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Abstract 
A characteristic feature of most magnetic materials is that they have a hysteresis 

cycle. The energy of an alternating magnetic field, supplied to the nanoparticles during 
repeated passage of the hysteresis cycle by the magnetic field, is converted into heat in 
the environment. This is the usual mechanism of heating a malignant tumor in 
hyperthermia. In this paper, we consider the possibility of heating a part of the body 
under the resonant action of a radio-frequency field, where the resonant frequency is 
due to the flow of root-mean-square fluctuations of angular variables (rotational 
diffusion) that is cyclic motion. This method of heating the tumor area is different from 
those commonly used in magnetic hyperthermia. It is shown that by a selection of the 
parameters of the resonant field, it is possible to achieve an increase in tumor 
temperature by 6 degrees (sufficient for the destruction of malignant cells) in 27 
minutes. 
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1. Introduction 
Magnetic fluids are attracting attention in various branches of biomedicine and particularly 

in hyperthermia. Magnetic hyperthermia is a progressive method of cancer treatment [1-13]. The 
essence of this method is that magnetic particles of nanometer sizes (nanoparticles) coated with 
special bioactive layers are injected into the area where cancer cells are diagnosed. Thanks to the 
coatings, nanoparticles are captured by these cells. Then the tumor area is placed in an alternating 
magnetic field, in which the nanoparticles are heated and warm the tumor cells that have captured 
them. If the cell temperature exceeds 420 𝐶, diseased cells die. Healthy cells at this temperature 
remain intact. Magnetic nanoparticles in this role in hyperthermia were first used by Gilchrist et al. 
[4] (Gilchrist at all), which has led to the development of a variety of cancer treatments using the 
nanoparticles mentioned above. 

Magnetic nanoparticles, being inside the tumor as part of a suspension, create conditions for 
the absorption of the energy of an alternating magnetic field. A characteristic feature of most 
magnetic materials is that they have a hysteresis cycle. The energy of an alternating magnetic field, 
supplied to nanoparticles during repeated passage of the hysteresis loop, is converted into heat in 
the environment. This is the mechanism of tumor heating in hyperthermia. 

In this work, to heat the tumor, it is proposed to use a different, in particular, resonant, 
method of exposing a system of nanoparticles to an alternating field. The root-mean-square 
fluctuation of the angular variables, due to their cyclic nature of change, at large times becomes a 
periodic function of the frequency proportional to the rate of Brownian relaxation. It is assumed that 

mailto:mchedluka@yahoo.com


GESJ: Physics 2023 | No.2(29) 
ISSN 1512-1461 

 

4 

the radio frequency field is in resonance with this frequency. The absorbed power of the radio 
frequency field converted into heat is calculated using the fluctuation-dissipation theorem. 

2. Anisotropy energy of nanoparticles. 
In ferromagnetic crystals, there are interactions that can orient the magnetization vector 

along the directions of the crystallographic axes. These axes are called the easy axes, and the energy 
associated with these interactions is called the magnetic anisotropy energy. For example, cobalt 
may have a hexagonal crystallographic structure. The cobalt hexagonal axis is the easy 
magnetization axis (uniaxial crystal). In this case, the magnetic anisotropy energy density is 
presented in the form [14] 

   𝑈𝐴 = 𝐾1∗𝑠𝑖𝑛2 𝜁 + 𝐾 2
∗𝑠𝑖𝑛4 𝜁        (1)  

                where 𝜁 = 𝜓 − 𝜃is the angle between the magnetization vector and the easy magnetization axis 
(Fig.1). At room temperature - 𝐾1∗ = 4,1 ∙  105  𝐽 𝑚3⁄  ,     𝐾2∗ = 1,0   105 𝐽 𝑚3 ⁄ . 

                

Fig.1. Directions of magnetic field vector 𝑩(𝑡), saturation magnetization     
            𝑴, and anisotropy axis 𝒏 for  uniaxial crystal. 
 

 Iron, unlike cobalt, is a cubic crystal. The easy magnetization axes of iron coincide with the 
edges of the cube. The energy density of the magnetic anisotropy of an iron crystal at an arbitrary 
value of the magnetization vector 𝑴𝒔(saturation magnetization) is usually expressed using direction 
cosines -𝑞𝑥 , 𝑞𝑦 , 𝑞𝑧  (Fig .2) satisfying the condition  𝑞𝑥2 + 𝑞𝑦2 + 𝑞𝑧2 = 1. In this case, the 
anisotropy energy density has the form [14] 

   𝑈𝐴𝐹𝑒 = 𝐾1 �𝑞𝑥2 𝑞𝑦2 + 𝑞𝑥2 𝑞𝑧2 + 𝑞𝑦 
2 𝑞𝑧 

2 �+ 𝐾2 𝑞𝑥2 𝑞𝑦2 𝑞𝑧2 ,   (2)            

where 𝑞𝑖 = cos𝛼𝑖 = 𝑀𝑠
𝑖

|𝑴𝒔|
,  (𝑖 = 𝑥, 𝑦, 𝑧 )  are direction cosines, 𝐾1 =  4,2 ∙ 104 𝐽 𝑚3  ,⁄     𝐾2 = 1,5 ∙

104  𝐽 𝑚3⁄  are the anisotropy density coefficients. 

           The magnetic moment of the nanoparticle is  𝝁 = 𝑴𝒔 𝑉𝑚    𝐴 ∙ 𝑚2, where  𝑉𝑚is the “magnetic” 
volume of the nanoparticle. As we can see, the anisotropy energy density of iron is an order of magnitude 
less than that of cobalt ( 𝐾1,2 < 𝐾1,2

∗ ) and therefore it is less efficient.  
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Fig.2. The orientation of the magnetization vector in space, 
                               expressed in terms of direction cosines. 

 

As you know, iron is easily oxidized. One of the iron oxides is magnetite 𝐹𝑒3 𝑂4, or , more 
precisely , - 𝐹𝑒𝑂 ∙ 𝐹𝑒2 𝑂3which is a ferrimagnet (ferrite). It has the cubic crystallographic structure 
of the spinel mineral [14]. Magnetite is the only biologically compatible material that is used in 
hyperthermia [15, 16]. The value of saturation magnetization of magnetite 𝑀𝑠 = 4,8 ∙ 105 𝐴 𝑚 ⁄ is 
much less than for iron. 

As follows from the expressions for the anisotropy energies (2), the directions of the 
anisotropy axes correspond to the energy minima. There is one minimum for cobalt, and three for 
iron and magnetite. It is obvious that the same axes determine the equilibrium directions of the 
magnetic moment of nanoparticles (the magnetization vector). A sufficiently strong thermal motion 
can disturb the equilibrium state, pushing the magnetization out of the equilibrium state. Formula of 
the characteristic time 𝜏𝑟 of thermal motions of the magnetic moment of uniaxial nanoparticles (the 
time spent to overcome the energy barrier  ∆𝐸 (Fig.3)) was derived by Neel in the form 

   𝜏𝑟 = 𝜏𝑇 exp (∆𝐸 𝑘𝑇⁄ ),       ∆𝐸 ≥ 𝐾𝑉𝑚.           (3) 

 
The coefficient 𝜏𝑇   in front of the exponent in formula (3) depends on many parameters - 

temperature, saturation magnetization, energy barrier value, etc. However, for simplicity 𝜏𝑟  is often 
assumed to be a constant quantity having the value in the interval 10−9 ÷ 10−13 s. Here we will try 
to obtain a criterion for overcoming the barrier for cubic crystals using an approach similar to that 
developed by Néel. In the case of cubic crystals, on the path of rotation of the magnetization vector 
(Fig. 2), directions of "attraction" appear along three mutually perpendicular directions of the 
anisotropy axes in the form of two wells and a barrier between them (Fig. 3). Expressions similar to 
(3) for the times of overcoming the barriers by thermal fluctuations for these three directions will 
naturally look the same. They determine the time 𝜏𝑟 the system of magnetite nanoparticles to be in 
equilibrium state (free rotation). At sufficiently high temperatures, the time taken to overcome the 
barrier 𝜏𝑟 becomes less than the time ∆𝑡 of the experiment 𝜏𝑟 ≪ ∆𝑡, the magnetization will be able 
to freely move from one well to another (Fig. 3) and the system comes into a super-paramagnetic 
state. In the opposite limiting case 𝜏𝑟 ≫ ∆𝑡, the magnetization vector will not have time to 
overcome the barrier and will remain blocked in the well. Note that the role of the time of the 
experiment in hyperthermia is played by the duration of the treatment procedure. 
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In Neel's theory, the condition 𝜏𝑟 = ∆𝑡 determines the blocking temperature 𝑇𝑏 , below 
which the magnetization is in the blocked state of the anisotropy energy well, and above which it is 
in the super-paramagnetic state. In hyperthermia, temperature is not the same control parameter at 
the disposal of the researcher (the attending physician) as it is in physical experiments. Therefore, 
the blocking process will be considered similarly, according to the same condition ∆𝑡 = 𝜏𝑟, but not 
in terms of temperature, but in terms of the volume of the nanoparticle. 

And so, we write an equation for determining the value of the critical volume 𝑉𝑐 - an 
analogue of the blocking temperature 𝑇𝑏 .  Suppose that 𝑇 = 3100 and 𝜏𝑇 = 10−9  𝑠, then from 
relation (3) we easily obtain an equation for determining the value 𝑉𝑐 - 

                                               ∆𝑡 = 10−9exp (1,1 ∙ 1025𝑉𝑐) .      (4) 

 If we further assume that ∆𝑡 = 600 𝑠,   then from (4) we get 

    𝑉𝑐 ≈ 2,6 ∙ 10−24 𝑚3    (𝑑𝑐 = 16 𝑛𝑚).    ( 5 )   

            Note that the maximum single-domain size of magnetite nanoparticles [17] is 𝑑𝑚𝑎𝑥 =
128 𝑛𝑚 .  

 Let us consider two limiting cases: 1) case of large volumes of nanoparticles 𝑉 ≫ 𝑉𝑐  and 2) 
case of small ones - 𝑉 ≪ 𝑉𝑐 . In case 1) the magnetization, blocked along one of the directions of the 
anisotropy axes, performs Brownian motion together with the nanoparticle, and in case 2) it rotates 
freely , regardless of the nanoparticle that performs Brownian motion (both translational and 
rotational). In case 1) nanoparticles come in motion under the influence of an alternating field, as 
well as random collisions of liquid molecules. In case 2), the external alternating field is unable to 
influence the rotational fluctuation of particles in a liquid, and therefore below we will consider 
only case 1). 

                           

                   Fig.3. Anisotropy energy of a uniaxial nanoparticle as a function of the angle ζ                           
 
3. Equations of rotational motion of magnetic suspension nanoparticles 
            The dynamics of magnetic nanoparticles, as is known, is described by two angular variables 
θ and ψ (Fig.1). However, in 1) case of nanoparticles with a volume greater than the critical one 
V≫V_(c ), when the magnetization rests on the bottom of one of the wells, the value ψ-θ is 
conserved  during motion, and the motion of the magnetization can be described by one angular 
variable θ. 
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  The equations of motion of the angular variable 𝜃 of the suspension nanoparticle is:   
          

                                                      �̈� + 2
𝜏𝑆
�̇� + 𝜇𝐵(𝑡) cos𝜃

𝐼
= 𝑁(𝑡)

𝐼
 ,                           (6) 

where 
          𝐵(𝑡) = 𝑏𝑒−𝛾|𝑡| 𝑐𝑜𝑠𝜔𝑡    
 
is the magnetic induction of the alternating field, b - amplitude, ω - frequency, γ - frequency 
broadening of the field.      
      The direct solution of equation (6), due to the presence of random functions in them, is not 
possible. We study this equation, which contains a random force on the right side, using the 
Langevin method [18]. We multiply both parts of this equation by a variable 𝜃 and after simple 
mathematical transformations, we average the resulting equation over time 𝜏𝑐 according to the rule 
         
                                                         𝐿(𝑡)������� = 1

𝑡 ∫ 𝐿(𝑥)𝑑𝑥𝑡
0  ,       𝑡 ≫ 𝜏𝑐 ,           

where as usual 𝜏𝑐≈ 10−13 𝑠.   Then, using the law of equipartition of energy over degrees of 
freedom    𝐼

2
�̇�2��� = 𝑘𝑇

2
  and the correlation properties of the random function 

                       𝜃𝑁(𝜃)�������� = �̅� ∙ 𝑁(𝜃)������� = 0,          𝑁(𝜃)������� = 0,                             (7)              

we get the following equation  of the rms fluctuation 𝜃2���    

                           𝜃2���̈ + 2
𝜏𝑠
𝜗2���̇ + 2𝜇𝑏

𝐼
∙ 𝜃 cos 𝜃��������� ∙ 𝑒−𝛾𝑡 cos𝜔𝑡 = 2𝑘𝑇

𝐼
 .              (8)      

 Note that here we have introduced a new, "good" variable - θ 2 ����, which at this and 
subsequent stages of system dynamics will play the role of a dynamic variable. As can be seen from 
equation (8), the equation of fluctuations is similar to the equation of motion of some imaginary 
particle under the influence of a force that depends on an alternating field and temperature - the 
fluctuation moves like a particle. However, due to the last term on the left side of the equation, it is 
not a closed equation with respect to θ 2 ����  and is an   integral-differential equation of the complex 
form. 

 Since the moment of inertia is a small quantity, the inertial term can be neglected in the last 
equation (𝜃2���̈ →  0). Then from eq. (8) we get 

   𝜃2���̇ = 1
𝜏𝐵

(1 − 𝜀 ∙ 𝜃 cos 𝜃��������� ∙ 𝑒−𝛾𝑡 cos𝜔𝑡),      ( 9 ) 

where   1
𝜏𝐵

= 𝑘𝑇
3𝑉𝜂  

   is the rate of Brownian relaxation ( rotational diffusion ), 𝜀 = 𝜇𝑏 
𝑘𝑇

 is a small 

interaction parameter. 

    Consider case 1) 𝑉 > 𝑉𝑚 > 𝑉𝑐, when the magnetization moves along with the nanoparticle. 
Suppose 𝑉𝑚=10−23 𝑚3 , 𝑉 = 2 ∙ 10−23    and  𝑏 = 2 ∙ 10−4 𝑇𝑒𝑠𝑙𝑎.    Then for the rate of Brownian 
relaxation we obtain 1

𝜏𝐵 
= 0,2 ∙ 105 𝑠−1 ,  and a small parameter  𝜀 = 0,2.     
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 The solution of equation (9) can be presented as a series in powers of 𝜀 

                                   𝜃2��� ≈ �𝜃2����
(0)

+ 𝜀 �𝜃2����
(1)

+ ⋯,                (10) 

where �𝜃2����
(0)

 is the zero order solution and �𝜃2����
(1)

 is the first order correction, which are solutions 
of the following equations: 

     𝑑�𝜃2�����
(0)

𝑑𝑡
= 1

𝜏𝐵
                (11) 

                          𝑑�𝜃
2�����(1)

𝑑𝑡
= − 1

𝜏𝐵
𝜃 cos 𝜃���������(0) 𝑒−𝛾𝑡 cos𝜔𝑡.             (12) 

 Here, the dash above the terms with index (0) means averaging over the unperturbed motion. 

             Solution of equation (11) - �𝜃2����
(0)

= 𝑡
𝜏𝐵

= 𝑘𝑇
3𝑉𝜂

𝑡 is a rotational analogue of the well-known 

Einstein formula for Brownian translational motion ( 𝑥2��� = 𝑘𝑇
3𝜋𝑟𝜂

𝑡, where r is the radius of the 

particle). As you can see, at short times 𝑡
𝜏𝐵
≪ 1 they do not qualitatively differ from each other. 

However, since the variable 𝜃, in contrast to the coordinate x, is a cyclic variable, the 

"thermodynamic" variable �𝜃2����
(0)

 must also satisfy a similar condition of cyclicity (periodicity). 

This, in turn, at large times 𝑡
𝜏𝐵
≫ 1leads to a qualitative difference between these two types of 

Brownian motion. 
            The fluctuation of the square of the angle 𝜃 is a periodic function  
 

                                                   �𝜃2����
(0)(𝑡 + 𝜏0 ) = �𝜃2����

(0)
( 𝑡)                        (13) 

  

where 𝜏0 is the period of the fluctuation. It is natural to assume that the fluctuation 𝜃2��� follows the -
corresponding variable 𝜃. Then, since the phase period of rotation 𝜃(based on the form of the 
anisotropy energy function (1)) is 𝜋, the period of fluctuation 𝜃2���  will also be equal 𝜋(Fig. 3). 

During the time 𝜏0 the value of the fluctuation will reach its maximum value, �𝜃2����
(0)(𝜏0) = 𝜋2, and 

the role of the period of movement is played by 𝜏0 = 𝜋  𝜏𝐵. 
 It follows from all the abovesaid that at large times 𝑡 ≫ 𝜏0,  the flow of fluctuations, which 
initially has a chaotic character, acquires the character of a regular (periodic) movement - order 
emerges from chaos. The energy expended to maintain this motion is taken from the base fluid by 
means of a random force 𝑁(𝑡). 

 

Taking into account the periodicity condition (13), the solution of the first of equations (11), 
can be written as a function    

                                                �𝜃2����
(0)

(𝑡) = 𝜋2| 𝑡 𝜏0 ⁄ − 𝑛|,              (14) 

                                            𝑛𝜋 ≤ 𝑡 𝜏0 ⁄ < (𝑛 + 1)𝜋,      𝑛 = 0, ±1, ±2.⋯, 

the graph of which has a "sawtooth" shape (Fig.4).  
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                                           Fig.4. Fluctuation �𝜃2����
(0)(𝑡) -  function of time  𝑡.  

                                                                                                                                                  

Expanding the “sawtooth” function (14) into a Fourier series [19], we can determine the spectral 
composition of fluctuations of the periodic motion of the magnetic moment 

 

                   �𝜃2����
(0)

(𝑡) = 𝜋2 �1
2
− 1

𝜋
�sin𝜔0𝑡

1
+ sin2𝜔0𝑡

2
 + ⋯+ sin𝑛𝜔0𝑡

𝑛
+ ⋯��,             (15)           

where 𝜔0 = 2𝜋 𝜏0� = 2 𝜏𝐵 � ≈ 0,4 ∙ 105 𝑠−1  is the fundamental one, which plays the role of the 
natural frequency of the medium.         

4. The radio frequency field power absorbed by the suspension. Magnetic  hyperthermia 
           To calculate the absorbed power of the radio frequency field by the suspension, we use the 
fluctuation-dissipation theorem. This theorem connects such seemingly different characteristics of a 
physical system as fluctuations in the interaction energy and dissipation energy (the energy of an 
external source absorbed and converted into heat). The fluctuation-dissipation theorem was proved 
by G. Collen and T. Walton and was presented in the form [20, 21] 

 

                                                     𝑄(𝜔) = 𝜋𝜔
ℏ

tanh ℏ𝜔
2𝑘𝑇

∙ 𝐺(𝜔),               (16)  

where 𝑄(𝜔) is the absorbed energy per unit time, 𝐺(𝜔) is the Fourier component of the fluctuation 
correlation function (power spectral density). In the high-temperature limiting case (in the classical 
limit) 𝑘𝑇 ≫ ℏ𝜔   fluctuation-dissipation theorem (16) takes the form 

                       𝑄(𝜔) = 𝜋𝜔2

2𝑘𝑇
∙ 𝐺(𝜔).      (17)   

       To calculate the absorbed power 𝑄(𝜔0)  at the resonant frequency, we use the classical form 
(17) of the fluctuation-dissipation theorem. 

In our case, when the interaction of an external alternating field with magnetic nanoparticles 
is given in the form 

     𝐻𝑖𝑛𝑡 =  −𝜇𝐵(𝑡) cos 𝜃 ,               (18)     
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 the correlation function and the power spectral density have the following form, respectively 

    𝐺(𝜏) = 𝐻𝚤𝑛𝑡(𝑡)𝐻𝚤𝑛𝑡(𝑡 + 𝜏)�����������������������(0)              (19) 

    𝐺(𝜔) = 1
2𝜋 ∫ 𝐺(𝜏) sin𝜔𝜏 𝑑𝜏∞

−∞ .              (20) 

As is known, the correlation function depends only on 𝜏 ≠ 0, but does not depend on the choice of 
𝑡. Assuming in (19) t=0, and also using the expression of the magnetic induction B(t) of the 
alternating field (6), we obtain 

    𝐺(𝜏) = 𝜇2𝑏2𝐹(𝜏)𝑒−𝛾|𝜏| cos𝜔𝜏                  (21)  

where 

    𝐹(𝜏) = [cos 𝜃(0) cos 𝜃(𝜏)����������������������] (0).               (22)  

Note that in order to calculate the correlation function (22), it is sufficient to consider only the zero 
order approximation of the perturbation theory (11, 14). Thus, the application of the fluctuation-
dissipation theorem makes it possible to calculate the absorbed power without calculating the 
perturbation theory corrections and without solving the complex integral-differential equation (12). 
 
 It is easy to see from the expansion of    �𝜃2����

(0)(𝑡)  in series (15) that the fundamental (first) 
harmonic, with which the alternating field has a resonant connection, has the form 

     �𝜃2(�����𝑡)�𝜔≈𝜔0

(0)
= −𝜋 sin𝜔0 𝑡 .                                                    (23) 

As can be seen from (22), in the limit, 𝜏 → 0 the correlative function 𝐹(𝜏 → 0)coincides with the 
root mean square value of the random function cos 𝜃. In the spectrum of the rms value of the 
function, �𝑐𝑜𝑠2𝜃(𝑡)�������������(0)

we find the harmonic at the frequency 𝜔0   

                                       [𝐹(𝑡, 𝜏 = 0)]𝜔≈𝜔0 = �𝑐𝑜𝑠2𝜃(𝑡)�������������𝜔≈𝜔0

(0)
= 

                                       = [(1 − 𝜃2 (𝑡) +∙∙∙)(1 − 𝜃2 (𝑡) +∙∙∙)�����������������������������������������]𝜔≈𝜔0 
(0) = −2 �𝜃2(�����𝑡)�𝜔≈𝜔0

(0)
.   (24)    

Then, taking into account (23),  we obtain that the resonant components of the functions  𝐹(𝑡) and 
𝐺(𝜏)  

                                           [𝐹(𝑡, 𝜏 = 0)]𝜔≈𝜔0 = 2𝜋 sin𝜔0𝑡,               (25) 
  

                         [𝐺(𝑡 = 0, 𝜏)]𝜔≈𝜔0 = 2𝜋(𝜇𝑏)2𝑒−𝛾|𝜏| sin𝜔0 𝜏 cos𝜔𝜏.             (26)          

To find the power spectral density at the frequency 𝜔0 by integrating (20) taking into account (26) 
with respect to the variable  𝜏 within −1 𝛾⁄ ≪ 𝜏 ≪ 1 𝛾⁄ , passing to the limit 𝛾 → 0 and neglecting 
non-resonant terms, we obtain 

                            𝐺(𝜔0) = (𝜇𝑏)2 ∫ 𝑒−𝛾|𝜏| sin𝜔0𝜏
∞
−∞ sin𝜔𝜏 𝑑𝜏 ≈ 1

2
(𝜇𝑏)2 𝛾

∆2 +𝛾2
,            (27)   

where ∆= 𝜔 − 𝜔0 .      
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            To calculate the absorbed power, we apply the classical form of the fluctuation-dissipation 
theorem (17). Taking into account (17, 26), we finally obtain that, the absorbed power:                         

                                                   𝑄(𝜔0) = 𝜋
4
𝜔0

2

𝑘𝑇
(𝜇𝑏)2 𝛾

∆2+𝛾2
.                                     (28)        

Using the numerical data given in the text, and also assuming:                                                            

      ∆= 0,𝜔0 = 0,4 ∙  105   𝑟𝑎𝑑 𝑠� ,     𝛾 =     5 𝑟𝑎𝑑 𝑠�    ,    𝑇 = 3100𝐾,  𝜇 ≈ 4,8 ∙ 10−18  𝐴 ∙ 𝑚2,  

the power absorbed at the frequency 𝜔0  from (28) we obtain 

                                                     𝑄(𝜔0) ≈ 5,4 ∙ 10−14  𝑊.                (29) 

To heat up a suspension consisting of a system of nanoparticles with a mass 𝑀𝑝 and a liquid 
with a mass 𝑀𝑑 ≈ 2𝑀𝑝, by  ∆𝑇 degrees will take time  

                                                ∆𝑡 = �𝐶𝑝𝑀𝑝 + 𝐶𝑑 𝑀𝑑�
∆𝑇
𝑄

= 𝑀𝑝 (𝐶𝑝 + 2𝐶𝑑 )
∆𝑇
𝑄

.             (30)  

where 𝐶𝑝  and 𝐶𝑑 are the heat capacities of nanoparticles and liquid, respectively. 

 The mass of one magnetite molecule is 𝑚𝐹𝑒3𝑂4 ≈ 3,8 ∙ 10−25 𝑘𝑔. If a magnetite nanoparticle 
contains 𝑛 ≈ 105 number of molecules, then the mass of one nanoparticle will be 𝑀𝑛 ≈ 𝑛 ∙ 𝑚𝐹3 𝑂4. 
The mass of the powder consisting of 𝑁 ≈ 104 magnetite nanoparticles will be                                      
𝑀𝑝 ≈ 𝑁 ∙ 𝑛 ∙ 𝑚𝐹𝑒3𝑂4 = 3,8 ∙ 10−16 𝑘𝑔.  Substituting in (30) the values of the masses,  the heat 

capacities of iron 𝐶𝑝 = 0,4 ∙ 103 𝐽 𝑘𝑔 ∙ 𝐾 �  and water С𝑑 = 4,2 ∙ 103  𝐽 𝑘𝑔 ∙ 𝐾 � ,  ∆𝑇 = 60 𝐾 ,  we 

get ∆𝑡 = 370 𝑠 ≈ 6 𝑚𝑖𝑛. 

 Using this data, we obtain that a very commonly used characteristic of the process of magnetic 
hyperthermia (SAR),  SAR = 𝑄

𝑀𝑝  
=0.1 𝑊

𝑔
.  Note that both the warm-up time ∆t per ∆T degree and 

the SAR have practical values. 

 The method of suspension heating proposed by us allows us to expand the range of parameters 
used for this purpose of the radio-frequency field in hyperthermia: decrease the frequency from 
several hundred kilohertz to tens of kilohertz, and amplitude - from hundreds of gauss to several 
gauss. 

5. Conclusion 
     An experimental method of cancer treatment - the method of magnetic hyperthermia is based on 
the heating of magnetite nanoparticles and the cancer cells captured by nanoparticles, which formed 
a suspension, by an alternating electromagnetic field. Dynamics of magnetic nanoparticles in 
suspension at times longer than the characteristic time of 𝜏0 collision of the molecules of the base 
fluid (blood) is described by changing the root-mean-square fluctuation of the angular variables.  
The dynamics of this fluctuation, which is a rotational Brownian motion, at times exceeding the 
Brownian relaxation time t ≫ 𝜏𝐵 ≫ 𝜏0, acquires a periodic character with a complex spectral 
composition. The fundamental frequency of this spectrum is of the order of the reciprocal of the 
Brownian relaxation time. 𝜔0 ~ 1 𝜏𝐵⁄ . With the help of a radio-frequency field, which is in 
resonance with the main component of this spectrum, it is possible to heat up nanoparticles together 
with diseased cells and liquid. This is the proposed method for heating a suspension of magnetic 
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nanoparticles, the use of which will make it possible to expand the range of characteristics used in 
hyperthermia of an alternating field, both in frequency and amplitude. 
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