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Abstract 
It’s a well-known fact that the convolutional layer has the property of translational 
equivariance. However, it’s non-obvious how to expand the symmetry group associated 
with the said layer. Employing key definitions adopted in deep geometric learning, we 
construct the set of filters that induce 90-degree rotational equivariance without 
modifying the convolutional operator. This work is primarily intended as a theoretical 
exercise, beginning with a predefined symmetric group in mind and producing a 
convolutional layer with the desired equivariance. 
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1. Introduction 
The widespread adoption of CNNs has led to the development of various architectures applicable to 
numerous computer vision tasks and beyond [1,2]. Convolutional layers possess the property of 
translational equivariance. Most CNN networks are designed in a manner where the input of shape 
(𝐶,𝐻,𝑊) (channel, height, width) is transformed into an intermediate output of shape (𝐶𝑖 , 1, 1). If 
all the functions used up to this point were translationally equivariant, the entire network would be 
translationally invariant. 

Building upon this observation, one can introduce additional symmetries to CNNs. For instance, it 
is reasonable to assume that a rotated, horizontally, or vertically flipped image of a person still 
conveys the same information. The conventional approach to addressing this is via data 
augmentation [3]. Though it is challenging to measure this precisely in practice, this strategy 
basically encourages the network to acquire weights that are more or less insensitive to such 
augmentations. [4]. 

Alternatively, one can introduce specific inductive biases into the network [5,6]. In the following 
sections, we propose a simplified approach that does not alter the convolution operator but imposes 
constraints on the filters. Although the results for the horizontal and vertical symmetries of an 
image are analogous, we will concentrate on the procedure for the 90-degree rotation function 
because it is a bit more involved. 

 
2. Key definitions 
Since the notation is quite varied among authors, we introduce some basic definitions here. 

We take 𝑋 ∈ ℝ(𝐻+1)×(𝑊+1) and 𝐾 ∈ ℝ(𝑛+1)×(𝑛+1), where 𝑋 can be understood as a grid of gray-
scale pixels and 𝐾 as filter (kernel) of convolution. For simplicity of notation, we'll range indices 
𝑖, 𝑗 of matrix 𝑋 over  𝑖 ∈ {0,1, … ,𝐻 } and 𝑗 ∈ {0,1, … ,𝑊}, similarly 𝑢,𝑣 range over {0,1, … , 𝑛}, 
𝑛 ≤ 𝐻 and 𝑛 ≤ 𝑊. 
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Definition 2.1: 

𝕄𝑛 ≔ {𝑥 ∈ ℝ𝐻×𝑊:𝑛 ≤ 𝐻 and 𝑛 ≤ 𝑊} 
 

Definition 2.2: 
A convolution of matrix 𝑋 with filter 𝐾 can be expressed as, 

[𝐾 ⊗𝑋]𝑖′,𝑗′ = ��𝐾𝑢,𝑣𝑋𝑖′+𝑢,𝑗′+𝑣

𝑛

𝑣=0

𝑛

𝑢=0

 

where 𝑖′ and 𝑗′ range over {0,1,⋯ ,𝐻 − 𝑛} and {0,1,⋯ ,𝑊 − 𝑛} respectively. 
Some remarks: 

• Definition 2.2 is a definition of convolution that is used in CNN-s and doesn't agree with 
the mathematical definition of convolution. 

• Order of 𝐾 and 𝑋 with respect to [ .  ⊗  . ] matter. 
• To the best of our knowledge to specify domain and codomain of [ .  ⊗  . ] one needs to 

understand it as family of maps indexed by the size of filter 𝐾 namely [ .  ⊗𝑛  . ]:ℝ𝑛×𝑛 ×
𝕄𝑛 → 𝕄1. When index is omitted, it's implicitly inferred from dimensions of 𝐾. 

 
Definition 2.3. 90∘ counterclockwise rotation of a matrix (a digital image) can be represented via a 
map 𝑅:𝕄1 → 𝕄1 such that following holds. 

𝑋 ∈ ℝ𝐻×𝑊 → 𝑅(𝑋) ∈ ℝ𝑊×𝐻; 
(𝑋)𝑗,𝑖 = 𝑋𝑖,𝑊−𝑗 where 𝑖 ∈ {0,1, … ,𝐻} and 𝑗 ∈ {0,1, … ,𝑊}. 

 
 

3. Properties of 900 rotation function 
Observation 3.1. One can simply verify following statements: 

a) ∀𝑖 ∈ {0,1, …𝐻}  �∀𝑗 ∈ {0,1, … ,𝑊} �𝑅(𝑋)𝑗,𝑖 = 𝑋𝑖,𝑊−𝑗��  if and only if 

      ∀𝑖 ∈ {0,1, …𝐻} �∀𝑗 ∈ {0,1, … ,𝑊} ��𝑅(𝑋)𝑊−𝑗,𝑖 = 𝑋𝑖,𝑗���. 

b) 𝑅 is a bijection. 
c) 𝑅2(𝑋)𝑖,𝑗 = 𝑋𝐻−𝑖,𝑊−𝑗. 
d) 𝑅3(𝑋)𝑗,𝑖 = 𝑋𝐻−𝑖,𝑗. 
e) 𝑅4 = id𝕄1. 
f) (𝑅𝑘)−1 = 𝑅4−𝑘 where 𝑘 ∈ {1,2,3,4}. 
g) {id𝑀𝟙 ,𝑅,𝑅2,𝑅3} with function composition is a group. 

Proof. a) 
(⇒): substituting 𝑗 with 𝑊 − 𝑗 in the left-hand side results in desired identity. 
(⇐): given that 𝑅(𝑋)𝑊−𝑗,𝑖 =  𝑋𝑖,𝑗 holds re-index using 𝚥 ̅ = 𝑊 − 𝑗 and 𝑊 − 𝑗, 𝑖 to obtain 

identity on the left-hand side. 

 
Proof. b) 

𝑅 is injective. To show this fact let's assume that it's not, then there are 𝑋 and 𝑌 such that 𝑋 ≠ 𝑌 
and 𝑅(𝑋) = 𝑅(𝑌). If 𝑋 and 𝑌 don't agree on their dimensions, 𝑅(𝑋) and 𝑅(𝑌) will have different 
dimensions as well, leading to contradiction. If 𝑋 and 𝑌 agree on dimensions then 𝑋 ≠ 𝑌 entails 
that there's at least one pair of indices 𝑖0, 𝑗0 such that 𝑋𝑖0,𝑗0 ≠ 𝑌𝑖0,𝑗0, but then using a) 𝑅(𝑋)𝑊−𝑗,𝑖 =
𝑋𝑖,𝑗 ≠ 𝑌𝑖,𝑗 = 𝑅(𝑌)𝑊−𝑗,𝑖 which leads to contradiction again. 
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𝑅 is surjective. Given any matrix 𝑌 ∈ 𝕄1 one can construct 𝑋 ∈ 𝕄1 such that 𝑋𝑖,𝑗 = 𝑌𝑊−𝑗,𝑖 for 
every appropriate index, hence 𝑅(𝑋) = 𝑌. Hence 𝑅 is surjective. 

Proofs of c), d), e) and f) follow from repeated application of definition of 𝑅. 
Proof. g) 

From a) it follows that 𝑅 is a member of Auto(𝕄1), hence ⟨𝑅⟩ a is group generated by 𝑅. From e) it 
at most of order 4. 𝑅1 and 𝑅3 clearly be identity maps since it exchanges dimension of rectangular 
matrix. Neither 𝑅(2) is an identity map since if we take a particular matrix 𝑋 ∈ ℝ(𝐻+1)×(𝑊+1) such 
that 𝑋𝑖,𝑗 = δ0,𝑖δ0,𝑗 and either 𝐻 or 𝑊 differs from 0, then 𝑅2(𝑋) ≠ 𝑋. 

QED 
Observation 3.2. Following five statements are equivalent: 

a) 𝐾 = 𝑅(𝐾). 
b) 𝑅(𝐾) = 𝑅2(𝐾). 
c) 𝑅2(𝐾) = 𝑅3(𝐾). 
d) 𝑅3(𝐾) = 𝐾. 
e) 𝐾 = 𝑅−1(𝐾). 

Proof. 

Since 𝑅 is a function, most arguments are trivial. 

• b) follows from a). 
• c) from b). 
• d) follows from c) and observation 1.e. 
• follows from d) and observation 1.e. 
• is the same statement as d), based on observation 1.f. 

QED 
We'll also need following two simple observations: 

Observation 3.3. 

𝑅([𝐾⊗𝑋])𝑖,𝑗 = ��𝐾𝑢,𝑣𝑋𝑗+𝑢,𝑊−𝑛−𝑖+𝑣

𝑛

𝑣=0

𝑛

𝑢=0

. 

Proof. 

This follows from first applying definition of 𝑅 followed definition of convolution. 

𝑅([𝐾⊗𝑋])𝑖,𝑗 = [𝐾⊗𝑋]𝑗,𝑊−𝑛−𝑖 = ��𝐾𝑢,𝑣𝑋𝑗+𝑢,𝑊−𝑛−𝑖+𝑣

𝑛

𝑣=0

𝑛

𝑢=0

. 

QED 
Observation 3.4. 

[𝐾⊗𝑅(𝑋)]𝑖,𝑗 = ��𝐾𝑛−𝑣,𝑢𝑋𝑗+𝑢,𝑊−𝑛−𝑖+𝑣

𝑛

𝑣=0

𝑛

𝑢=0

. 

Proof. 

[𝐾⊗𝑅(𝑋)]𝑖,𝑗 = ��𝐾𝑢,𝑣𝑅(𝑋)𝑖+𝑢,𝑗+𝑣

𝑛

𝑣=0

𝑛

𝑢=0

= ��𝐾𝑢,𝑣𝑋𝑗+𝑣,𝑊−(𝑖+𝑢)

𝑛

𝑣=0

𝑛

𝑢=0

. 



GESJ: Computer Science and Telecommunications 2023|No.1(63) 
ISSN 1512-1232 

 

  42  

(interchange order of summation and rename 𝑢 to 𝑣 and 𝑣 to 𝑢) 

��𝐾𝑢,𝑣𝑋𝑗+𝑣,𝑊−(𝑖+𝑢)

𝑛

𝑣=0

𝑛

𝑢=0

= ��𝐾𝑣,𝑢𝑋𝑗+𝑢,𝑊−(𝑖+𝑣)

𝑛

𝑣=0

𝑛

𝑢=0

. 

(reversing the order of summation with respect to 𝑣) 

��𝐾𝑣,𝑢𝑋𝑗+𝑢,𝑊−(𝑖+𝑣)

𝑛

𝑣=0

𝑛

𝑢=0

= ��𝐾𝑛−𝑣,𝑢𝑋𝑗+𝑢,𝑊−�𝑖+(𝑛−𝑣)�

𝑛

𝑣=0

𝑛

𝑢=0

= ��𝐾𝑛−𝑣,𝑢𝑋𝑗+𝑢,𝑊−𝑛−𝑖+𝑣

𝑛

𝑣=0

𝑛

𝑢=0

. 

QED 
Lemma 3.1. 

∃𝑛0 ≤ 𝑛�𝐾 ∈ ℝ𝑛0×𝑛0 ∧ 𝐾 = 𝑅−1(𝐾)� ↔ ∀𝑋 ∈ 𝕄𝑛(𝑅([𝐾⊗𝑋]) = [𝐾⊗𝑅(𝑋)]). 

Proof. 

(⇒): If ∀𝑢,𝑣 ∈ {0,1,⋯ ,𝑛}�𝐾𝑢,𝑣 = 𝐾𝑛−𝑣,𝑢� for some 𝑛 then given an 𝑋 ∈ 𝕄𝑛 

𝑅([𝐾⊗𝑋])𝑖,𝑗 = ��𝐾𝑢,𝑣𝑋𝑗+𝑢,𝑊−𝑛−𝑖+𝑣

𝑛

𝑣=0

𝑛

𝑢=0

= ��𝐾𝑛−𝑣,𝑢𝑋𝑗+𝑢,𝑊−𝑛−𝑖+𝑣

𝑛

𝑣=0

𝑛

𝑢=0

= [𝐾⊗ 𝑅(𝑋)]𝑖,𝑗. 

(⇐): To show the other direction we'll show the contrapositive. 

∃𝑢, 𝑣 ∈ {0,1,⋯ , 𝑛}�𝐾𝑢,𝑣 ≠ 𝐾𝑛−𝑣,𝑢� ⇒ ∃𝑋 ∈ 𝕄𝑛(𝑅([𝐾⊗𝑋]) ≠ [𝐾⊗𝑅(𝑋)]). 

Let's say 𝑢0 and 𝑣0 are such indices that 𝐾𝑢0,𝑣0 ≠ 𝐾𝑛−𝑣0,𝑢0. 

Let 𝑋 ∈ ℝ(𝑛+1)×(𝑛+1) (of same size as 𝐾) such that 𝑋𝑖,𝑗 = δ𝑢0,𝑖δ𝑣0,𝑗. 

Then 𝑅([𝐾⊗𝑋]) = 𝐾𝑢0,𝑣0) and ([𝐾⊗𝑅(𝑋)] = 𝐾𝑛−𝑣0,𝑢0. Hence 𝑅([𝐾⊗𝑋] ≠ [𝐾⊗ 𝑅(𝑋)]). 

QED 
Corollary 3.1. 

∀𝑋 ∈ 𝕄𝑛(𝑅([𝐾⊗𝑋]) = [𝐾⊗𝑅(𝑋)]) ↔ 𝐾 ∈ { 𝑘 ∈ ℝ𝑛0×𝑛0| 𝑛0 ≤ 𝑛,𝑅(𝑘) = 𝑘}. 
4. Final remarks 
For rotational symmetries, a filter is necessarily a square matrix. But for horizontally and vertically 
symmetric convolutions it can be any rectangular matrix. Following the same reasoning presented 
in previous sections one can derive 𝐾 = 𝐻(𝐾) and 𝐾 = 𝑉(𝐾) are necessary and sufficient 
conditions for convolution to be equivariant with respect to 𝐻 and 𝑉 respectively, where 𝐻 reversed 
order columns and 𝑉 reverses the order of rows. 
A kernel size greater than 3x3 is needed if one wants solely rotational symmetry and no horizontal 
or vertical symmetries; otherwise, such kernels, by construction, will necessarily have horizontal 
and vertical symmetries. 

While implementing such a rotationally equivariant kernel, other parts of the network should satisfy 
the same criterion. But one can check that the most widely used components like elementwise 
activation functions, batch norm [7], and residual connections [2] satisfy these conditions. 
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