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ABSTRACT. The theory of the deformation of porous elastic
solid containing a compressible superfluid He* has been
considered in earlier publication. In the present paper, hypothetic
experiments of measurement are described for the determination
of the elastic coefficients of the theory. We aim at extending
classical theory for the case when the porous media is saturated
with superfluid He® — He' mixture. Finally, derived equations
are applied to the most important particular case when the
normal fluid component is locked inside a highly porous media by
viscous forces. It is shown, that in highly porous media there exist
two longitudinal sound modes: one is the intermediate mode
between the first and fourth sound and another is the second
sound like mode.

1. INTRODUCTION

We consider the case, when impurities participate only in normal
fluid flow [1]. Sound propagation in a superfluid He® — He* solution
has a number of peculiarities connected with the oscillation of the
He’ concentration in the acoustic wave. Whereas in pure helium II
only the pressure oscillates in the first sound wave, and only the
temperature oscillates in the second sound wave (neglecting the
coefficient of thermal expansion, which is enormously small for
helium), in a solution there are pressure, temperature, and
concentration oscillations in both waves. In the first sound wave the
oscillation of the temperature is proportional to the coefficient

62



Georgian Electronic Scientific Journals: Physics #1(38-2)-2003

0 : S
B =(c/ p)a—p and in the second sound wave the same coefficient is

c
proportional to the pressure oscillation (c- maximum He’
concentration, P - density of the solution), and at low He’
concentration the quantities proportional to B cannot be neglected (B
= -0.3-0.4 for highly concentrated solutions).Unlike pure He*, the

first sound wave in solutions contains a relative oscillation of the
normal and superfluid liquids, the magnitude of which is proportional

to B. In pure He?*, there are no oscillations of the total flux
IJ =p Vo P V * in the second sound wave, whereas in the solution
the deviation from the equilibrium value of IJ is also proportional to
B [1]. On the other hand when aerogel is saturated even with pure He
I new phenomena are caused by the presence of aerogel: namely, the
coupling between two sound modes is provided by op ‘p®(p“ -is the

aerogel density, o-He’ -He* solution entropy) [2]. So, in this paper
we have considered the peculiarities of sound propagation for impure
homogeneous superfluids, where these phenomena are caused by both
impurities (including He® in He II) and by the presence of aerogel.
The task of the article represents the derivation of hydrodynamic
equations for consolidated porous media filled with superfluid
He® —He* solution and determination of all input elastic coefficients
of the theory by physically measured quantities without any additional
adjustable parameters.

EXPRESSION OF GENERALIZED COEFFICIENTS BY
PHYSICALLY MEASURED QUANTITIES

The elastic properties of a system containing a superfluid helium
completely filling the pores were considered in [3], where methods
for measurement of generalized elastic coefficients are described with
jacketed and unjacketed compressibility tests in the case of a
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homogeneous and isotropic porous matrix. In our case according to
[3, 4,5] the stress-strain relations are

o, =2Ne +Ae+Q%+Q"e",
o, =2Ne, +Ae+Q%+Q"e",

c,=2Ne, +Ae+Q%+Q"e",

1, =Ny,, 7,=Ny,, 7, =Ny,. (D
s'=Q°%+R¢ R ¥ ",
$"=Q"+Ré #R ¥ 5,

where 0,,0,,0, and T,,T,,T, are normal and tangential forces acting

on the solid parts of each face of the cube with the following
orientation, s’ and s” are forces acting on the solution part of each
face of the cube corresponding to superfluid and normal components
of superfluid solution. Scalars s’ and s"” are expressed in the
following form

S'Z—q)ps, srr:_q)pn‘ (2)

Here p®=p Ju, p+p"=p [6], where M is chemical potential, p -

liquid pressure and ® - porosity. Thus, we have taken into
consideration the circumstance that the existence of pressure gradient
is not enough for acceleration of superfluid and normal components
of superfluid liquid unlike usual fluid.

The average displacement vector of the solid has the components

u,u,u, and that of the mixture Ui,UigUi,UQ,UI}UZ. The
solid strain components are then given by
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ou, du, ou,
ex = s = s ez = s
ox oy oy
3)
u, odu, ou,  Ou, du,  Ou,
Y, = + e +

oz oy’ 1=, ﬁxjyzzéy ox

Due to two possible types of motion in He 11 G breaks down into
the sum of two parts

N S n -
U= us+P yn (4)
p p
corresponding to displacement of superfluid and normal components.
Thus the strain in fluid is defined by the dilatation

e=P vus+P vur (5)

Because of the fact that superfluid and normal part of He II cannot be
divided physically and there is no sense to speak about belonging of
some atoms to superfluid or normal components, the following
relation is to be fulfilled

Q% *+Q"e"=Qs. (6)

The coefficients A and N correspond to the well-known Lame
coefficients in the theory of elasticity and are positive. The
coefficients Qand R are the familiar Biot's coefficients [7]. The
physical interpretation of the coefficients R®, R", R™ is given in
[1,5].

To illustrate the above mentioned let us discuss some cases of
experiments which may be used to relate generalized -elastic
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coefficients of the theory to the directly measurable coefficients: the
bulk modulus of fluid K;, the bulk modulus of solid K, the bulk

modulus of the skeletal frame K, and N.

For clear determination we note, that in the wunjacketed
compressibility experiment, a sample of the porous solid is immersed
in a superfluid He® — He* solution to which a pressure p’ is applied.
Under the action of pressure the solution penetrates the pores
completely and the dilations of the porous solid e and solutions € are
measured. Unjacketed elastic coefficients of solid and fluid are
determined by

KTOI:—;; Ty (7

Also we note, that from expression of the solution chemical
potential we have the form of the force acting on the superfluid
component and normal component portions:

S

oj:—Qi)U+B)ﬂ;

X ph (. PP, )L
——pP |- , 8
c o ( pnB]p (®)

After considering these conditions €°=¢"=¢ we have:

2 | o 1
[Sreaf e -0-0),

f
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Qsl+(RS+RS“)1=®pp(1+B), 9)

sol Kf

1 1 n N
Qni-l-(R "R sn):CDp(l _pnBj
Ksol Kf p p

The following test corresponds to the jacketed compressibility
test, when a specimen of the material is enclosed in a thin
impermeable jacket and then subjected to an external fluid pressure

p’. The dilatation of the specimen is measured and coefficient of
jacketed compressibility K is determined by

b__e (10)
K, p’
and also we have relations
6,=06,=6,=-p; g’=g"=¢g; s'=s"=0. (11)
Therefore we have the three relations
2 S n ’
—N+A e+( Q°+Q )az—p,
3
Q%+( R°+R ") =0, (12)

Q“e+( R"+R S“)s =0.
From (9) and (12) it follows
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oK [l_@_Kb]

Q- Ba ), (13)
K, K,
1-O+ @l b
Kf Ksol
(1—@)(1—@—1%}@%1
3N+A=Km1 KS‘" < L, (14)
3 =D+ Pl — b
Kf Ksol
n S
R+R"=K, P [@-Qj (1—"11[3}, (15)
p Ksol p
S ps( Q j ( )
R3%+R¥Y=K;, | ®- | (1+B). 16
' p I<so| ( )

Let us consider the situation when the jacket is communicated
with reservoir by the superleak. Therefore only superfluid component
pours into reservoir and we can write the following relations:

(§N+ A] e+ Q%5+ Qe"=—(1-@)p,

Q% +R % °+R™e"=0, (17)
Q"e+R"e"+R e =—0p’.

In this compressibility test we have not the relation between & °

and ¢£". For its determination we should utilize the conservation laws
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of mass and entropy. Then we have

2 N
S n Op _1+Bl
e oo =y a8
oT

where

dc\p)or’ dc

The quantity Z =p (u3 - M4) is defined in terms of the chemical

potentials p,,1, for He’ and He* in the solution.
These equations (17-18) together with (13-16) give:

| s)282
R =";F§(1+B){1—F’:B]R—w , (19)
He
n) 2 2 s\ 202
Rn:(;z) (l_giﬁj R+(pp)g°m, (20)
He
S 2 s 2 2
R = (ppz) (1+B)2R+(p2g4’T®. 1)
He

Where Biot-Willis coefficient R is equal to [7]
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® 2K sol

L oroka K 22)
f K

sol

R=

and C,, is the specific heat of the solution.

Equations for elastic waves are received by analogy with articles
[1,5], expressing stress tensor through strain tensor. For three-
dimensional cases we can write:

NV21r1+(A+N)grade+Q Sgrade S+ Q "grade "=

0’ - S, nogrn o>
:atz[p putp lszUs+p12U j +bF(w)at(u— j,

82 N —
Q°grade +R °grad £ *+R “grad snzatz(piu +p5U Sj,

Q"grade + R"grade "+ R™grad € °=
a : n - n _)ﬂ a - _)n
= 2 p12u+p22U _bF(W)i _U 5 (23)
ot ot

where p,, is total effective density of the solid moving in the

He’ - He" solution. Coefficients pls2 and p;, are mass parameters of
“coupling” between a solid and correspondingly, superfluid and
normal components of solution or mass coefficient p}," describes

the inertial (as opposed to viscous) drag that the fluid exerts on the
solid as the latter is accelerated relative to the former and vice-versa.

It is well known, that the He’ -He* solution densities have the
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following form [1,5]:
P =Pp =P —pni  Pn=0p" —p,—pp,
-p>0,  —pp>0.

Complex quantity F(w) describes the deviation from Poiseille
flow at finite frequencies. The coefficient b=n® */k, is the ratio of
total friction force to the average normal fluid velocity, where M is
the fluid viscosity and k,, is the permeability.

SOUND PROPAGATION IN UNRESTRICTED GEOMETRY
AND AEROGEL

Now it will be interesting to ignore dissipative process in
equations (20) and consider the case of unrestricted geometry. Then
from equations (23) we have

52U’
Rgrade+R™ grad ¢"=p° P

Rk
R"grade"+R¥grade *=p" prent (24)

Here we take into account that in the limit interest to us purely
geometrical quantity oy, which is independently of solid or fluid
densities, and porosity @ are equal to one. Because the induced mass
tensor per unit volume p " =— (a, —1) ®p*™ and
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(>*) (0°) 651

S_ 2 2

R = o (1+B ) K+ 5.

Rn:(PZ) (1_9:5 JszJ,(pS)Z‘%T (25)
P p p Cye

RS“=E1 {1—"5 }Kf—(ps)z&%T
p2 ( +B) pnB pC

He

So, for pure He’-He" solution solving the system (24) in the
usual manner we obtain the dispersion equation for the bulk waves
propagating in free He’ - He* solution:

C4pspn—C2(pSRH+p“RS)+RSR”—(RS")2=0 (26)
Equation (26) has two roots
K s S &6 T
Cl==t 1+"n62]; ci=t—= .
p p C He(l + piﬂ B 2 j ( )
p

which conform to the velocity of the first and the second sounds
correspondingly [8].
From (24) equations it follows the well known results for the

fourth sound in free He’ - He* solutions [3]. If we assume IIJ "=0 in
(21), we derive [9,10]

n 2 n S
Ci=p C2 (1+E) +P C? [ 1+pnB2j
Py l% B> p :
p
Propagation of the fourth sound in a He’ - He* solution was studied
in [9,10] from the hydrodynamic equations.
A great deal of effort has recently been dedicated to the

(28)
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investigation of superfluid solution in porous materials. We cite here
recent articles describing the specific features of superfluid liquid in
various porous structures [11]. The sound velocity in porous media
can provide information about the superfluidity property as well as
elastic properties of the solid matrix. McKenna et al [12] developed a
theory explaining the behavior of sound modes in aerogel filled with
He II, taking into account coupling between the normal component
and the aerogel and its elasticity. Here the normal component is
locked in a very compliant solid matrix so that the liquid and aerogel
fibers move together under mechanical and thermal gradients. It takes
place at low sound frequencies, when the viscous penetration depth in
bigger than the pore size so the entire normal component is viscously
locked to the solid matrix. In this case from (23) for longitudinal
waves we have the following dispersion equation:

P [P +p™)IC'=C*[R3(p“+p)+p (A+2N+2Q+R)-2p" x
x(Q® +R*+R™)]+R*(A+2N+2Q+R)—(Q* +R* +R™)* =0 (29)

The bulk velocities can express this dispersion equation:
a S a
(1+pnjc“—c2 {cf+(1+ P g 2Jc§+pn (cxci)i+
p p p
wcrcxP crero (30)
p

n

K, +(4/3)N

here C i: "
p
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The first solution is intermediate between the first and fourth
sound
cPc?
Ci=-—FL2 31)
1+ P
p

n

and it resembles the fast mode.

Another solution corresponds to the slow mode, which is an
oscillation of a deformation of the aerogel combined with a
simultaneous out-of-phase motion of the superfluid component:

a~ S
c+PP 2@
e (32)

In this wave the main oscillated quantity is temperature. From
experiment data for silica aerogel C>>>C; [12], so from the above

mentioned formula it follows that C3 >>C’ Therefore, the velocity

of slow wave is much bigger than that of temperature sound in free
solutions.

From (31) and (32) it follows that an aerogel filled with superfluid
He’® - He* solution simultaneously possesses the properties of elastic
solid and superfluid liquid. Also, in this paper we have considered the
peculiarities of sound propagation for impure homogencous
superfluids, where these phenomena are caused both by impurities

(including He’ in He II) and by the presence of aerogel.
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He® - He* blbstrom d93Lg07em GMIMZgb a5MHgImls
ImdMomdols asbgmengdgdo

sl 3360

Ligogoodo Joegdymos He' - He! blbatom Jg3ligd7@o gmtmgseb
a9M9dmls ImdMomdols 4of 5039090 asbgmegdgdo. dsmdo dgde-
890 a3b3masegdmo Mg oemdols 3mgno;309bgg00 godmlisbymos
99b395039bg o ad8mdgowo godognxmo dobssmliols Igmby Lowo-
©99000). Jo@gdymo adsbgmmgdgools asdmygbgoom asblodmgmmemos
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35050 gmmmgbgdols Imbg asmMgdmdo - s9Pmagmdo adsgM;399-
d9@0 amdogo 0a9Mqdols Lohdomggoo. bohggbgdos, HmI LfMogo daq-
Mols Lohgomg [omImoraqbls JoMggmo s Igmmby da9M900ls Lohds-
9900ls 3m300bo300l, bmeam bgemo dagMe gomsbswgds §9939Mog)-
e dagmols, Mmdmols Lohdomg Lowogs sgMmagemgddo dggos
mog0liggom blbamgddo §gddgmog e dagmols Lobdomglimsb dg-
QS90000.
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