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Abstract

A characteristic feature of most magnetic materials is that they have a hysteresis
cycle. The energy of an alternating magnetic field, supplied to the nanoparticles during
repeated passage of the hysteresis cycle by the magnetic field, is converted into heat in
the environment. This is the usual mechanism of heating a malignant tumor in
hyperthermia. In this paper, we consider the possibility of heating a part of the body
under the resonant action of a radio-frequency field, where the resonant frequency is
due to the flow of root-mean-square fluctuations of angular variables (rotational
diffusion) that is cyclic motion. This method of heating the tumor area is different from
those commonly used in magnetic hyperthermia. It is shown that by a selection of the
parameters of the resonant field, it is possible to achieve an increase in tumor
temperature by 6 degrees (sufficient for the destruction of malignant cells) in 27
minutes.
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1. Introduction
Magnetic fluids are attracting attention in various branches of biomedicine and particularly

in hyperthermia. Magnetic hyperthermia is a progressive method of cancer treatment [1-13]. The
essence of this method is that magnetic particles of nanometer sizes (nanoparticles) coated with
special bioactive layers are injected into the area where cancer cells are diagnosed. Thanks to the
coatings, nanoparticles are captured by these cells. Then the tumor area is placed in an alternating
magnetic field, in which the nanoparticles are heated and warm the tumor cells that have captured
them. If the cell temperature exceeds 42° C, diseased cells die. Healthy cells at this temperature
remain intact. Magnetic nanoparticles in this role in hyperthermia were first used by Gilchrist et al.
[4] (Gilchrist at all), which has led to the development of a variety of cancer treatments using the
nanoparticles mentioned above.

Magnetic nanoparticles, being inside the tumor as part of a suspension, create conditions for
the absorption of the energy of an alternating magnetic field. A characteristic feature of most
magnetic materials is that they have a hysteresis cycle. The energy of an alternating magnetic field,
supplied to nanoparticles during repeated passage of the hysteresis loop, is converted into heat in
the environment. This is the mechanism of tumor heating in hyperthermia.

In this work, to heat the tumor, it is proposed to use a different, in particular, resonant,
method of exposing a system of nanoparticles to an alternating field. The root-mean-square
fluctuation of the angular variables, due to their cyclic nature of change, at large times becomes a
periodic function of the frequency proportional to the rate of Brownian relaxation. It is assumed that
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the radio frequency field is in resonance with this frequency. The absorbed power of the radio
frequency field converted into heat is calculated using the fluctuation-dissipation theorem.

2. Anisotropy energy of nanoparticles.

In ferromagnetic crystals, there are interactions that can orient the magnetization vector
along the directions of the crystallographic axes. These axes are called the easy axes, and the energy
associated with these interactions is called the magnetic anisotropy energy. For example, cobalt
may have a hexagonal crystallographic structure. The cobalt hexagonal axis is the easy
magnetization axis (uniaxial crystal). In this case, the magnetic anisotropy energy density is
presented in the form [14]

Uy = Kysin®{ + K sin*{ 1)

where { = 1 — 0is the angle between the magnetization vector and the easy magnetization axis
(Fig.1). At room temperature - K; = 4,1- 10° J/m3, K; =1,0 10° J/m3.
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Fig.1. Directions of magnetic field vector B(t), saturation magnetization
M, and anisotropy axis n for uniaxial crystal.

Iron, unlike cobalt, is a cubic crystal. The easy magnetization axes of iron coincide with the
edges of the cube. The energy density of the magnetic anisotropy of an iron crystal at an arbitrary
value of the magnetization vector M¢(saturation magnetization) is usually expressed using direction
cosines -q,, qy, q, (Fig .2) satisfying the condition g7 4¢3 + g7 = 1.In this case, the
anisotropy energy density has the form [14]

Ur¢=Ki(q2q3 +q2q2 +4q3q%) + K,q% g% qZ, )

where q; = cosa; = % (i=x,y,z) are direction cosines, K; = 4,2-10*J/m3, K,=15"

10* J/m3 are the anisotropy density coefficients.
The magnetic moment of the nanoparticle is u = MgV, A -m?, where V,is the “magnetic”

volume of the nanoparticle. As we can see, the anisotropy energy density of iron is an order of magnitude
less than that of cobalt ( K; , < K7 ,) and therefore it is less efficient.
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Fig.2. The orientation of the magnetization vector in space,
expressed in terms of direction cosines.

As you know, iron is easily oxidized. One of the iron oxides is magnetite Fe; O,, Or , more
precisely , - FeO - Fe, Oswhich is a ferrimagnet (ferrite). It has the cubic crystallographic structure
of the spinel mineral [14]. Magnetite is the only biologically compatible material that is used in
hyperthermia [15, 16]. The value of saturation magnetization of magnetite My = 4,8 -10° A/m is
much less than for iron.

As follows from the expressions for the anisotropy energies (2), the directions of the
anisotropy axes correspond to the energy minima. There is one minimum for cobalt, and three for
iron and magnetite. It is obvious that the same axes determine the equilibrium directions of the
magnetic moment of nanoparticles (the magnetization vector). A sufficiently strong thermal motion
can disturb the equilibrium state, pushing the magnetization out of the equilibrium state. Formula of
the characteristic time t,. of thermal motions of the magnetic moment of uniaxial nanoparticles (the
time spent to overcome the energy barrier AE (Fig.3)) was derived by Neel in the form

7, = trexp (AE/kT), AE = KV,,. (3)

The coefficient 7, in front of the exponent in formula (3) depends on many parameters -
temperature, saturation magnetization, energy barrier value, etc. However, for simplicity z,. is often
assumed to be a constant quantity having the value in the interval 107° + 10713 s. Here we will try
to obtain a criterion for overcoming the barrier for cubic crystals using an approach similar to that
developed by Néel. In the case of cubic crystals, on the path of rotation of the magnetization vector
(Fig. 2), directions of "attraction” appear along three mutually perpendicular directions of the
anisotropy axes in the form of two wells and a barrier between them (Fig. 3). Expressions similar to
(3) for the times of overcoming the barriers by thermal fluctuations for these three directions will
naturally look the same. They determine the time 7, the system of magnetite nanoparticles to be in
equilibrium state (free rotation). At sufficiently high temperatures, the time taken to overcome the
barrier t,. becomes less than the time At of the experiment 7,. << At, the magnetization will be able
to freely move from one well to another (Fig. 3) and the system comes into a super-paramagnetic
state. In the opposite limiting case 7, > At, the magnetization vector will not have time to
overcome the barrier and will remain blocked in the well. Note that the role of the time of the
experiment in hyperthermia is played by the duration of the treatment procedure.
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In Neel's theory, the condition 7,, = At determines the blocking temperature T, , below
which the magnetization is in the blocked state of the anisotropy energy well, and above which it is
in the super-paramagnetic state. In hyperthermia, temperature is not the same control parameter at
the disposal of the researcher (the attending physician) as it is in physical experiments. Therefore,
the blocking process will be considered similarly, according to the same condition At = t,., but not
in terms of temperature, but in terms of the volume of the nanoparticle.

And so, we write an equation for determining the value of the critical volume V.- an
analogue of the blocking temperature T,. Suppose that T = 310° and 7 = 1072 s, then from
relation (3) we easily obtain an equation for determining the value V, -

At = 107%xp (1,1 10%°V,) . (4)
If we further assume that At = 600 s, then from (4) we get
V. ~26-1072*m3 (d, = 16 nm). (5)

Note that the maximum single-domain size of magnetite nanoparticles [17] iS dpygx =
128 nm.

Let us consider two limiting cases: 1) case of large volumes of nanoparticles V > V, and 2)
case of small ones - V «< V.. In case 1) the magnetization, blocked along one of the directions of the
anisotropy axes, performs Brownian motion together with the nanoparticle, and in case 2) it rotates
freely , regardless of the nanoparticle that performs Brownian motion (both translational and
rotational). In case 1) nanoparticles come in motion under the influence of an alternating field, as
well as random collisions of liquid molecules. In case 2), the external alternating field is unable to
influence the rotational fluctuation of particles in a liquid, and therefore below we will consider
only case 1).
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Fig.3. Anisotropy energy of a uniaxial nanoparticle as a function of the angle {

3. Equations of rotational motion of magnetic suspension nanoparticles
The dynamics of magnetic nanoparticles, as is known, is described by two angular variables

0 and y (Fig.1). However, in 1) case of nanoparticles with a volume greater than the critical one
V>V _(c ), when the magnetization rests on the bottom of one of the wells, the value y-0 is
conserved during motion, and the motion of the magnetization can be described by one angular
variable 0.
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The equations of motion of the angular variable 8 of the suspension nanoparticle is:

uB(t)cos® _ N(t)
1

6+26+ , ©)
Ts
where
B(t) = be "t cos wt

is the magnetic induction of the alternating field, b - amplitude, o - frequency, y - frequency
broadening of the field.

The direct solution of equation (6), due to the presence of random functions in them, is not
possible. We study this equation, which contains a random force on the right side, using the
Langevin method [18]. We multiply both parts of this equation by a variable 6 and after simple
mathematical transformations, we average the resulting equation over time 7, according to the rule

LD =7 Le)dx,  t»1,,

where as usual 7,~#10713s.  Then, using the law of equipartition of energy over degrees of
freedom 292 = % and the correlation properties of the random function

ON() =6-N(6) =0, N(6) =0, 7)

we get the following equation of the rms fluctuation 62

ﬁ+%19_2+27”b-6c059-e_”c05wt=21£. (8)
S

Note that here we have introduced a new, "good" variable - 82, which at this and
subsequent stages of system dynamics will play the role of a dynamic variable. As can be seen from
equation (8), the equation of fluctuations is similar to the equation of motion of some imaginary
particle under the influence of a force that depends on an alternating field and temperature - the
fluctuation moves like a particle. However, due to the last term on the left side of the equation, it is
not a closed equation with respect to 62 and is an integral-differential equation of the complex
form.

Since the moment of inertia is a small quantity, the inertial term can be neglected in the last
equation (62 — 0). Then from eq. (8) we get

0 =Ti(1—e-9c059-e‘7’tcosa)t), (9)
B

1 kT . . . . . . b .
where =y 8 the rate of Brownian relaxation ( rotational diffusion ), ¢ = i_r is a small
B

interaction parameter.

Consider case 1) V > V,,, > V., when the magnetization moves along with the nanoparticle.
Suppose V,,=10723m3, V=2-10"2% and b =2-10"*Tesla. Then for the rate of Brownian

relaxation we obtain Ti =0,2-10°s~1, and a small parameter & = 0,2.
B

7
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The solution of equation (9) can be presented as a series in powers of €
67 ~ [67]” + 2 [07] + -, (10)

where [82]“” is the zero order solution and [8Z]"" is the first order correction, which are solutions
of the following equations:

©
d|6? 1
= ()
B
a[ez]™ 1
———— = —=0cos0® e cos wt. (12)
dt (9:}

Here, the dash above the terms with index (0) means averaging over the unperturbed motion.
. . —1(0 . .
Solution of equation (11) - [92]( bt :77;71: is a rotational analogue of the well-known

B

Einstein formula for Brownian translational motion ( x? = ﬁt, where r is the radius of the

particle). As you can see, at short times é « 1 they do not qualitatively differ from each other.
However, since the variable 8, in contrast to the coordinate X, is a cyclic variable, the
"thermodynamic" variable W](O) must also satisfy a similar condition of cyclicity (periodicity).
This, in turn, at large times é > 1leads to a qualitative difference between these two types of

Brownian motion.
The fluctuation of the square of the angle 6 is a periodic function

1621t + 7o) = [62] V() (13)

where 7, is the period of the fluctuation. It is natural to assume that the fluctuation 62 follows the -
corresponding variable 6. Then, since the phase period of rotation 8(based on the form of the

anisotropy energy function (1)) is m, the period of fluctuation 62 will also be equal m(Fig. 3).

During the time t,, the value of the fluctuation will reach its maximum value, [ﬁ](o)(ro) = 12, and
the role of the period of movement is played by 7, = 7 75.

It follows from all the abovesaid that at large times t > t,,, the flow of fluctuations, which
initially has a chaotic character, acquires the character of a regular (periodic) movement - order
emerges from chaos. The energy expended to maintain this motion is taken from the base fluid by
means of a random force N(t).

Taking into account the periodicity condition (13), the solution of the first of equations (11),
can be written as a function

02Vt = n2|t/7 —nl, (14)
nrt<t/to <(mn+1m, n=0+1,+2.-,

the graph of which has a "sawtooth" shape (Fig.4).

8
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Fig.4. Fluctuation [?](0) (t) - function of time t.

Expanding the “sawtooth” function (14) into a Fourier series [19], we can determine the spectral
composition of fluctuations of the periodic motion of the magnetic moment

[m](O)(t) — 2 E _ % (sinlwot n sinza)ot I sinzwot . )], (15)

where w, = 27T/TO: Z/TB ~ 0,4-10%s1 is the fundamental one, which plays the role of the
natural frequency of the medium.

4. The radio frequency field power absorbed by the suspension. Magnetic hyperthermia

To calculate the absorbed power of the radio frequency field by the suspension, we use the
fluctuation-dissipation theorem. This theorem connects such seemingly different characteristics of a
physical system as fluctuations in the interaction energy and dissipation energy (the energy of an
external source absorbed and converted into heat). The fluctuation-dissipation theorem was proved
by G. Collen and T. Walton and was presented in the form [20, 21]

Q(w) ="*tanh = G(w), (16)

where Q(w) is the absorbed energy per unit time, G (w) is the Fourier component of the fluctuation
correlation function (power spectral density). In the high-temperature limiting case (in the classical
limit) kT > hw fluctuation-dissipation theorem (16) takes the form

Q) =22 G(w). (17)

To calculate the absorbed power Q(w,) at the resonant frequency, we use the classical form
(17) of the fluctuation-dissipation theorem.

In our case, when the interaction of an external alternating field with magnetic nanoparticles
is given in the form

Hipny = —uB(t)cos@, (18)

9
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the correlation function and the power spectral density have the following form, respectively

G(r) = Hipne (8) Hyne (€ + T)(O) (19)

G(w) = - [ G()sinwrdr. (20)
As is known, the correlation function depends only on 7 # 0, but does not depend on the choice of
t. Assuming in (19) t=0, and also using the expression of the magnetic induction B(t) of the
alternating field (6), we obtain

G(t) = u?b?F(t)e V" cos wt (21)

where

F(1) = [cos 6(0) cos O(7)] . (22)

Note that in order to calculate the correlation function (22), it is sufficient to consider only the zero
order approximation of the perturbation theory (11, 14). Thus, the application of the fluctuation-
dissipation theorem makes it possible to calculate the absorbed power without calculating the
perturbation theory corrections and without solving the complex integral-differential equation (12).

It is easy to see from the expansion of [ﬁ](o) (t) in series (15) that the fundamental (first)
harmonic, with which the alternating field has a resonant connection, has the form

Wt)]g’iwo — _msinwyt. 23)

As can be seen from (22), in the limit, 7 — 0 the correlative function F(t — 0)coincides with the
root mean square value of the random function cos 6. In the spectrum of the rms value of the

function, [cosZQ(t)](O)we find the harmonic at the frequency w,

[F(6,7 = Olumo, = [c05%00)] ., =

~Wo

=[O+ 2O+, = -2[070]7,, . @9

Then, taking into account (23), we obtain that the resonant components of the functions F(t) and

G(1)

[F(t,T = 0)]yraw, = 2T sinwyt, (25)

[G(t =0,D]p~w, = 21 (ub)%e "1 sin w, T cos wr. (26)

To find the power spectral density at the frequency w, by integrating (20) taking into account (26)
with respect to the variable 7 within —1/y « 7 « 1/y, passing to the limit y — 0 and neglecting
non-resonant terms, we obtain

G(w,) = (ub)? ffooo e V1"l sin wyTsinwrt dr =~ %(,ub)2 AZ)-:-]/Z’ (27)

where A= w — w, .

10
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To calculate the absorbed power, we apply the classical form of the fluctuation-dissipation
theorem (17). Taking into account (17, 26), we finally obtain that, the absorbed power:

Qw) = T4 (uby? (28)

Using the numerical data given in the text, and also assuming:
A=0,w, =0,4- 105 72d/. = srad/. = T=310K, u~48-10"1% A -m?
the power absorbed at the frequency w, from (28) we obtain
Q(wg) = 5410714 W, (29)

To heat up a suspension consisting of a system of nanoparticles with a mass M,, and a liquid
with a mass My ~ 2M,,, by AT degrees will take time

AT AT
At = (CoMy, + Cy M(,l)3 =M, (C, +2C0) 7 (30)
where C,, and Cy are the heat capacities of nanoparticles and liquid, respectively.

The mass of one magnetite molecule is mg,,o, =~ 3,8 1072% kg. If a magnetite nanoparticle
contains n ~ 10° number of molecules, then the mass of one nanoparticle will be M,, ~ n-mg, ,,.

The mass of the powder consisting of N =~ 10* magnetite nanoparticles will be
M, ~ N n-mgeo, =3,8-1071° kg. Substituting in (30) the values of the masses, the heat

capacities of iron C, = 0,4-10° ]/kg . and water Cq = 4,2 103 ]/kg g AT = 6°K , we
get At = 370 s = 6 min.

Using this data, we obtain that a very commonly used characteristic of the process of magnetic
hyperthermia (SAR), SAR = 2 0.1 %. Note that both the warm-up time At per AT degree and

Mp =
the SAR have practical values.

The method of suspension heating proposed by us allows us to expand the range of parameters
used for this purpose of the radio-frequency field in hyperthermia: decrease the frequency from
several hundred kilohertz to tens of kilohertz, and amplitude - from hundreds of gauss to several
gauss.

5. Conclusion

An experimental method of cancer treatment - the method of magnetic hyperthermia is based on
the heating of magnetite nanoparticles and the cancer cells captured by nanoparticles, which formed
a suspension, by an alternating electromagnetic field. Dynamics of magnetic nanoparticles in
suspension at times longer than the characteristic time of 7, collision of the molecules of the base
fluid (blood) is described by changing the root-mean-square fluctuation of the angular variables.
The dynamics of this fluctuation, which is a rotational Brownian motion, at times exceeding the
Brownian relaxation time t > tz > 1, acquires a periodic character with a complex spectral
composition. The fundamental frequency of this spectrum is of the order of the reciprocal of the
Brownian relaxation time. wy~ 1/t5. With the help of a radio-frequency field, which is in
resonance with the main component of this spectrum, it is possible to heat up nanoparticles together
with diseased cells and liquid. This is the proposed method for heating a suspension of magnetic

11
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nanoparticles, the use of which will make it possible to expand the range of characteristics used in
hyperthermia of an alternating field, both in frequency and amplitude.
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