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ABSTRACT: 

      The self-adjoint extension (SAE) procedure is considered in the Schrodinger equation 
for potentials behaving as an attractive inverse square at the origin of coordinates. This 
approach guarantees self-adjointness of the radial Hamiltonian in three dimensions. It is 
shown that the single bound state appears after such an extension, which depends on SAE 
parameter. The same parameter arises for the scattering case as well, when the extension is 
made by orthogonality requirement. The closed form is derived for the modified scattering 
amplitude, which consists an extra factor depended on the SAE parameter. That guarantees 
the appearance of the same bound state in the form of the scattering amplitude pole. So, the 
generalization of pragmatic method is demonstrated in case of continuous spectrum.    
Key words: self-adjoint extension, Schrodinger equation, additional solutions, bound states, 
scattering amplitude  

1. Introduction 

The inverse squared 2r−  potential receives a widespread attention in various problems of quantum 
mechanics. Number of physically significant quantum mechanical problems manifest in such a 
behavior.  
Detailed consideration of papers devoted to problems concerning with this potential put in doubt the 
motivations for neglecting of so-called additional (singular) solutions, which are based on 
mathematical sets of quantum mechanics without invoking of specific physical ideas.   
The aim of this article is to include the singular solution into consideration by using a well-known 
procedure of self-adjoint  extension (SAE)  , in particular, a “pragmatic approach”, which is much 
simpler than general Weil method. 
This article is constructed as follows: Sec I is devoted to discussion of Schrodinger radial equation and 
applied notations, classification of singular potentials, characterization of accepted areas of parameters. 
In Sec II the orthogonality requirement is considered for bound states, as the main method of used self-
adjoint extension. It is shown, that the hermiticity of Hamiltonian is proportional to orthogonality 
condition of its solutions.  Therefore, the requirement of orthogonality at the origin guarantees SAE, 
though this procedure introduces an extra arbitrary parameter. Then in Sec. IV SAE for a pure inverse 
squire potential is carried out and the existence of a single bound state is established. Further, the Sec V 
and VI are devoted to SAE in case of scattering (continuous states). The pragmatic orthogonality 
extension is applied again and the standard, as well as additional (singular) solutions are retained and 
the appearance of a single bound state, as a pole of partial scattering amplitude is obtained. The 
corresponding scattering phases are also calculated.   
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Bound states (discrete spectrum) 

 The full radial wave function  ( )R r  satisfies the following Schrodinger equation in 3-dimensions  

                                     ( )[ ] ( ) 0122
22

2

=
+

−−++ R
r
llRrVEm

dr
dR

rdr
Rd                                                     (2.1) 

    The traditional change of variables in quantum mechanics eliminates the first derivative term from 
this equation by the following substitution  

                                                              
r
rurR )()( = ,                                                                             

(2.2)                          
which in turn, gives the equation for the reduced radial wave function ( )ru  

                                   ( ) ( ) ( ) ( )[ ] ( ) 021
22

2

=−+
+

− rurVEmru
r
ll

dr
rud ,                                               (2.3) 

only if the following boundary (Dirichlet) condition is required  

                                                            ( ) 00 =u ,                                                                                       
(2.4) 

irrespective the potential is regular or singular.   The following classification for potentials is known in 
case of Schrodinger equation.  

1. Regular potentials: if 
              ( )2

0
lim 0
r

r V r
→

=                                                                                                            (2.5) 

        In this case the radial function  ( )u r   behaves as 

                            )1(
210

lim +−

→
+= ll

r
rCrCu                                                                        (2.6) 

where l  is orbital momentum. The second term in this expression is singular, it does not satisfy the 
condition (2.4) and therefore, must be neglected ( )2 0C = . 

2. Strong singular potential, for which  
 
                             ( )2

0
lim
r

r V r
→

→ ±∞                                                                                            (2.7) 

In this case the”falling onto center” takes place.  
3. It is interesting to study potentials with intermediate behavior, called “transitive potentials”   

                                 ( ) ( )2
0 00

lim 0
r

r V r V V const
→

→ ± = >                                                    (2.8)  

Two signs here correspond to repulsive (+) and attractive (-) potentials, correspondingly. For such a 
potential it follows the following asymptotics near the origin  
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                           ( ) 1/2 1/2 1/2 1/2

0
lim P P P P

st add st addr
R r Ar Br a r a r R R− + − − − + − −

→
= + = + ≡ + ,            (2.9) 

where  

                              ( )2
01/ 2 2 0P l mV= + − >                                                                       (2.10) 

Hence we have two regions for this parameter P : 
                                  0 1/ 2P≤ <      and        1/ 2P ≥                                                             (2.11)    

In both of them the wave function ( )R r is normalizeble  

                                    ( ) 22

0

1r dr R r
∞

=∫   (for bound states)                                                             

(2.12)                                                                                        

In the first interval the second term, 1/2 P
add addR a r− −=  must also be retained, because the boundary 

condition is also fulfilled for it. The potential like (2.8) was firstly considered by K.Case [1], but he 

ignored the second term in a solution. As regards of a region
2
1

≥P , only the first term 

1/2 P
st stR a r− +=   survives. 

     From the positivity of P  and from inequality 1/ 2P <  it follows conditions of existency additional 
states, which restrict the parameter 02mV  in the following interval 

                                                                       ( ) 01 2 ( 1) 1/ 4l l mV l l+ < < + +                                             
(2.13)                                                

 Intervals from the left and from the right sides have no crossing and therefore, if additional solution 
exists for fixed 0V  and for some l , then it is absent for another l .  

     We see that in the 0=l  state except the standard solutions there are additional solutions as well for 
arbitrary small 0V , while for 0≠l  the “strong” field is necessary in order to fulfil (2.13).  

  As was shown in [2] there are no satisfactory arguments in the framework of quantum mechanics, 
which avoid this additional solution self-consistently. 

    Therefore, one has to retain this additional solution and study its consequences. 

2. Introduction of the SAE parameter (discrete case) 

The operator A  is called Hermitian (or symmetric)  if for any functions u  and  υ  it satisfies the 
condition  

                                                          ˆ ˆ ˆA u A u A uυ υ υ+= =                                                              

(3.1)            

For self-adjointness it is required in addition that the domains of functions of operators A  and A+  
would be equal. As a rule, the domain of A+  is wider and it becomes necessary to make a self-adjoint 
extention of the operator A .  



GESJ: Physics 2023 | No.2(29) 
ISSN 1512-1461 

 

39 

       There exists a well-known powerful mathematical apparatus for this purposes [3,4]. We use below 
fairly simple approach, so-called “pragmatic approach”, which is much simpler and gets the same 
results as the strong mathematical full SAE procedure. Moreover, this method is physically more 
transparent.  

Considering the full radial Hamiltonian  

                                              ( ) ( )
2

2 2

12 2R

l ld dH mV r
dr r dr r

+
= − − + + ,                                                         

(3.2) 

it is easy to see that for any two eigenfunctions 1R  and 2R  corresponding to the levels 1E  and 2E  of it, 
the  condition (3.2)  takes the following form  

                                                     ( )2 2
1 2 2 1 2 1 1 2

0 0 0

ˆ ˆ 2R RR H R r dr R H R r dr m E E R R dr
∞ ∞ ∞

∗ ∗ ∗− = −∫ ∫ ∫                     

(3.3) 

We see that a self-adjointness condition is proportional to the orthogonality integral, therefore these two 
conditions are mutually dependent. As the self-adjoint operator has orthogonal eigenfunctions, 
requirement of orthogonality automatically provides self-adjointness of RH , which means that this way 
provides a realization of SAE procedure. It is an essence of the “pragmatic approach”[5].  

      In case of regular potentials (2.5) , as mentioned above, we retain only regular solutions, which 
behaves as  

                                                                                1

0

l
st st

r
R a r +

→
≈                                                                       

(3.4) 

 Calculating the right-hand side of Eq.(3.3) by this behavior, and taking into account the decaying 
asymptotic at infinity (bound states),  we get zero. Therefore, for regular potentials the radial 
Hamiltonian  RH  is a self-adjoint operator.  

    Contrary to this, for the inverse square potential one has to retain the additional solution 
1/2

0

P
add add

r
R a r− −

→
≈  as well. Now the right-hand side of (3.1) is not zero in general, but is 

                                                         ( ) { }2
1 2 1 2 1 2 1 2

0
st add add stm E E R R r dr P a a a a

∞
∗− = −∫                        (3.5) 

where constants , ( 1, 2)ist iadda a i =  are defined in (2.9).  

    Thus, retaining of additional solution causes breakdown of orthogonality and, consequently, RH  is 

no more a self-adjoint operator.  

It is natural to ask – how to fulfil the orthogonality condition? It’s clear, one must require  



GESJ: Physics 2023 | No.2(29) 
ISSN 1512-1461 

 

40 

                                                                            1 2 1 2 0st add add sta a a a− =                                                 
(3.6) 

or equivalently  

                                                                             1 2

1 2

add add

st st

a a
a a

=                                                                 

(3.7) 

In this case the radial Hamiltonian RH  becomes a self-adjoint operator. This generalizes the Case result 
[1].     

Therefore it is necessary to introduce so-called self-adjoint extension (SAE) parameter, defined as  

 

                                                                              add
B

st

a
a

τ =                                                                       

(3.8) 

Bτ  parameter is the same for all  levels (with fixed orbital momentum l ) and is real for bound states. 
From above considerations it is clear that we have three particular cases: 

(i)  If ( )0 0add Ba τ= = , we have only standard solutions. 

(ii) If ( )0st Ba τ= = ∞ ,  we keep only additional solutions. 
(iii) If 0,Bτ ≠ ±∞ , solutions are neither pure standard nor pure additional. In  this case SAE 
parameter becomes arbitrary one and it may be restricted only from some physical resonings.  
 
 
4. What is new for Inverse square potential when we retain additional solutions?  
 

 Consider the following potential                                                           

                                                     
2
0

r
V

V −= ,       00 >V                                                                     (4.1) 

in the whole space.  There is only one worthy case, namely 0 1/ 2P≤ < .   

Now the wave function ( )R r  for 0=E  has the form (2.9) in the whole space. It has a single zero, 

determined by  

                                                    
1/2

0

PBr
A

 = − 
 

                                                                                   (4.2) 

Therefore, the wave function has only one node and according to well-known theorem we have one 

bound state only. This result differs from that considered in any textbooks of quantum mechanics. 
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   We can give very simple physical picture of how the additional solutions arise. For this purpose, let 

us rewrite the Schrodinger equation near the origin for attractive potential (4.11) in the form 

                                                       [ ] 0)(22
=−+′+′′ RrVEmR

r
R ac                                                             (4.3)                                                    

where 

                                                                 
2

2

2
4/1

mr
PVac

−
=                                                                           (4.4) 

   Consider the following possible cases: 

i). If 1/ 2P > , then 0>acV  and it is repulsive centrifugal potential and as we saw, one has no 

additional solutions. 

ii). If 0 1/ 2P≤ < , then 0<acV . Therefore, it becomes attractive and is called as quantum anti-

centrifugal potential [4.7]. This potential has addR  states, because the condition (2.4) is fulfilled in this 

case. 

iii). If ,02 <P then acV becomes strongly attractive and one has “falling to the center”.  

   Therefore, the sign of the potential acV  determines whether we need additional solutions or not. 

   It was thought that potential (4.1) had no levels out of region of “falling to the center” (See e.g. 

[6,7]), but in [8-10] single level was found by complete SAE procedure, while the boundary condition 

and the range of parameter, like P, are questionable there. Here we’ll show explicitly that this potential 

has exactly a single level, which depends on the SAE parameter τ .  

   Let’s take the Schrodinger equation for potential (4.1) 

                                       04/12
2

2
2

2

2
=









 −
−−++ R

r
Pk

dr
dR

rdr
Rd                                             (4.5)     

        where P  is given by (2.10)  and  

                                                        ;022 >−= mEk   )0( <E                                                                 (4.6) 

   One can reduce Eq.(4.5) to the equation for modified Bessel functions by substitutions 

                                 krx
r
rfrR == ;)()(                               (4.7) 

    leading to the following equation  

                        ( ) 0)()()( 22
2

2
2 =+−+ xfPx

dx
xdfx

dx
xfdx                        (4.8) 
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   This equation has 3 pairs of independent solutions[11]: )(krI P and )(krI P− , )(krI P  and )(krKe P
Piπ , 

)(krI P−  and  )(krKe P
Piπ  ,where )(krI P  and  )(krK P  are  Bessel and MacDonald modified  functions 

[11], respectively. Consider these possibilities separately:  

1) The pair )(krI P  and  )(krI P− : 

      The general solution of (4.5) is      

                                                    [ ])()(2
1

krBIkrAIrR PP −
−

+=                                                                   (4.9) 

   Consider the behaviour of this solution at small and large distances: 

a) Small distances 

      In this case [11] 

                                                              
)1(

1
2

)(
0 +Γ







≈

→ P
zzI

P

z
P                                                                     (4.10) 

Then it follows from (4.9) and (4.10) that 

                                  












−Γ






+

+Γ






≈

−−−

→ )1(2)1(2
)(lim 2

1

0 P
rkB

P
rkArrR

PPPP

r
                                                   (4.11) 

From (2.9), (4.11), (3.9) and the definition (3.10) we obtain  τ, 

                                                           ( )
( )

2 1
2

1
P P

B

PB k
A P

τ − Γ +
=

Γ −
                                                                     

(4.12) 

b) Large distances 

     In this case [11]  

                                                                       
z

ezI
z

z
P

π2
)( ≈

∞→
                                                                           

(4.13) 

and  

                                                           { } kr

r
eBArR +≈

∞→ π2
1)(                                                              (4.14)                                                   

  Therefore, requiring vanishing of )(rR  at infinity, we have to take 

                                                                     AB −=                                                                                         

(4.15)  
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and from (4.12), (4.15) and (4.6) we obtain one real level (for fixed orbital l  momentum, satisfying 

(3.1)),  

                                                              ( )
( )

1 1

12 1
1

P P

B

P
E

m P τ
 Γ +  

= − −   Γ −   
 ;   2/10 << P                                     

(4.16) 

Eq. (4.16) is a new expression derived as a consequence of orthogonality condition in the framework of 

“pragmatic” approach.  

   In general, τ is a free parameter but some physical requirements may restrict its magnitude. For 
example, reality of energy in (4.16) restricts τ parameter to be negative 0<τ .  Note also that, as it is 
clear from the derivation of (4.16), this level disappears for standard quantum mechanics ( 0=τ ) and 

±∞=τ , and for   these values scale invariance is restored.  

          To obtain corresponding wave function, take into account   a well-known relation [11] 

                                                 [ ])()(
sin2

)( zIzI
P

zK PPP −= −π
π                                                                (4.17) 

Then the wave function corresponding to the level (4.16) is 

                                                    )(sin2 2
1

krKPrAR P⋅−=
−

π
π

                                                                 (4.18) 

  Because of exponential damping  

                                                     z

z
P e

z
zK −

∞→
≈

2
)( π                                                                                       (4.19) 

 the function (4.18) corresponds to the bound state.  It is also known that )(zK P  function has no zeroes 
for real P  )2/10( << P and therefore (4.16) corresponds to a single bound state.  Moreover, wave 
function (4.18) satisfies the fundamental condition (4.16) for  2/10 << P . 

2)   The pair )(krI P  and  )(krKe P
Piπ ;   

      The general solution of (4.5)   is 

                                            



 +=

−
)()(2

1

krKBekrAIrR P
Pi

P
π                                                         (4.20) 

At large distances   

                                                       ( ) ( )1lim
2 2

kr
kr i P kr

r

eR r Ae Be e Aπ π
π π

−

→∞
≈ + ≈                         (4.21) 

   Therefore, we have no bound states.  
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   The same follows for pair )(krI P−  and )(krKe P
Piπ . Thus, only pair )(krI P  and )(krI P−  has a single 

bound state.   

Noting that the consideration of all possible pairs of solution is, in general, necessary, because 

there is no guide principle, by which one can guess which pair must be considered. 

               

        V. Orthogonality requirement in the scattering problems     

   Let us return to pure inverse square potential (4.1 )  again. 

   For scattering problem the general solution of Schrodinger equation with potential (4.1) is  

                               ( ) ( ) ( ) ( ) ( ){ } 2/ ; 2 , 0P PR r k r A k J kr B k J kr k mE E−= + = >                  (5.1)  

 The orthogonality condition, that must obey the radial function, now has a form  

                                                   ( ) ( ) ( )2

0

2k kI r drR r R r k kπδ
∞

∗
′ ′= = −∫                                                 (5.2) 

      After substitution the Eq.(5.1) into (5.2) we meet integrals like   

                                                  ( ) ( ) ( )
0

P P

k k
J k r J kr rdr

k k
δ∞ ′ −

′ =
′∫ ,                                                               (5.3) 

                                                  ( ) ( ) ( )
( )2 2

0

2sincos
P

P P

k k P kJ k r J kr rdr P
kk k k k

δ ππ
π

∞

−

′ −  ′ = +  ′′ ′−  ∫ ,               (5.4) 

Using them, we derive  

 ( ){ } ( ) ( ) ( ) ( ) ( ) ( )2 2

2sincos
P PP k kI AA BB AB A B P k k B k A k A k B k

k kk k
ππ δ

π

−
∗ ∗ ∗ ∗ ∗ ∗

     ′ ′ ′= + + + − + −    ′ ′′−      
                    

(5.5) 

Comparing (5.2) and (5.5), we conclude that in order to satisfy the  Eq.(5.2) the vanishing of last 
bracket in (5.5) is necessary, i.e. 

                                            ( )
( ) ( ) ( )

( ) ( )2 2P P
S

B k B k
k k

A k A k
τ

∗
− −

∗

′
′ = ≡

′
                                                                    (5.6) 

where the SAE parameter Sτ  is introduced for scattering processes.  This form shows that both side of 
Eq.(5.6) is independent of k  and, moreover, Sτ is a real number. Taking into account (5.6)  in the first 
line of (5.5), one can exclude the parameter B  in favour of A  and suppose k k′ = , allowing by the 
overall delta function  factor, we can equate the paranthesis to 2π and archive to fulfilment of 
orthogonality condición (5.2), require   
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                                             { }2 4 22 cos 1 2P P
S SAA k k Pτ τ π π∗ + + =                                                       (5.7) 

 It is remarkable to note that above relations can be derived more transparently by means of the 
Wronskian method. Using the radial equation (2.1) for both functions kR and  kR∗

′ by obvious 
manipulations it is easy to show that   

                                        ( ) ( ) 2
2 2

0 0

1lim lim
rr

k k
k k k kr r

du duR r R r r dr u u
k k dr dr

∗ ∗ ′
′ ′

→∞ →∞

 = − ′ −  ∫                          (5.8) 

Where, for convenience, we have temporarily introduced the notation  

                                                   ( ) ( ) ( ) ( ) ( ) ( ){ }j j j j P j j P ju r rR r k r A k J k r B k J k r−= = +   (5.9)                                                        

So, the orthogonality integral is expressed by the Wronskian of the reduced radial wave functions.   

From the asymptotic of the Bessel functions at the origin  

                                                                ( ) ( )0

1
2 1

P

P
z

zJ z
P→

 ≈   Γ + 
                                                             (5.10) 

we have 

                                        ( ) ( ) ( )1/2 1/2P P
k st addu r a k r a k r+ −≈ +  ,      at 0r →                                     (5.11) 

where  

                                      ( ) ( ) ( ) ( )
1/2 1/2

;
2 1 2 1

P P

st addP P
k ka k A a k B

P P

+ −

−= =
Γ + Γ −

                         (5.12) 

Then Eq.(5.8) gives at the lower boundary 

                                      ( ) ( ) ( ) ( ){ }2 20

2
st add st add

PI a k a k a k a k
k k

∗ ∗′ ′= −
′ −

                                    (5.13) 

which is very like to the case of discrete states. For orthogonality one must require  

                                                             
( )
( )

( )
( )

add add

st st

a k a k
a k a k

∗

∗

′
=

′
                                                               (5.14) 

It generalizes the definition of SAE parameter for discrete case (3.9) and we see that B Sτ τ= . As 
regards of the relation (5.2), it follows from uper boundary of the same integral (5.8).  

  

       VI. Partial Scattering Amplitude and Phase shift 

 

     The behavior of Bessel function at large distances is 
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                                                   ( ) 2 cos
2 4P

r

PJ kr kr
kr

π π
π

→∞

 ≈ − − 
 

                                                    (6.1) 

It gives the following asymptotic of radial function 

            
( ) ( ) ( ) ( )1/2 1/2 1/2 1/2

2 2 2 21 1lim
2 2

i P i P i P i Pikr ikr

r
R e Ae Be e Ae Be

r r

π π π π

π π

− + − + − −−

→∞

   
≈ + + +   

   
    (6.2) 

On the other hand,using the definition of scattering phase lδ  

                                           2lim sin
2 lr

lR kr
r

π δ
→∞

 ≈ − + 
 

                                                                    (6.3) 

one can write  

                                    ( ) ( ){ }/2 /21lim l li l i likr ikr

r
R e e e e

ir
δ π δ π− − +−

→∞
≈ −                                                     (6.4) 

Comparison with Eq.(5.2) gives  

                            
( ) ( ) ( )1/2 1/2 /22 21 1

2
l

i P i P i lAe Be e
i

π π
δ π

π

− + − − 
+ = 

 
                                                    (6.5) 

                      
( ) ( ) ( )1/2 1/2 /22 21

2
l

i P i P i lAe Be ie
π π

δ π

π

+ − − − − 
+ = 

 
                                                          (6.6) 

From these relations we derive the partial scatering amplitude 

                                    
( ) ( )

( ) ( )

( )
1/2 1/2

2 2
12

1/2 1/2
2 2

l

i P i P
i li

l
i P i P

Ae BeS e e
Ae Be

π π

πδ
π π

− + −
+

+ − −

+
= =

+
                                              (6.7) 

and finaly, by using Eq. (5.6) we get 

                                  
( ) 22 1/2

2
2

1
1

P i Pi l P S
l P i P

S

k eS e
k e

π π

π

τ
τ

+ −

−

+
=

+
                                                                   (6.8) 

    Remark that here the fraction is a new factor, which appears owing to   SAE procedure.  

 Let us show that the Eq. (6.7) gives correct physical results.  

(a) when 0 ( 0)S or Bτ = =  the standard result follows  

                                             ( )exp 2 1/ 2
2

st
l lS S i l P π = = + −  

                                   (6.9) 

(b) when ( 0)S or Aτ = ±∞ = , it follows additional partial amplitude  

                                                     
( )2 1/2

2
i l Padd

lS e
π

+ +
= ,                                                           (6.10) 
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which can be derived from previous result by changing P P→− . 

(c) Let us now derive the additional bound state energy as a pole of (6.8). It is evident that this pole 
must be emerged from the additional multiplier of (6.8) as a consequence of   SAE.  Consider 
this fraction  

                             

( )
( )
( )
( )

2

2

1
1

1
1

1
1

P i P
S

P i P
S

P
k e

P
Q

P
k e

P

π

π

τ

τ −

Γ −
+

Γ +
=

Γ −
+

Γ +

                                                            (6.11)                                                    

and perform needed change for transition to bound states, namely k iκ→  or 
( )2 2 2 , 0k mE Eκ= − = < . In this case (6.8) has a pole at  

                                                        ( )2 1
P i P

Se πκ τ −− = −                                                         (6.12) 

 

 

or at  

                           ( )
( )

1/ 1/12 1 , 0 1/ 2
1

P P

S

P
E P

m P τ
 Γ +  

= − − < <   Γ +    
,                                     (6.13) 

      

which coincides with (4.2) because S Bτ τ=   

     Now we want rewrite a scattering phase in different form by using following relation 

 

                                                                  
12 tan 1

1
i z ize

iz
− +

=
−

                                                             (6.14) 

then (6.7) can be rewritten as  

                                                                            2 li
lS e δ=

 ,                                                              (6.15) 

where 

                                    [ ]
2

1
2

sin1/ 2 tan
2 1 cos

P
S

l st SAE P
S

k Pl P
k P

τ ππδ δ δ
τ π

−= + = + − +
+

                            (6.16) 

Here the second term is new and  gives rise from SAE procedure    

                                                
2

1
2

sintan ,
1 cos

P
S

SAE P
S

k PX X
k P

τ πδ
τ π

−= =
+

                                (6.17) 
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Let us make some comments: 

(i) This part of phase shift depends on energy ( )2 2k mE= , therefore it violates the scale 

invariance, which may be restored only for three values of SAE parameter, 0Sτ =   and  Sτ = ±∞ . 
(ii) We considered from the beginning attractive potential, for which 0stδ > . But it seems from 

(6.16) that the full phase the shift may become negative, or potential acquires repulsive character. There 
appears two alternatives: restrict the SAE parameter so that potential remains attractive -- 0lδ >  or 
allow the alteration of nature of potential by SAE procedure.      

VII.  CONCLUSIONS 

In this article we have considered a pragmatic approach for a self-adjoint extension in the Schroedinger 
equation in case of an inverse square potential in both disctrete as well as scattering states. Our 
consideration concerns to the three dimentional quantum mechanics.  As an explicit example we 
considered a pure 2r− attractive potential. The following new results are derived:  

(i) We find a single bound state depended on SAE parameter; 
(ii) Generalized the method to continuous spectrum (scattering processes); 
(iii) We find a modified partial wave amplitude after SAE, which consists an extra factor owing 

to the extension  procedure, that has a  single pole for bound state; 

In conclusion let us note that Hamiltonians of physically significant quantum-mechanical  problems 
manifests in such 2r−  behavior. Hamiltonians with inverse square behavior appear in many systems and 
they have sufficiently rich physical and mathematical structures Examples of such systems are: 
conformal quantum mechanics [12], Aharonov-Bohm effect [13], Dirac monopoles [14], valence 
electron model for hydrogen-like atoms in quantum mechanics [15], the theory of black -holes [16], 
Calogero model [17], etc. At small distances 2r−  like potentials have singular solutions together with 
regular ones. As a rule such solutions  are ignored from consideration, but by our opinion this action is 
not always reasonable and legitimate. Our investigation above substantiates  evident usefulness of used 
methods. Therefore, we will return to these problems in subsequent publications.  
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