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 Abstract. The presence of magnetic nanoparticles in the area of a malignant tumor 
significantly reduces the spin-spin relaxation time of water protons in the body.   The 
phenomenon of reducing the relaxation time of the transverse component of 
magnetization when introducing magnetic nanoparticles into the body called "magnetic 
relaxation switching" (MRSw), makes it possible to detect the presence of a malignant 
tumor in the human body.  In this work, we obtained the criteria that the parameters of 
magnetic nanoparticles (diameter, concentration, and magnetic moment) must meet so 
that the change in the relaxation time would be noticeable during switching. 

 Keywords: magnetic relaxation switching, magnetic nanoparticles, bio-nano 
diagnostics. 

 

1. Introduction 

At present, the phenomenon of magnetic resonance is used not only for the study of various 
medical and biological objects, but is also widely used in clinical practice [1-8.  The method of 
medical diagnostics based on the use of magnetic nanoparticles as non-contact biosensors is a 
rapidly developing area of medicine. The presence of magnetic nanoparticles in the area of diseased 
tissue significantly reduces the spin-spin relaxation time of water protons in the body.   The 
phenomenon of reducing the relaxation time of the transverse component of magnetization called 
"magnetic relaxation switching" (MRSw), makes it possible to detect the presence of a malignant 
tumor in the human body.   

Consequently, the mechanisms and theoretical models of relaxation of the magnetization of 
water protons 𝑴 of biological fluids containing magnetic nanoparticles are discussed in detail. Here 
is a brief description of the phenomenon of a decrease in the time of transverse relaxation 𝑇2 due to 
the presence of magnetic nanoparticles in the biological fluid. 

 The process of transverse relaxation can be represented as follows [9]. In a strong magnetic 
field of induction  𝑩0, directed along the axis 𝒛, the macroscopic paramagnetic magnetization of the 
proton 𝑴 system performs precession with a Larmor frequency around the axis 𝒛,𝜔𝐼 = 𝛾𝐵0, where 
is the gyromagnetic ratio 𝛾 = 2,67 ∙ 108𝑟𝑎𝑑 𝑠𝑇⁄  (Fig.1a). As a result of the action of a resonant 
𝜔 = 𝜔𝐼  radiofrequency pulse with amplitude ℎ and duration 𝜏0 = (𝛾ℎ 2𝜋⁄ )(𝜋 2)⁄ , the 
magnetization 𝑴 will deviate by an angle 𝜋 2⁄  and be directed along the axis  𝑥  (Fig.1.b). The 
interaction between the magnetic moments of individual particles during time 𝑇2  leads to a 
complete dephasing of the precession of individual moments (Fig.1.c) and during time 𝑇2  - to 
relaxation of the transverse component of magnetization (Fig.1.d). The introduction of magnetic 
nano-particles 𝑖𝑛 𝑣𝑖𝑣𝑜 into the system that marked diseased cells can lead to a noticeable decrease 
in relaxation time 𝑇2𝑆 < 𝑇2 (Fig. 1.e).  
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 Fig.1. Relaxation of the transverse component of magnetization. a) Larmor precession of 
magnetization (synchronous precession of individual magnetic moments); b) Deviation of 
magnetization by angle  𝜋 2⁄ ;  c) Disphasing of the precession of the moments of individual 
particles;  d) Relaxation of the transverse component;  e) Relaxation of the transverse component in 
the presence of magnetic nanoparticles in the system. 

 In this paper, we present a quantum-mechanical consideration of the theory of transverse 
relaxation of protons in a biological fluid, both in the presence of magnetic nanoparticles in it and in 
its absence. The criteria for detecting the phenomenon of "magnetic relaxation switching" are 
established. 

2. Master Equation for Density Matrix 

Motion of a System Subject to Random Perturbation 

  In this section, we consider the density matrix theory for the case where the perturbation is a 
random function of time [10]. 

         The equations of motion for the density matrix  𝜌 have the form 

                  1
𝑖
𝑑𝜌
𝑑𝑡

= −[ℋ0 + ℋ1(𝑡),𝜌]                         (1)           

where perturbation Hamiltonian  ℋ1(𝑡)  is a stationary random operator. In the interaction 
representation, given that 

                          𝜌� = 𝑒𝑖ℋ0𝑡ℋ1(𝑡)𝑒−𝑖ℋ0𝑡 ,        ℋ�1(𝑡) = 𝑒𝑖ℋ0𝑡ℋ1(𝑡)𝑒−𝑖ℋ0𝑡     (2)               

equation (1) is reduced to the form 

             1
𝑖
𝑑𝜌�
𝑑𝑡

= −�ℋ�1(𝑡),𝜌��.                           (3)                               

Integrating the last equation by the method of successive approximations up to the second order, we 
get 

𝜌�(𝑡) = 𝜌�(0) − 𝑖 ∫ �ℋ�1(𝑡′),𝜌�(0)�𝑑𝑡′𝑡
0 − ∫ 𝑑𝑡′𝑡

0 ∫ 𝑑𝑡′′𝑡′

0 [ℋ�1(𝑡′), [ℋ�1(𝑡′′),𝜌�(0)]],    

                                                                                                                        (4)                                          
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 From where, taking the derivative with respect to time, we obtain 

                     𝑑𝜌�
𝑑𝑡

= −𝑖�ℋ�1(𝑡),𝜌�(0)� − ∫ 𝑑𝑡′[ℋ�1(𝑡), [ℋ�1(𝑡′),𝜌�(0)]]𝑡
0 .         (5)              

Or by introducing a new variable into the integral, 𝜏 = 𝑡 − 𝑡 
′ 

                     𝑑𝜌�
𝑑𝑡

= −𝑖�ℋ�1(𝑡),𝜌(0)� − ∫ 𝑑𝜏[ℋ�1
𝑡
0 (𝑡), [ℋ�1(𝑡 − 𝜏),𝜌�(0)]]     (6)                         

Since ℋ1(𝑡)- is a random operator, then according to equation (6), the random operator 𝜌(𝑡) is a 
random operator as well. Then the observed behaviour of the statistical ensemble of the system S 
will be described by the mean operator 𝜌�̅, which satisfies the equation obtained by averaging 
equation (6) over an ensemble of all random Hamiltonians ℋ1(𝑡). It can always be assumed that 
ℋ1����(𝑡) = 0, in addition, the following assumptions can be made:  

 a) The correlation between  ℋ�1(𝑡) and 𝜌�(0) can be neglected; 

 b) Replacing 𝜌�(0) with 𝜌�(𝑡), apply a quasi-static approximation; 

 c) It is possible to extend the upper limit of integral (6) to  ∞; 

 d) All members of a higher order can be neglected. 

 Using these assumptions and omitting the dash 𝜌�̅, which means averaging, we write equation 
(6) in the form 

                      𝑑𝜌�
𝑑𝑡

= −∫ 𝑑𝜏[ℋ�1(𝑡), [ℋ�1(𝑡 − 𝜏),𝜌�(𝑡)]������������������������������]∞
0         (7)        

Operator form of the basic equation 

The random Hamiltonian ℋ1(𝑡) can be presented as the following row: 

                       ℋ1(𝑡) = ∑ 𝐹(𝑞)
𝑞 (𝑡)𝐴(𝑞)                  (8) 

where 𝐹(𝑞) − are the random functions of time, 𝐴(𝑞) − operators acting on the variables of the spin 
system. 

 We introduce the correlation function 

                             𝒢𝑞𝑞′(𝜏) = 𝐹(𝑞)(𝑡)𝐹(−𝑞′)(𝑡 + 𝜏)��������������������������       (9) 

and spectral density 

                                        𝒥𝑞𝑞′(𝜔) = ∫ 𝒢𝑞𝑞′
∞
−∞ (𝜏)𝑒−𝑖𝜔𝜏𝑑𝜏 .    (10) 

If  𝐹(𝑞) − complex functions and 𝐴(𝑞) −non-Hermitian operators, then in order ℋ1to be a Hermitian 
operator, each member 𝐹(𝑞)𝐴(𝑞) must be mapped to the member 𝐹(𝑞)� 𝐴(𝑞)†. Let's agree that 𝐹(−𝑞) =
𝐹𝑞′ ,𝐴(−𝑞) = 𝐴(𝑞)†. In the interaction representation for these operators we get 
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                       �̃�(±𝑞)(𝑡) = 𝑒𝑖ℋ0𝑡𝐴(±𝑞)𝑒𝑖ℋ0𝑡 = ∑ 𝐴𝑝
(±𝑞)

𝑝 𝑒𝑖𝜔𝑝
(±𝑞)𝑡 ,      (11) 

where 𝜔𝑝
(±𝑞) − are the natural frequencies of the respective operators. Then, taking into account (8), 

the Hamiltonians of the perturbation takes the form: 

                                   ℋ�1(𝑡) = ∑ 𝐹𝑞𝑝,𝑞 𝐴𝑝
(𝑞)𝑒𝑖𝜔𝑝

(𝑞)𝑡                  (12) 

where 𝐴𝑝
(𝑞) - the operators acting on the variables of the system S. 

 Replacing ℋ�1(𝑡) with expansion (12) in equation (7), neglecting non-secular terms, and 
assuming, for simplicity's sake, that random jumps of different molecules are not correlated, 

                     𝒢𝑞𝑞′(𝜏) = 𝛿𝑞𝑞′𝒢𝑞(𝜏)         (13)                 

 From equation (7) we get 

                     𝑑𝜌�
𝑑𝑡

= −1
2
∑ 𝒥𝑞𝑞,𝑝 (𝜔𝑝

(𝑞))[𝐴𝑝
(−𝑞), [𝐴𝑝

(𝑞),𝜌�]].        (14)              

Equation (14) is the master equation written in operator form. 

 The case in which the correlation time 𝜏𝑐 is so short that all products 𝜔𝑝
(𝑞)𝜏с ≪ 1 are so 

small that all spectral densities are independent of frequency and equal to 𝒥𝑞(0). This case is 
known as the case of the "white" spectrum.  It is also known as a case of strong narrowing of the 
shape of spectral density.  In this case, returning to the original representation by converting the 
basic equation (14) from the general form, we obtain 

             𝜌 = 𝑒−𝑖ℋ0𝑡𝜌�𝑒𝑖ℋ𝑡,           (15) 

From the general form of the basic equation (14) we obtain 

                              𝑑𝜌
𝑑𝑡

= −𝑖[ℋ0,𝜌] − 1
2

 ∑ 𝒥𝑞(0) �𝐴(−𝑞), [𝐴𝑞 ,𝜌]� .𝑞       (16)     

 

3. Equations for macroscopic quantities 

 If the operator 𝑄 acts on the variables of the system 𝑆, then the macroscopic quantity 𝑞(𝑡) 
observed in the experiment containing the set of spin systems corresponding to this operator is 
equal to 𝑞(𝑡) =< 𝑄 > =  𝑆𝑝{𝜌(𝑡)𝑄}. In most cases, in order to detect slow changes in the quantity 
𝑞(𝑡) due to the interaction ℋ1 (rather than the rapid motions described by the basic Hamiltonian 
ℋ0), it is more convenient to perform calculations in the interaction representation  

                  𝑞�(𝑡) =< 𝑄 >� = 𝑆𝑝{𝜌�(𝑡)𝑄}.            (17)                 
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 Sometimes it is possible to obtain the equation of motion for a quantity 𝑞�(𝑡) directly without 
solving the basic equation. Multiplying both sides of the operator equation (7) by 𝑄 and taking the 
trace, we get 

                   𝑑𝑞�
𝑑𝑡

= −𝑆𝑝(𝒜𝜌�),       (18)     

and the operator 𝒜 is defined by the expression 

                               𝒜 = ∫ 𝑑𝜏[ℋ�1(𝑡 − 𝜏), [ℋ�1(𝑡),𝑄]]�����������������������������∞
0   .     (19)                       

We used the perturbation expansion (12) and the simplifying assumption   𝒥𝑞,𝑞′ = 𝛿𝑞,𝑞′𝒥𝑞. 
After simple transformations from (20) we get  

                𝒜 = 1
2
∑ 𝒥𝑞𝑞,𝑝 �𝜔𝑝

(𝑞)� [𝐴𝑝
(𝑞), [𝐴𝑝

(−𝑞),𝑄]] .     (20)     

4. Relaxation due to the dipole-dipole interaction 

Dipole-dipole interaction operator 

Hamiltonian of interaction ℋ1 between two spins usually depend on the magnitude and 
orientation of their magnetic moments, as well as on the length and direction of the vector 
describing their relative location. One of the types of interaction between two spins is the dipole-
dipole interaction, the energy of which is described by the well-known expression [9,10] 

                  (ℋ1)𝐼𝑆 = (𝜇0
4𝜋

)2 𝛾𝐼𝛾𝑆ℏ
2

𝑟𝐼𝑆
3 {𝑰𝐼𝑰𝑆 − 3 (𝑰𝐼𝒓𝐼𝑆)(𝑰𝑆𝒓𝐼𝑠)

𝑟𝐼𝑆
3 }           (21)     

Here  𝑰𝐼,𝑆 are spin operators of two types, 𝛾𝐼,𝑆 − the gyromagnetic ratios of the spins of the two 
types, 𝑟𝐼𝑆 − the distance between the spins 𝐼 and 𝑆, 𝜇0 = 4𝜋 ∙ 10−7  𝐻 𝑚⁄ −the magnetic constant. 

 Let us write the dipole-dipole interaction (21) in the form of expansion (8), where 𝐹(𝑞) − 
random functions of the relative positions of the two spins, 𝐴(𝑞) − operators acting on spin 
variables. In the case under consideration  

           𝐹(1) = sin𝜃 cos𝜃𝑒−𝑖𝜑

𝑟3
,    𝐹(2) = sin2 𝜃𝑒−2𝑖𝜑

𝑟3
,   𝐹(3) = 1−3cos2 𝜃

𝑟3
,       (22)  

                              𝐴(0) = 𝛼{−2
3
𝐼𝑧𝑆𝑧 + 1

6
(𝐼+𝑆− + 𝐼−𝑆+)},                                                                     

                     𝐴(1) = 𝛼{𝐼𝑧𝑆+ + 𝐼+𝑆𝑧},           𝐴(2) = 1
2
𝛼𝐼+𝑆+               (23) 

                                            𝛼 = −3
2

(𝜇0
4𝜋

)2𝛾𝐼𝛾𝑠ℏ2.                     (24)               

 Let us assume that the random change in the orientation of the vector is isotropic, so that 
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          𝐹(𝑞)(𝑡)𝐹(𝑞′)(𝑡 + 𝜏)������������������������ = 𝛿𝑞𝑞′𝐺(𝑞)(𝜏),               (25)            

                   𝒥(𝑞) = ∫ 𝐺(𝑞)(𝜏)𝑒−𝑖𝜔𝜏𝑑𝜏∞
−∞ . 

Relaxation of the transverse magnetization component 

The time dependence of the amplitude of precessing magnetization in a plane perpendicular 
to the direction of the applied constant inductance field 𝐵0 can be studied by the method described 
above. Suppose that at the moment 𝑡 = 0 the magnetization is directed along the 𝑥 axis of the 
laboratory coordinate system. At the moment 𝑡, its amplitude is represented by the operator  

                              𝐼𝑥 cos𝜔𝐼 𝑡 + 𝐼𝑦 sin𝜔𝐼 𝑡 = 𝑒−𝑖ℋ0𝑡𝐼𝑥𝑒𝑖ℋ0𝑡     (26)                              

Its average value is 

            𝑆𝑝�𝑒−𝑖ℋ0𝑡𝐼𝑥𝑒𝑖ℋ0𝑡𝜌� = 𝑆𝑝{𝐼𝑥𝜌�} =< 𝐼𝑥 >� ,          (27)                    

and motion is described by the equation 

                               𝑑
𝑑𝑡

< 𝐼𝑥 + 𝐼𝑥′ >� = −𝑆𝑝{𝒜𝑥𝜎∗} = −< 𝒜𝑥 >,�       (28)                

where 𝒜𝑥 is determined by the ratio 

                              𝒜𝑥 = 1
2
𝒥(1)(𝜔𝐼) �𝐴(−1), �𝐴(1), 𝐼𝑥 + 𝐼𝑥′�� + H. C.      (29) 

                                + 1
2
𝒥(2)(2𝜔𝐼) �𝐴(−1), �𝐴(1), 𝐼𝑥 + 𝐼𝑥′�� +H. C. 

                       + 1
2
𝒥(0)(0) �𝐴(−1), �𝐴(1), 𝐼𝑥 + 𝐼𝑥′�� + 

Here, H.C. stands for Hermitian conjugation. 

As a result of simple calculations, taking into account the switching relations of spin operators and 
taking into account that 𝜔𝑝

(𝑞) → 𝑛𝜔𝐼 (𝑛 = 0,1,2) from (28,29) we get 

                                         𝑑
𝑑𝑡

< 𝐼𝑥 + 𝐼𝑥′ >� = − 1
𝑇2

< 𝐼𝑥 + 𝐼𝑥′� >    

where 

               1
𝑇2

= 𝛾𝐼4ℏ2𝐼(𝐼 + 1) �3
8
𝒥(2)(2𝜔𝐼) + 15

4
𝒥(1)(𝜔𝐼) + 3

8
𝒥(0)(0)�    (30)     

The obtained result (30) is easily generalized to the case where each spin interacts with several 
identical spins, provided that their movements are not correlated. To do this, it is enough to do the 
summation in (30) 

         {∙∙∙}  → ∑ {𝑘
3
8
𝒥𝑖𝑘

(2)(2𝜔𝐼) + 15
4
𝒥𝑖𝑘

(1)(𝜔𝐼) + 3
8
𝒥𝑖𝑘

(0)(0)} .              (31) 
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As a result of summing from (31) for the transverse relaxation rate, we get    

               1
𝑇2

= 𝛾𝐼2 < 𝜇𝐼2(𝑝𝐼) > �3
8
𝒥(2)(2𝜔𝐼) + 15

4
𝒥(1)(𝜔𝐼) + 3

8
𝒥(0)(0)�.     (32)    

here  

                                  < 𝜇𝐼2(𝑝𝐼) >= 𝜇𝐼2ℳ(𝑝𝐼)              (33)                    

is the statistical average of the square of the magnetic moments of the nuclear spins, 𝜇𝐼 =
𝛾𝐼ℏ�𝐼(𝐼 + 1) ≈ 2.3 ∙ 10−26𝑎 ∙ 𝑚2- the magnetic moment of the proton, 𝐼 = 1

2� − the spin of the 
proton, 

                  ℳ(𝑝𝐼) = ∫ exp(−𝑝𝐼 cos𝜃) cos2 𝜃 𝑑(cos𝜃)𝜋
0

∫ exp(−𝑝𝐼 cos𝜃)𝑑(cos𝜃)𝜋
0

= 1 + 2
𝑝𝐼
2 −

2
𝑝𝐼

cot(𝑝𝐼),       (34) 

where  

           𝑝𝐼 = 𝜇𝐼𝐵0/𝑘𝑇               

is a parameter of the Boltzmann factor. 

 For small values of the argument 𝑝𝐼 ≪ 1, expanding the function ℳ(𝑝𝐼) into the series 
cot(𝑝𝐼) ≈ 1 𝑝𝐼⁄ + 𝑝𝐼 3⁄ +∙∙∙, we obtain ℳ(𝑝𝐼 ≪ 1) ≈ 1 3⁄ , and for large values argument  𝑝𝐼 ≫ 1- 
saturation effect ℳ(𝑝𝐼 ≫ 1) → 1. In Fig. 2, which shows the function ℳ(𝑝), the asymptotic values 
of the function are connected by a dotted curve. At body temperatures in vivo in a magnetic field 
with induction 𝐵0 = 1 𝑇, a high-temperature approximation takes place -   𝑝𝐼 = 𝜇𝐼𝐵0 𝑘𝑇 ⁄ ≪ 1. 
Therefore, for the mean squared moment of protons from (33) we obtain < 𝜇𝐼2(𝑝𝐼) >≅ 𝜇𝐼2 3⁄  . 

In the case of small correlation times 𝑛𝜔𝐼𝜏с ≪ 1, where 𝑛 = 0,1,2, (or in the case of a 
"white" spectrum), as noted above, the spectral density is independent of the frequency 𝒥(𝜔) = 𝒥𝐼 . 
In this case, for the expression in curly bracket in (31), we get {∙∙∙} = 13.5 𝒥𝐼..  Then, from (30), 
taking into account these approximations for the rate of transverse relaxation, we obtain 

                             1
𝑇2

= 9
2
𝛾2𝜇𝐼2𝒥𝐼                                              (35)                          

The dependence of the spectral density 𝒥𝐼 on the parameters of the system is considered below. 

      Transverse relaxation of nuclear spins due to magnetic nanoparticles  

 Suppose that the system contains 𝑆 spins along with nuclear spins 𝐼. The basic Hamiltonian 
for unequal spins is of the form ℋ0 = ℏ(𝜔𝐼𝐼 + 𝜔𝑆𝑆), where  𝜔𝐼 ≠ 𝜔𝑆. 

In the magnetic-relaxation switching problem, the spins of water protons act as 𝐼 spins, and 
the spins of magnetic nanoparticles act as 𝑆 spins.  In bio-nano-medicine, nano-particles of 
magnetite (𝐹𝑒3𝑂4) with a ferrimagnetic order[11], with a magnetic diameter 𝑑𝑚 = 10 𝑛𝑚 and with 
a magnetic volume -   𝑉𝑚 ≈ 5.2 ∙ 10−25 𝑚3(𝑉𝑚 = 𝜋

6
𝑑𝑚3 ).     
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The magnetic moment of a magnetite nano-particle is calculated by the formula 𝜇𝑆 = 𝑀𝑆𝑉𝑚, 
where 𝑀𝑆 −is the magnetization of saturation.  For magnetite nanoparticles with a spinel 
crystallographic structure [10] 𝑀𝑆 = 4.8 ∙ 105  𝑎 𝑚⁄ . Then, for the magnetic moment of 
nanoparticles, we obtain  𝜇𝑆 ≈ 2.5 ∙ 10−19𝑎 ∙ 𝑚2. 

 We calculate the cyclic precession frequency by the formula 𝜔𝑆 = 𝜇𝑆𝐵0 ℏ⁄  of the magnetic 
moment of the nanoparticles noted above in the magnetite of sizes noted above in a magnetic field 
with induction 𝐵0 = 1𝑇, and  we obtain 𝜔𝑆 2𝜋⁄ ≈ 8 ∙ 108  𝑀𝐻𝑧. In the same magnetic fields for the 
Larmor frequency of protons we have 𝜔𝐼 2𝜋 = 42.57 𝑀𝐻𝑧⁄ . Thus, the frequencies of 𝑆 and 𝐼 spins 
satisfy the condition  𝜔𝑆 ≫ 𝜔𝐼 . 

To describe slow relaxation processes occurring in the system for times greater than 
𝜏𝑆 = 2𝜋 𝜔𝑆⁄ , let us use the Hamiltonian of interaction ℋ1(𝑡) averaged over small times 𝜏𝑆 , 

                 ℋ1���� = 1
𝑇 ∫ ℋ�1(𝑡)𝑑𝑡𝑇

0  ,       𝑇 ≫ 𝜏𝑆.                 (36) 

Writing with the help of (11,12) the Hamiltonians of the dipole-dipole interaction ℋ�1 
(23,25) in the interaction representation and averaging according to rule (34), we get  

                             ℋ1���� = 𝛼{−2
3
𝐼𝑧𝑆𝑧 + 𝐼+𝑆𝑧𝑒𝑖𝜔𝐼𝑡} .               (37)       

Comparing the interaction expression (37) with the expression (24), it can be seen that as a result of 
averaging (36), most of the terms of the dipole-dipole interaction are averaged to zero.  

 The relaxation equation of transverse magnetization < 𝐼𝑥 >� = 𝑆𝑝{𝐼𝑥𝜌} for this case can be 
obtained in the same way as it was obtained in the case of equation (30) 

                 𝑑
𝑑𝑡

< 𝐼𝑥 >=� −< 𝒜𝑥
𝐼 >� ,                      (38)                          

where  

                                               2𝒜𝑥
𝐼 = 4

9
𝛼2𝒥𝑆

(0)(0)�𝐼𝑧𝑆𝑧, [𝐼𝑧𝑆𝑧, 𝐼𝑥]� + 

                                       +𝛼2𝒥𝑆
(1)(𝜔𝐼)�𝐼−𝑆𝑧, [𝐼+𝑆𝑧, 𝐼𝑥]� + 𝐻.С.        (39) 

After simple calculations similar to those made in deriving the ratio (30), we obtain the 
relaxation equation 
 

                                  𝑑
𝑑𝑡

< 𝐼𝑥 >� = −<𝐼𝑥>�

𝑇2𝑆
            (40)       

where  

                                 1
𝑇2𝑆

= 𝛾𝐼2 < 𝜇𝑆2(𝑝𝑆) > {1
6
𝒥𝑆

(0)(0) + 3
4
𝒥𝑆

(1)(𝜔𝐼)} (41) 

is the transverse relaxation rate caused in the system by the presence of magnetic nano-particles,   
< 𝜇𝑆2(𝑝𝑆) >- the root mean square value of the magnetic moments of nano-particles. 
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                    Super-paramagnetism of magnetic nano-particles 

The physical properties of magnetic nanoparticles are mainly due to two features. The first 
of them is associated with a large value of the magnetic moment (on the order of several tens of 
thousands of Bohr magnetons), the second is associated with the presence of magnetic anisotropy 
energy 𝐴 = 𝐾𝑉𝑚 inherited from a massive sample. Here 𝐾 is the energy density of magnetic 
anisotropy.  Magnetite nano-particles (𝐹𝑒3 𝑂4), which is often used in magnetic resonance bio-nano-
diagnostics, is a ferrimagnetic with the crystalline structure of the mineral spinel. The anisotropy 

density of magnetite nano-particles, as is known [12], is of the order 𝐾 ≈ 102  𝐽 𝑚3� . Then for the 

anisotropy energy of magnetite nano-particles with the volume noted above 𝑉𝑚 ≈ 5.2 ∙ 10−25 𝑚3, 
we obtain a value 𝐴 ≈ 5.2 ∙ 10−23 𝑚3 that is significantly less than the thermal energy of the body 
at normal temperature. In this case, thermal energy can provide a reversal of the magnetic moment 
of the nanoparticle, that is, overcoming the energy barrier formed by magnetic anisotropy. In this 
case, the system of nanoparticles is in a super-paramagnetic state, and the root-mean-square value in 
(33) can be taken from the Boltzmann distribution similarly to (34). As a result of simple 
transformations from (33) we obtain 

                                      < 𝜇𝑆2(𝑝𝑆) >= 𝜇𝑆2ℳ(𝑝𝑆)                         (42) 

where                                    

      ℳ(𝑝𝑆) = [1 + 2
𝑝𝑆
2 −

2
𝑝𝑆

cot(𝑝𝑆)]                         

-statistical mean of the square of the magnetic moment of the nano-particle (Fig.2), 𝑝𝑆 = 𝜇𝑆𝐵0 𝑘𝑇⁄  
is the Boltzmann factor, which for nano-particles in the case under consideration (𝐵0 = 1𝑇, 𝜇𝑆 =
2.5 ∙ 10−19𝑎 ∙ 𝑚2, 𝑇 = 310 𝑔𝑟𝑎𝑑), has the value of 𝑝𝑆 ≈ 58. Then, for the mean square, 
calculating with (42) ℳ(58) ≈ 1 and for the mean square, we get   < 𝜇𝑆2(𝑝𝑆) >≈ 𝜇𝑆2 .            

                                          

Fig.2.  Graph of the dependence of the mean square of the magnetic moment of nanoparticles in the 
superparamagnetic state .− < 𝜇2(𝑝) > on the parameter 𝑝 = 𝜇𝐵0

𝑘𝑇
. For 𝑝 ≪ 1 we have ℳ = 1 3⁄ . 

For larger values of the parameter 𝑝 ≫ 1, saturation occurs (ℳ → 1) . 

In the case of small correlation times 𝜔𝐼𝜏с ≪ 1, the spectral density does not 
depend on frequency 𝒥𝑆(𝜔) = 𝒥𝑆 and from (41) we obtain 
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                          1

𝑇2𝑆
= 11

12
𝛾𝐼2𝜇𝑆2ℳ(𝑝𝑆)𝒥𝑆           (43) 

Correlation function determined by random molecular translational motion 

       Random changes in the dipole moment inside the molecule are due to the 
rotation of the molecules. However, it is more efficient to take into account the 
interaction between the spins of different molecules. And when considering the 
interaction between the spins of different molecules, their relative motions are usually 
more significant than their characteristic rotations. Using the results presented in the 
monograph [10], if random movements of liquid molecules are dominant, then the 
spectral density can be represented as 

                              ,𝒥(𝜔) = 𝑁
𝑑𝐷
ℱ(𝜔𝜏с)                  (44) 

where  

                                                  ℱ(𝜔𝜏с)    =  ∫ [ℐ3
2�

(𝑥)]2∞
0

𝑥𝑑𝑥
𝑥4+𝜔2𝜏𝑐2

 ,  

   

  ℐ3
2�

(𝑥)– Bessel function, 𝐷 – diffusion coefficient, 𝑑 – total diameter of the nano-particle, 𝜏𝑐– 

correlation time.  

 Let us consider the two limiting cases of integral (44): the case of short correlation times 
𝜔𝜏с ≪ 1 and long times 𝜔𝜏с ≫ 1. To do this, we will use the known [13] values of integrals, 

              ℱ(𝜔𝜏с ≪ 1)   =  ∫ �ℐ3
2�

(𝑥)�
2∞

0
𝑑𝑥
𝑥3

= 15
2
≈ 0.13,  

ℱ(𝜔𝜏с ≫ 1) = 1
(𝜔𝜏с)2

lim𝛼→∞ ∫ �ℐ3
2�

(𝑥)�
2
𝑥𝑑𝑥 = 1

(𝜔𝜏с)2
lim𝛼→∞

𝛼2

2
𝛼
0 �ℐ5

2�
(𝛼)�

2
=

1
(𝜔𝜏с)2

lim𝛼→∞
𝛼
𝜋
. 

If we assume that 𝛼 𝜔𝜏с → 1⁄ , then we get 

                                                    .ℱ(𝜔𝜏с ≫ 1) → 1 𝜔𝜏с� → 0 

 A graph of the function ℱ(𝜔𝜏с), plotted by taking into account the asymptotic formulas 
obtained above is shown in Fig.3. 
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                                   Fig.3. Graph of the function ℱ(𝑎), where 𝑎 = 𝜔𝜏с. 

       The correlation time 𝜏𝑐 can be expressed in terms of the diffusion coefficient 𝐷 and the 
total diameter of the nano-particle 𝑑 in the form 

     𝜏𝑐 = 𝑑2

2𝐷
,         

and the diffusion coefficient is used using the Stokes formula 𝐷 = 𝑘𝑇 3𝜋𝑑𝜂⁄ , where 𝜂 is the 
viscosity coefficient. Then, in the case in which the random movements of the liquid molecules are 
dominant, by representing the nano-particles as rigid spherical particles, we get, 

               𝜏𝑐 = 3𝜋𝑑3𝜂
2𝑘𝑇

        (45)                 

  For the parameter values used above from (45), we obtain the value 𝜏с ≈ 10−9 𝑠 at which the 
approximation of the "white" spectrum occurs: 𝜔𝐼𝜏𝑐 ≈ 10−3. Then, in the case of the "white" 
spectrum, taking into account the limiting value of the integral ℱ(𝜔𝜏с ≪ 1)   =  15

2
, from (44), we 

obtain  

 

              𝒥𝑖 = 2𝜋
5
𝑁𝑖𝜂
𝑘𝑇

 ,                 (46)    

where  𝑖 = 𝐼, 𝑆. Another limiting case 𝜔𝜏𝑐 ≫ 1 of spectral density (44) is not of interest. 
For the relaxation times (35.43), taking into account the ratios (42.46), we get 
 

    1
𝑇2

= 36
5
𝜋2𝛾2𝜇𝐼2

𝑁𝐼𝜂
𝑘𝑇
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   1
𝑇2𝑆

= 28
75
𝜋2𝛾2𝜇𝑆2ℳ(𝑝𝑆) 𝑁𝑆𝜂

𝑘𝑇
.       (47)      

    

6. Conclusion    

In order for the change in the relaxation rate caused by the presence of magnetic nanoparticles 
to be effective, the condition 𝑇2𝑆 ≤ 𝑇2 must be met. The main physical parameters for nano-particles 
are volume 𝑉𝑚 and concentration 𝑁𝑆.  For these parameters, using ratios (47), the criterion "MRI 
switching" can be represented as 

 
1 𝑇2𝑆⁄
1 𝑇2𝐼⁄

=
7

135
 ℳ(

𝑀𝑆𝑉𝐵0
𝑘𝑇

)(
𝑀𝑆𝑉
𝜇𝐼

)2
𝑁𝑆
𝑁𝐼

≳ 1 

For magnetite nano-particles, with the parameter values noted above, as well as taking into 
account the numerical values - ℳ(58) ≈ 1, 𝑇 ≈ 310 𝑔𝑟𝑎𝑑, the criteria for the concentration of 
nano-particles from (48) are obtained in the form    𝑁𝐼 ≈ 6.7 ∙ 1028  1 𝑚3⁄ 𝑁𝑆 ≳ 1.2 ∙ 1016  1 𝑚3.⁄  
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