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ABSTRACT:

In the paper, in the scattering problem for the valence electron model potential a self-
adjoint extension is performed and Rutherford formula is modified formula. Is also
discussed the changes caused by the self-adjoint extension in the differential and
integral cross-sections
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| . Intoduction

The inverse squared I potential has received widespread attention in various problems of
quantum mechanics [1-6]. These problems are interesting not only from an academic standpoint. A
number of physically significant quantum mechanical problems manifest in such a behavior.

A detailed consideration of papers devoted to problems concerning this potential put in doubt the
motivations for neglecting so-called additional (singular) solutions, which are based on
mathematical sets of quantum mechanics, without invoking specific physical ideas.

The aim of this study is to consider the singular solution by using a well-known procedure of self-
adjoint extension (SAE), in particular, a “pragmatic approach” [7], which is much simpler than the
general Weil method but is applied only to Hamiltonians.

In [8-9] we studied the self-adjoint extension procedure for bound states in the Schrodinger
equation for several analytically solvable examples (inverse-squared, valence electron and singular
oscillator potentials). At the same time, it becomes necessary to carry out an analogous procedure in
scattering problems, which we carried out for the inverse-squared potential in [10-11]. In this paper,
a self-adjoint extension is carried out in the scattering problem for the valence electron model
potential and the Rutherford formula is modified. The main results of the paper are briefly
summarized in the conclusion.

I1. Modification of Rutherford's formula
Consider the scattering problem in the valence electron model

V, «
V=-3-T (V,,a >0) @.1)
Note that this potential appears “naturally” in the Klein-Gordon equation for the Coulomb
potential. If we follow the formalism of [12], in the scattering case we obtain the following

general solution of the Schrodinger equation

P P
R(r)=C,p ™ *Pe 2 F(1124P-1142P; p)+C,p e 2 F(112-P-11-2P; p)

(2.2)
were



mailto:@tsu.ge
mailto:teimuraz.nadareishvili@tsu.ge

GESJ: Physics 2025 | No.1(32)

ISSN 1512-1461

P=4(0+1/2)2—2mV, >0
(2.3) and
p:2ikr;1:_i%=—in; k =+/2mE;E > 0; n="4

(2.4)
From the behavior of the (2.2) wave function at small distances and the definition of the self-adjoint
extensionrg parameter, we obtain [10-11]
Ca(K) (o \-2P
MO @
To find the scattering amplitude, we write the representation of the (2.2) radial function at large
distances. If we use the asymptotics of; F; (kr) confluent hypergeometric functions [13]

ia Ilc) 5, Tlc _
F(acz)~e™™ ) z a+ﬁezza “:c#-n, n=012.. (2.6)
20 Ic-a)  I(a)
and the definition of the Coulomb standard scattering amplitude [14]

F(l +P+ ﬂj
2i5étcm|omb — 2

F(1+P—ﬂ.j
2

e

(27)
We obtain

1\z

ps . 1\z .
~ e_zn Eeikl’ C]_ r(1+ 2P) eI(P+E)Eei(X++§éloulomb) + C2 r(l_ 2P) e_I[P_EjEei(X,-Fﬁgggbmb) +
F(; -P+ }tj‘

1 1 4

+ e_%n le_ikr Cl 1—‘(:I'-"_ 2P) ei(P-FEJEe*i(XJrJré‘égulomb) + C2 r(l_ ZP) ei(E_P]Ee*i(x—Jré‘ggglomb)
' r 1 +P+4 r 1_ P+A
2 2
(2.8)
where the following notations are introduced:

X, =nln2kr-(1/2+ P)%; X :nInZkr—(1/2—P)%

r—o r

(2.9)

And, respectively, & ,m and o35 ., are the Coulomb scattering amplitudes of the first

(standard) and second (additional) terms of the solution to (2.1):
5(§,toulomb =arg F(%"‘ P+ /1); 5ggglomb =arg F(%— P+ /1}

(2.10)
On the other hand, the behavior of the R radial wave function at infinity through the

scattering o) phase shift
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R zgsin(kr—%+nln2kr+5,j

r—oo r

(2.11)
(here 7n7In2kr is the well-known term due to the slow decay of the Coulomb potential at infinity

[14]), we can write as

- v - a
R zi eikrel[nanKr—zhé,)_e_ikre—l(qankr—2I+§|j

r—o0 ir

(2.12)
And comparing (2.8) and (2.12) gives us

c, r(1+ 2p) ei(p+%]%ei(*[%Jer%*(sggulomb] .c, r(]__ 2p) e—i(P—%J%ei[{%mj%wggﬂlombj _
F[;+P+/lj FG—P+/1J

_ %ei(ﬁ, ‘%'*%”j

(2.13)
c, Mei[P%]ge—i(—(%w]%wé‘oummbj .c, Mei[P%)ge—i[—[%wj%mggﬁ,ombJ _
F(1+P+/Ij r(l_pJ”ij
2 2
B CEEY
(2.14) |

From which, by dividing (2.13) by (2.14) and taking into account the definition of (2.5), we obtain
the Sy partial scattering amplitude

J,01 . +( cadd t
2I|:|+2—P}Z+2I5ét0u|omb 1 + TS (Zik)zpwe|(5goulomb _5(Stoulomb)

SVE B H +| cadd st
1+ Ts (2ik)ZPWe_Z'”Pe'(5Coulomb_5Cou|omb)
(2.15)
where the index VE indicates that the scattering occurs at the valence electron potential (2.1) and
F(l +P+ lj
_r@-2r) (2
r@a+2p
L )‘F(l— P+/”tj‘
2
(2.16)

Note that in expression (2.16), the term represented by the fraction is a new term and is obtained
because this time we have kept the second term in expression (2 .2) and so we have performed the
SAE.

(2.15) gives the correct physical results. In particular, whenzg =0 ie C, =0, (2.15) gives us the
standard result [17]
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J,001 /A
2i| l+=-P 7+2|5C0ulomb
—ce
(2.17)
and for g =00 i.e. C, =0, from (2.16) we obtain an additional partial amplitude
st _ e2i[|+;+P}Z+2i58§5mmb
(2.18)

It is necessary to note that in our work [10] we obtained the following transcendental equation for
the energies of the bound states of the (2.1) potential

r/2-1-pP) _ r(-8mE)? r'1-2P)

rw/2-1+P) r'(1+2P)
(2.19)
Now let us take equation (2.19) as the pole of the scattering amplitude (2.15). Here a slightly more
detailed analysis is required. In particular, let us consider 3 cases.

a) g =0. Standard solutions. In this case, the standard amplitude (2.17) is written using equation
(2.7) as

(2.20)
whose poles coincide with the poles of F(%+ A+P)

%_,1+P:_nr; n, =012..

(2.21)

and condition (2.21), taking into account the notations (2.4), give us the standard levels obtained in
the work [8]

ma? mea?

2[1/2+n, +P]? 2h/2+nr+\/(l+1/2)2—2mV0J2

st —

(2.22)
3) 7g =too Additional solutions. In this case, analogously to the above arguments, the poles of

(2.18) will give us the E,, additional levels obtained in [8] work.

mea? ma?

2[1/2+n, —P)? 2h/2+nr_\/(|+1/2)2—2mV0J2

Eadd =

2.23
1(3) T Zt 0, £oo. In this case (2.15) has a pole at the point
75 (2ik)ZPWe*ZiﬂPei(fsggﬁlombfé?goulomb) -1
(224)
If we follow the usual procedure, i.e., we take the link to move to the states k =iui.e.
k?=—u®=2mE; (E<0)
(2.25)
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riipsa :F1+P+/1Jei5§°“'°mb; i pisl=lfi-psa
2 2 2 2
(2.26)

We obtain the formula (2.19) for the energies of the bound states.
To write the scattering phase, we use the formula[14]
e2itan’1z _ 1+iz

: cadd
e'chulomb

- (2.27)
1-iz
And then (2.15) can be written as
Sye = e
(2.28)
Where
Sye =6 + Ooytom +AICYZ
(2.29)

The third term in the expression (2.29)

55 — arcth' 7 = Ts (Zk)ZPW Sin(ﬂP + 5ggSIomb — étnulomb)
- 1+ 75 (2k)2PW cos{zP + 52 5 oo )

Coulomb ~— “Coulomb
(2.30)
is a new term caused by the expansion of the self-consistent expansion, and is given by the formula
(2.16).
Let us now see what changes the self-extension procedure will make to Rutherford's well-known

formula. As shown in [11] the elastic scattering amplitude may be rewritten as
lp—1

f(0) :ﬁ{Z(m +1)2(c0s0)[ S, i ~1]+(2,+1) % (cosa)Hezi(@Eﬂanlx.o) _1} N
K (1= Y ’
+T1 > (21+1)F(cos 6)[e2‘5'“ —1} =f(0)+ £ (0)+1,'(0)
I=ly+1
(2.31)
In this case, for the “fall” on the center, in the first term of (2.31), we can calculate it by our
method, as was shown in [11] for the potential

V:—%;VO>O

(2.32)

However, below we do not need this term, because we consider | = 0 case. In the second term of
(2.31), the power of the exponent is given by (2.29).

Consider the case of small V,-s, where we need to keep only the | =0member and by using
following identity.

e2i(x+y) 1= X _14 e (GZiy _1) (2.33)
the scattering amplitude(2.31) is written as
1 2i{F—P}£+5§fCOU,0mb} _ 0 2i{|+1—PF+5ﬁ‘Cou,omb}
f0)=5te 7 [e2iercioz _1]+|Z(2l 1P (cosg)e L 2 12 1
=0

(2.34)
The second term of (2.34) is the standard scattering amplitude of the potential (2.1) and it is

calculated in the case of small V,-s in the monograph [15], but there the scattering on the Coulomb
potential is considered for the Klein-Gordon equation, but as we mentioned at the beginning of this

7
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chapter, the potential (2.1) appears “naturally” in the Klein-Gordon equation for the Coulomb
potential. Therefore, the results of the monograph [15] coincide with ours with the accuracy of the
notations in (2.4) and so the second term of (2.34) will be

fVOE (9) = fCoulomb (H){l— 7ZV0k sin geZi[a—l/Z_%]}

(2.35)
where the feouioms (€) Rutherford scattering amplitude is [14]

n e{inln(sinzz}rzwo}

fCoulomb (0) == 0
2k sin? =~
2
(2.36)
and
2o _ F(1+!77); R F(1/2+ |77)
r(l-in) r@/2-in)
(2.37)

Therefore, finally (2.34) the scattering amplitude for the potential (2.1) will be

f(9)=—L9e{ mln(sm 2] ! }{1—7Z\/0|(Sin§62i[0“2_00]}+
2k sin? 5 2

IR T st
1 2'{1:*_Pi|7+50,Coulomb} . i
+-e (L2 12 "% sin arctgZ

(2.38)

Here the second term, due to the self-coupled broadening, does not depend on the @ scattering
angle and for large scattering angles it becomes more pronounced when the Rutherford term itself is
small; but if we take into account the terms | = 0 as well, it already becomes ¢ angle-dependent.
The differential scattering cross section will be

do n?

—= 5 {1+(7zv0k)2 sin? g—Z;zVOksingcosz{o- ) —GOJ}+%sin2 Z-

COSKi - Pjﬁ + 204 coutomp + 771N sin? g —20, + arctgz} -
nsinarctgZ

., 0
k?sin? o |- 7ZVokSin§COSI:(% - Pj;r + 235 coutomp +77INsiN? g— 20 4 + arctgz}
2
(2.39)
The last two terms in (2.39) were formed due to the self-adjoint extension procedure. The last term
is especially interesting, since it depends on the sign of the parameter Z SAE defined by the formula

(2.30) and therefore increases or decreases the dd‘fst standard cross section (when Z =0) of the
Q
potential (2.1) and which may be observed in the experiment. This effect can be observed during

the scattering of slow particles on the potential of the type (2.1), since at this time it is most

important | = 0and the situation formally resembles the inclusion of short-acting forces in the
discussion.
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IV. CONCLUSIONS
In the paper, in the scattering problem for the valence electron model potential a self-adjoint

extension is performed and Rutherford formula is modified formula. In particular, it is shown that
in the differential scattering cross-section formula, due to the SAE procedure, two new terms
arise, which depend on the sign of the self-adjoint extension parameter and by this reason

increases or decreases the ddast standard cross section of the potential (2.1) and which may be
Q

observed in the experiment.The changes caused by the self-adjoint extension in the
representations of the differential and integral scattering cross-sections are studied.
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