increase	Incr ease	Decr ease	Decr ease	stop	stop	stop	stop	stop	stop
	S2	Fluctuate	Fluc tuate	Fluc tuate	Fluc tuate	stop	stop	stop	stop	stop	stop
when$\begin{aligned} & \mathrm{p}=\text { low } \mathrm{p}_{\mathrm{L}}=\text { low }, \\ & \mathrm{c}_{1}=\text { low }, \mathrm{c}_{2}=\text { low } \\ & \mathrm{d}_{1}=\text { low }, \mathrm{d}_{2}=\text { low } \end{aligned}$	S1	Decrease	$\begin{aligned} & \text { Decr } \\ & \text { ease } \end{aligned}$	$\begin{aligned} & \text { Decr } \\ & \text { ease } \end{aligned}$	$\begin{aligned} & \text { Decr } \\ & \text { ease } \end{aligned}$	Decr ease	stop	stop	stop	stop	stop
	S2	Increase	Incr ease	$\begin{aligned} & \hline \text { Decr } \\ & \text { ease } \end{aligned}$	$\begin{aligned} & \hline \text { Decr } \\ & \text { ease } \end{aligned}$	$\begin{aligned} & \hline \text { Decr } \\ & \text { ease } \end{aligned}$	stop	stop	stop	stop	stop
when$\begin{aligned} & \mathrm{p}=\text { low } \mathrm{p}_{\mathrm{L}}=\text { low }, \\ & \mathrm{c}_{1}=\text { high }, \mathrm{c}_{2}=\text { low } \\ & \mathrm{d}_{1}=\text { low, } \mathrm{d}_{2}=\text { low } \end{aligned}$	S1	Decrease	$\begin{aligned} & \text { Decr } \\ & \text { ease } \end{aligned}$	Fluc tuate	Fluc tuate	Fluc tuate	Fluc tuate	stop	stop	stop	stop
	S2	Increase	$\begin{aligned} & \text { Incr } \\ & \text { ease } \end{aligned}$	Fluc tuate	Fluc tuate	Fluc tuate	Fluc tuate	Fluc tuate	Fluctu ate	stop	stop
when$\begin{aligned} & \mathrm{p}=\text { low } \mathrm{p}_{\mathrm{L}}=\text { low }, \\ & \mathrm{c}_{1}=\text { low, } \mathrm{c}_{2}=\text { high } \\ & \mathrm{d}_{1}=\text { low }, \mathrm{d}_{2}=\text { low } \end{aligned}$	S1	Increase at high level	stop								
	S2	Fluctuate	Fluc tuate	Fluctu ate	stop	stop					
when$\begin{aligned} & \mathrm{p}=\text { low } \mathrm{p}_{\mathrm{L}}=\text { low }, \\ & \mathrm{c}_{1}=\text { low, } \mathrm{c}_{2}=\text { low } \\ & \mathrm{d}_{1}=\text { high, } \mathrm{d}_{2}=\text { high } \end{aligned}$	S1	Increase at low level	stop								
	S2	Increase at low level	Incr ease at low level	Fluc tuate	Fluc tuate	Fluc tuate	Fluc tuate	stop	stop	stop	stop

4. Conclusion

Fig 1-4, reveals that when p (high), p_{L} (high), c_{1} (high), c_{2} (high) and d_{1} (high), the user try to connect S_{1} till attempt 5 and call transitions are decreases after attempt 2 from high level. When p (high), p_{L} (high), c_{1} (low), c_{2} (high), d_{1} (high) the user try to connect SIM S_{1} till attempt 5 and call transitions are decreases after attempt 2 from higher level. When p (high), p_{L} (high), c_{1} (high), c_{2} (low), d_{1} (high) the user try to connect SIM S_{1} till attempt 3 and call transitions are decreases after attempt 2 from high level. When p (high), p_{L} (high), c_{1} (high), c_{2} (high), d_{1} (low), the user try to connect SIM S_{1} till attempt 3 and transitions value are decreases.

Similarly, Fig 1-4, reveals that When p (high), p_{L} (high), c_{1} (high), c_{2} (high), d_{1} (high), the user try to connect SIM S_{2} till attempt 5 and call transitions are fluctuate till attempt 5 then stop. When p (high), p_{L} (high), c_{1} (low), c_{2} (high), d_{1} (high) the user try to connect SIM S_{2} till attempt 2 and call transitions are fluctuate till attempt 2 then stop. When p (high), p_{L} (high), c_{1} (high), c_{2} (low), d_{1} (high) the user try to connect SIM S_{2} till attempt 5 and call transitions are fluctuate till attempt 5 then stop. When p (high), p_{L} (high), c_{1} (high), c_{2} (high), d_{1} (low), the user try to connect SIM S_{2} till attempt 5 and call transitions are fluctuate till attempt 5 then stop.

Fig 5-8, reveals that when p (low), pL (low), c1 (low), c2 (low), d1 (low) the user try to connect SIM S1 till attempt 5 and call transitions are decreases. When p (low), pL (low), c1 (high), c2 (low), d1 (low) the user try to connect SIM S1 till attempt 6 and call transitions are fluctuate. When p (low), pL (low), c1 (low), c2 (high), d1 (low) and when p (low), pL (low), c1 (low), c2 (low), d1 (high) the user try to connect SIM S1 till attempt 1 and stop or leave the connectivity process.

Similarly, Fig 5- 8, reveals that, when p (low), pL (low), c1 (low), c2 (low), d2 (low) the user try to connect SIM S2 till attempt 5 and call transitions are decreases after attempt 2 from high level. When p (low), pL (low), c1 (high), c2 (low), d2 (low) and when p (low), pL (low), c1 (low), c2 (high), d2 (low) the user try to connect SIM S2 till attempt 8 and call transitions are fluctuate after attempt 2 from high level. When p (low), pL (low), c1 (low), c2 (low), d2 (high) the user try to connect SIM S2 till attempt 6 and call transitions are fluctuate after attempt 2 from higher level.

Overall, when p (high), pL (high), c1 (high), c2 (high) and d1 (high), and when p (low), pL (low), c1 (low), c2 (low), d2 (low) the call transitions over SIM S1 and SIM S2 are equal at attempt 1 to 10.When p (high), pL (high), c1 (high), c2 (high) and d2 (high), and when p (low), pL (low), c1 (low), c2 (low), d1 (low) the call transitions over SIM S1 and SIM S2 are equal at attempt 1 to 10.

References

1. Tiwari Kumar Virendra and Shukla D. (2023) , "A Cyber Crime Analysis of Two Call Dimensional Effects in Internet Traffic" published in Research and Applications Towards Mathematics and Computer Science Vol. 1, Page 1-7, https://doi.org/10.9734/bpi/ratmcs/v1/18861D
2. Saha Sajal, Haque Anwar and Sidebottom Greg (2022), "An Empirical Study on Internet Traffic Prediction Using Statistical Rolling Model" International Wireless Communications and Mobile Computing (IWCMC), pp. 1058-1063.
3. Othman A. Alrusaini, Emad A. Shafie and Badreldin O. S. Elgabbani (2021), "Models for Internet Traffic Sharing in Computer Network", International Journal of Computer Science and Network Security, VOL. 21 No.8, pp. 28-34.
4. Wang Y. and Feng H. (2020), "Optimization and Simulation of Carsharing under the Internet of Things," published in Journal of Mathematical Problems in Engineering, vol. 2020,pp. 1-8.
5. Markov Chains. Brilliant.org. Retrieved 15:05, December19, 2020, from https://brilliant.org/wiki/markov-chains/
6. More S. and Shukla D., "Review on Internet Traffic Sharing Using Markov Chain Model in Computer Network," in Data Science and Big Data Analytics: Springer, 2019, pp. 81-98.
7. https://www.itrelease.com/2021/03/what-is-mobile-network-with-example/
8. Thakur Sanjay and Jain Parag, " A Prediction Model for User's Share Analysis in Dual-sim Environment" (2013), published in Computer Sciences and Telecommunications International Georgian Electronic Scientific Journal No 3(39), pp. 106-111.
9. Johannes K. Chiang and Yao-Hung Lin(2014), "A Simulation and Prediction Model for Internet Traffic and QoS based on 1-Step Markov-Chain" published in UKSim-AMSS 16th International Conference on Computer Modelling and Simulation,pp. 467-472.
10. Wikipedia: "Internet eXchange Point", http://en.wikipedia.org/wiki/Internet_exchange_point, access on Feb. 1, 2014.
11. Wikipedia: "Internet Service Provider", https://en.wikipedia.org/wiki/Internet_service_provider, access on Feb. 1, 2014.
12. Thakur Sanjay and Shukla Diwakar(2010), "Iso-Share Analysis of Internet Traffic Sharing in the Presence of Favoured Disconnectivity", published in Computer Sciences and Tele communications International Georgian Electronic Scientific Journal, No. 4(27), pp.16-22.
13. Shukla D., Tiwari Virendra, Parchur K.A. and Thakur Sanjay (2010), "Effects of Disconnectivity Analysis for Congestion Control in Internet Traffic Sharing", published in Intern. Journal of the Computer, the Internet and Management, vol. 18, No. 1, pp. 37-46.
