GESJ:: Computer Science and Telecommunications 2025|No.1(64)

ISSN 1512-1232

Code 004.9
Building a Symmetric Cryptosystem Using Genetic Algorithms and
PRNG
Beselia Lali

Faculty of Mathematics and Computer Sciences, Sokhumi State University, Thilisi, Georgia

|.beselia@sou.edu.qge

Abstract

In today's information-oriented world, ensuring secure and efficient communication is
of paramount importance. Traditionally, the security of symmetric cryptosystems relies
on the complexity of mathematical calculations. However, modern approaches have
begun to explore alternative methods that combine mathematical calculations with
innovative methods. In this paper, we present a symmetric cryptosystem built using
genetic algorithms and a pseudorandom number generator. The article provides a
description of the cryptosystem construction algorithm, its implementation in the Python
programming language, and an analysis of the cryptosystem.

Introduction
A cryptosystem that combines two elements in the encryption process:

1. Genetic operations: By using genetic operations such as crossover (where parts of binary data
are swapped) and mutation (where individual bits are inverted), the system increases the
randomness and complexity of the ciphertext.

2. PRNG: The use of a PRNG to determine the crossover and mutation points ensures
unpredictability and speed of the encryption process [1].

Description of the algorithm

1. Inthe first stage, the plaintext is converted to binary and divided into blocks. Each character
of the given text is represented by its ASCII code, whichis then converted to a binary
number.

def text_to_binary(text):
binary_data = ""_join(format(ord(char), "08b") for char in text)
return binary_ data

The resulting binary string is divided into 128-bit blocks. If the last block is not large enough, it is
padded with 0-s.

def split_into_blocks(binary data, block _size=128):

blocks = [binary_data[i:i1+block size] for 1 1n range(O,
len(binary_data),block size)]

iT len(blocks[-1]) < block_size:

blocks[-1] = blocks[-1].1just(block_size, "0%)

return blocks

10

mailto:l.beselia@sou.edu.ge

GESJ:: Computer Science and Telecommunications 2025|No.1(64)

ISSN 1512-1232

Dividing into blocks of equal size is crucial for performing the next stages of encryption.

1. The second stage is key generation. Creating a secret key is an important component of the
encryption process. In our system, a 128-bit key is created by generating 16 random non-
zero integers (each ranging from 1 to 255). The integers are then converted to binary format,
after which the key is used to perform an xor operation on the text blocks. The following
program code fragment is responsible for key generation:

def generate_key():

key = [1
while len(key) < 16:
num = secrets.randbelow(256) # Generates a number

between 0 and 255.
if num = O:
key .append(num)
return key

def key to binary(key):
binary _key = *"_join(format(num, *08b*) for num in key)
return binary_key

2. After generating the secret key and converting it to binary, a bitwise XOR operation is
performed between each 128-bit block of plaintext and the key.

def xor_blocks with_key(blocks, key):
encrypted _blocks = []
for block in blocks:
encrypted _block = """ _join(str(int(bl) ~ int(b2)) for
bl, b2 in zip(block, key))
encrypted_blocks.append(encrypted_block)
return encrypted_blocks

The given method processes each plaintext block in sequence, ensuring that the key is applied
to each bit of each block. As a result, we obtain an intermediate ciphertext, which is further
disguised using genetic operations.

3. The crossover operation is performed. Using the PRNG, we calculate the first sixteen
pseudorandom numbers. The resulting 16 pseudorandom numbers represent the crossover
(crossover) points of the genetic operation between bytes. Similar to the secret key, we exclude zero
values here. At these points, the crossover is performed according to the following principle: the
first and second bytes of the first block are crossed at the “0” point, then the second and third are
crossed at the “1” point, and so on until the sixteenth byte is crossed with the first byte of the block
[4].def apply_crossover(blocks, crossover_points):

new_blocks = []
for block in blocks:
bytes list = [block[i:i+8] for i in range(0, len(block),
81

for 1 in range(len(bytes_list) - 1):
Cp = crossover_points|i]
bytes list[i],bytes list[i+1]=
crossover(bytes_list[i1], bytes_list[i+1], cp)
new_blocks.append(™".join(bytes_list))

11

GESJ:: Computer Science and Telecommunications 2025|No.1(64)

ISSN 1512-1232

To make it clearer how the concatenation process is performed, let's give an example. Let's say we
have two bytes:

1 Jo o1 [1 |1 |1 [1 |

[1 To [1 [N

If the crossover point 3 is ""3", then the result of the crossover at this point is:

4. In the fifth stage, a mutation operation is performed, which further enhances randomness
by changing one bit in each byte at a pseudo-randomly chosen position.[5] The mutation function is
implemented as follows: def mutate_byte(byte, point):

byte list = list(byte)
byte list[point] = "1 1f byte_ list[point] == 0" else "0°
return ""_.join(byte_list)

For example, given a byte:

[1 [o [o

If the mutation operation is performed on the third bit of the byte, we get:
[1 To [1 [

After the five steps above, if each byte of each block is different from the corresponding byte
of the corresponding block of plaintext, meaning that it is enough for the plaintext information to be
well hidden in the resulting ciphertext, then the bytes are converted to symbols. Otherwise, we
repeat several rounds, and during each round the key and intersection points change.

Decryption is performed in the reverse order of encryption operations:

1. Decryption begins by converting the ciphertext to binary. Each symbol is converted into an
8-bit binary string:
binary _data = ""_join(format(ord(char), *08b*) for char iIn
ciphertext)

Once the ciphertext is represented in binary format, it is divided into 128-bit blocks. If the last
block is less than 128 bits, it is padded with zeros:

def split_into_blocks(binary data, block size=128):

blocks = [binary data[i:i1+block size] for 1 iIn range(O,
len(binary _data), block size)]

iT len(blocks[-1]) < block_size:
blocks[-1] = blocks[-1].-1just(block _size, "0%)
return blocks

12

GESJ:: Computer Science and Telecommunications 2025|No.1(64)
ISSN 1512-1232

2. During encryption, each byte is changed by changing one specific bit at the mutation
point; during decryption, the reverse process is performed, with a specific bit being changed in each
byte of the ciphertext.def reverse_mutation(blocks, mutation_points):

new_blocks = []

for block in blocks:

bytes list = [block[i:i+8] for i in range(0, len(block),
8]

for 1 In range(len(bytes list)):
mp = mutation_points[i]
Flipping the bit again to revert the mutation
bytes list[i] = mutate_byte(bytes list[i], mp)
new_blocks.append(™".join(bytes_list))
return new_blocks

3. Before mutation, a crossover operation was applied to each 128-bit block. The block was
divided into 16 bytes, and adjacent bytes exchanged parts of their bits at a certain crossover point.
Decryption reverses this by processing the bytes in reverse order and applying the same crossover
operation.def reverse_crossover(blocks, crossover_points):

new_blocks = []
for block in blocks:

bytes list = [block[i:i+8] for 1 in range(0, len(block),
8)1]

for 1 In reversed(range(len(bytes list) - 1)):
Ccp = crossover_points|i]
bytes list[i],bytes list[i+l]=
crossover(bytes list[i1], bytes list[i+1], cp)
new_blocks.append(®".join(bytes list))
return new_blocks

This step of the inverse process undoes the interleaving operation in a way that restores the original
arrangement of bits in the blocks.

4. The original encryption used an XOR operation between each 128-bit block and a 128-bit
key. Because of the symmetry of XOR, reusing it yields the original data:def
xor_blocks_with_key(blocks, key):

result = []
for block in blocks:
result_append(® " .join(str(int(bl) ™ int(b2)) for bl, b2 in
zip(block, key)))
return result

5. Convert to plain text:

Every 8 bits are converted to a symbol:def binary to_text(binary_data):

13

GESJ:: Computer Science and Telecommunications 2025|No.1(64)
ISSN 1512-1232

return ""_join(chr(int(binary data[i:i+8], 2)) for i in
range(0, len(binary_data), 8))

We present the results of the algorithm's work:

Driginal text: This is a secret message.

--- Encryption Round 1 ---

Final ciphertext (hex):
?ad818fT49a3bBed862e58a650bcAd1de4d525ab5b472ff7b1ed6e518T479b7ed

Final ciphertext (base64):
tegY9Jo7jthisYplC8TR1k1SWrWocv97Hkb1GPR5 t+Q=

--- Decryption Process ---

Decrypted text:
his is a secret message.

Result 1.

Original text: Georgia is a small country with a great and ancient history. For centuries, it has
been a constant battleground for great empires due to its strategic location. However, it still
managed to survive and maintain its statehood.

--- Encryption Round 1 ---

Final ciphertext (hex):

d772b4eal1e2c7b3827bec2dacd4e809c87cffadebac7df9996bTazc8765d844d395bdbasceats9b2b35e17dc55ebal10c30
82ed525615dT986408b759706cd4bd005907b38T9d8efb655c574c3799030c440T80c79e8eba%a91abad1be49f01dcs
40dcbcee765de6c27Tf8a08cd5cfdsbscebaccabcef985ebd7ch84dabeatc129732bag864ake288ce2cbb4db0cdcaz2e
7b9cd822586e781e6T82dB4T347T37d8f37d1bakaadcf46T418a1308e714c1aeb58cb6e36T1dec39d71fb70d34ebdD0
d455b18aec831fchBe3chb004cd6Tdc1dc53c97836f8afth7e903db02ddc5eed15b32de60f4ea3b90ael 1bcdcd3b133b7
C

Final ciphertext (base64):

13K06gHix70Ce+wtrNToCch8/6Br TH35mWveLId12ETT1b26bGr Imys14X3FXroQwwgul1SVhXTfmGQIt11wbNS9AFkHs4
+djvt1XFdMNSkDDEQPgMee jrgakaukG2STAdxUDCvG52XebC 40l zVz9W 1 xmrMps75hevXydTatq
/BKXMrqYZKbiiM4stk2wzcoi57nNgiWG54Hm+C2EB0 Tz TY830bpgrc9GSBihMISXTBr riMtuNvHewS51x
+3DTTr0A1FuxiuyDH8aOPLAEZW/ cHCUBL4ANvivi+kD2wLdxe7RWzLeYPTqO5CUEbxMO7EZ L8

--- Decryption Process ---

Decrypted text:

Georgia is a small country with a great and ancient history. For centuries, it has been a constant
battleground for great empires due to its strategic location. However, it still managed to
survive and maintain its statehood.

Result 2.

14

GESJ:: Computer Science and Telecommunications 2025|No.1(64)
ISSN 1512-1232

Conclusion

The main feature of the proposed encryption system is its speed. The algorithm processes data
with O(n) time complexity. This ensures efficient encryption and decryption. XOR-based
encryption is inherently fast because it requires minimal computational resources, and the use of
genetic operations introduces randomness without significantly increasing the time. Although the
system is fast, from a security perspective, it does not reduce the level of protection. Encryption
rounds ensure that the plaintext remains hidden even if the initial encryption fails to hide it
sufficiently. However, security still depends on the uniqueness of the key and the reliability of the
PRNG. Although the system is already optimized for fast performance, its parallelization and
hardware acceleration can further improve its efficiency without compromising security.

References

[1] Kochladze Z, Beselia L., Benidze N., Creating an encryption block algorithm using prng and
genetic operations. Of the XII international scientific-practical conference internet-Education-
science ies-2020. Ukraine,Vinnytsia,VNTU,2020.pp5-6.

[2] Spillman R.,Janssen M., Nelson B., Kepner N.,, Use of Genetic Algorithm in Cryptanalysis of
Simple Substituion Cipher, Cryptologia, 1993.Vol.17, No.4, pp. 367-377.

[3] Kochladze Z., Beselia L., Cracking of the Merkle—-Hellman Cryptosystem Using Genetic
Algorithm, Transections on Sciense and Tecnology , Volume 3, No. 1-2: Science and Natural
Resources , 201, pp. 291-296 .

[4] Garg P., Genetic algorithm Attack on Simplified Data Encryption Standard algorithm,
International journal Research in Computing Science, ISSN1870-4069, 2006. Pp23-28.

[5] Gorodilov A., Morozenko B., genetic algorithm for finding the key’s length and cryptanalysis
of the permutation cipher, International Journal "Information Theories & Applications” Vol.15
, 2008. Pp.175-260.

Article received: 2025-03-03

15

http://www.transectscience.org/vol3n1_2.html
http://www.transectscience.org/vol3n1_2.html

