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ABSTRACT. Polyatomic molecules can perform internal 
rotational motion of two types: torsional oscillation and free 
rotation of one part of the molecule with respect to the other part. 
On the phase plane these two types of motions are separated by 
the separatrix. Phase trajectories, originated as a result of 
periodical external force action on the system have stochastic 
nature. At the quantum consideration of the motion near to the 
classical separatrix, transition from the pure quantum-mechanical 
state to the mixed one takes place. Originated at that mixed state, 
it must be considered as the quantum analogue of the classical 
dynamic stochasticity and named as the quantum chaos. This 
work is devoted to the investigation of the quantum chaos 
manifestation, in the polyatomic molecules, which have property 
to perform internal rotation. For the molecule of ethane , 
the emergence of quantum chaos and possible ways of its 
experimental observation have been studied. It is shown, that 
radio-frequency field can produce the non-direct transitions 
between rotational and oscillatory states. These transitions, being 
the sign of the existence of quantum chaos, are able to change 
levels population sizeably and due to this phenomenon 
experimental observation of the infrared absorption is possible. 

2 6C H

 
1. INTRODUCTION 

 
The traditional notion of an area, where the laws of statistical 

physics are effective, consists in the assumption that the number of 
interacting particles is sufficiently large. However, a lot of examples 
of systems with a small number of degrees of freedom, where chaotic 
motions occur, had become known [1,2] by the end of the last century. 
A new stage in the development of notions about a chaos and its 
origin appeared in the last two decades of the past century. It turned 
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out that classical Hamiltonian system may experience special kind of 
instability. Because of this instability various dynamic characteristics 
of the system randomly change with time. Such a property of the 
system to perform random motion is called dynamic stochasticity. 
Dynamic stochasticity is an internal property of the system and is not 
associated with the action of some a priori random forces. 
Stochasticity as an internal property of the system is rather frequently 
encountered in physical problems. The difficulty of revealing it is due 
to the fact that it occurs either in a very narrow range of parameters or 
manifests itself on very large time intervals or is veiled by other 
stronger processes. Quantum analogue of dynamic stochasticity is 
usually called quantum chaos. By a quantum chaos we understand a 
quantum state appearing when the ratios of the parameters of a system 
are the same as those at which, in the case of classical consideration, 
dynamic stochasticity takes place. 
 

2. A PHASE PORTRAIT OF THE PENDULUM AND 
FORMATION OF A STOCHASTIC LAYER 

 
In the general theory of stochasticity of Hamiltonian systems the 

dominating role is played by the problem of a pendulum, the function 
of whose Hamiltonian has the form 

 
2

( )
2
P

H U
m
ϕ ϕ= + ,                                    (1) 

 
where P mϕ ϕ= &  is a pulse and 
 

( ) (1 cos )U mglϕ ϕ= −                              (2) 
 
is the periodic potential of the point body of mass m, which is 
suspended by a thread of length l (see Fig.1). 

Using the law of energy conservation 
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Fig.1. The periodic potential of the pendulum.The angle ϕ  is an  
           angle of deviation of the pendulum from the equilibrium      
           state. The equilibrium state of the pendulum is assumed to  
           be a zero value of potential energy. 
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( ) ( 0)
2

m U E t conϕ ϕ+ = = =
&

st                           (3) 

 
we can construct a phase picture of the pendulum (see Fig.2). 

Using the energy integral (3) and potential (2), we can obtain an 
expression for a period of rotational motion of the pendulum 
 

   
2

0

2 ( )
2 ( )
m d mT K

E U E

π ϕ
ϕ+ = =

−
∫ k ,                         (4) 

where 
/ 2

2 20
( )

1 sin

dK k
k

π ϕ

ϕ
=

−
∫                                  (5) 
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Fig.2. A phase picture of the pendulum. The closed curves E <        
          2mgl correspond to oscillatory motions. The wave curves E  
           > 2mgl correspond to rotational motions. To the energy E =  
           = mgl there corresponds a special trajectory called a  
           separatrix. On the phase plane it separates trajectories with  
           different topology. 

 
is the complete elliptic integral,  is called the module 
of the integral. For the period  of trajectories in the neighborhood of 
the separatrix ( ) we obtain, 

1/ 2(2 / )k mgl E=

cT
1k →

 

1
lim c

k
T T

+ +
→

=  

2

2 2 4 2( 1) ln ln 4
21

c
m m mT K k E

E mglE E Ek
+= → → =

−−
.  (6) 

 
From expression (6) it follows that with the approach to the separatrix 
from above ( 1k +→ ) the motion period logarithmically tends to 
infinity. The oscillatory motion period T−  can be calculated 
analogously, but we do not do this here. We would like only to note 
that the approach to the separatrix from below 
 

1
lim c

k
T T

− −
→

=  
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is analogous to (6). That is, the periods of oscillatory and rotational 
motions coincide in the limit ( 1k ±→ ) and, in doing so, they tend to 

. Motion along the trajectories near the separatrix is not uniform. It 
stops at the singular points 

cT
(2 1)n nϕ π= + , but quickly (within the 

time ) gets over the remaining (greater) part of the 
trajectory. Now let us assume that the considered system is under the 
action of perturbation, periodic with respect to time. In limiting cases 
of small oscillations 

1/ 2~ ( / )l g

2E mgl<< and free rotation 2E mgl>> , such a 
perturbation leads to the modulation of phase trajectories. Points of 
intersection of a perturbed trajectory with an unperturbed one arise on 
the phase plane regularly. The position of each point completely 
depends on the position of the preceding point. The situation changes 
radically if an unperturbed trajectory lies near the separatrix 
( 2E mgl≈ ). Since in that case the motion makes a prolonged, though 
unstable, stop in the neighborhood of nodal singular points, even small 
perturbations may strongly affect the trajectory. Then points of 
intersection of perturbed trajectories with unperturbed ones appear on 
the phase plane irregularly (randomly). An area of the phase space 
occupied by random trajectories is called a stochastic layer (see Fig.3). 
Thus the main condition for the formation of a stochastic layer is 
motion near separatrix ( 2E mgl≈ ). The stochastic layer width is 
defined by a difference 2E mgl−  and a variable field amplitude. 

 
 
Fig.3. The formation of a stochastic layer near the separatrix. 

 
Note that even at first glance we see that in the considered case, 

dynamic stochasticity appears in the completely deterministic dynamic 
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system. Motion stochasticity is directly connected with the availability 
of the separatrix on the phase plane. On stepping over the separatrix, 
phase trajectories abruptly change their form. In the neighborhood of 
singular points, lying on the separatrix, there arises a strong instability 
which is the main cause for the appearance of stochasticity. To explain 
the phenomenon of dynamic stochasticity it is necessary to take into 
consideration a small dispersion of the initial conditions. This 
dispersion is insignificant for trajectories lying at a large distance from 
the separatrix ( 2 , 2E mgl E mgl>> << ), while for trajectories near 
the separatrix ( 2E mgl≈ ), the initial dispersion grows so that, with a 
lapse of time, motion becomes completely unpredictable. A detailed 
study of the criterion of stochasticity formation in classical nonlinear 
systems can be found in [1,2]. We do not discuss this issue here. 
 

3. QUANTUM CONSIDERATION. INTERNAL ROTATION 
IN POLYATOMIC MOLECULES 

 
Let us now consider a quantum analogue of the pendulum 

(quantum pendulum). The corresponding Hamiltonian can be obtained 
from (1) if we replace there the pulse Pϕ  by its operator 
ˆ /P iϕ ϕ= ∂ ∂h . Then we have 

2 2

2
ˆ ( )

2
dH

m d
U ϕ

ϕ
= − +

h                             (7) 

 
Note that this form of the Hamiltonian is usually used to describe 

internal rotation in polyatomic molecules. As is known [3,4], one of 
the forms of internal motion in polyatomic molecules is torsional 
oscillation which for sufficiently large amplitudes transforms to 
rotational motion. In order to describe the corresponding motion in 
Hamiltonian (7) we assume that ϕ  is the angle of torsion of one part 
of the molecule with respect to the other part and replace the mass m 
by the reduced moment of inertia 1 2 1 2/( )I I I I I= + , where and  
are the inertia moments of rotation of the parts of the molecule with 
respect to its symmetry axis. Thus we obtain 

1I 2I
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0( ) (1 cos )
2

VU nϕ ϕ= − , 

 
where  defines the height of potential barrier that separates 
torsional oscillations from the rotation of one part of the molecule 
with respect to the other part, and n defines the quantity of equilibrium 
orientations of one part of the molecule with respect to the other part. 
For the molecule of ethane , dimethylacetylene 

 and for other organic molecules we have n = 3 
equilibrium configurations (see Fig.4). 

0V

3H C CH− 3

33H C C C CH− ≡ −

 

 
 
Fig.4. A schematic drawing of the molecular structure of ethane  

                . The circular arrow shows the torsion phase 3H C CH− 3 ϕ ,  
                 is the equilibrium distance between two parts of 
molecule 

0r

 
The configuration shown in Fig.4 corresponds to an energy 

maximum and is a nonequlibrium configuration (cis-configuration). 
Other nonequilibrium configurations are obtained by rotating by the 
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angles 2
3
π and 22

3
π . Equilibrium configurations (trans-configu-

rations) are obtained by rotating of the angles ,
3
π 2 ,

3 3
π π
+

22 .
3 3
π π
+  

Below we give the numerical values [3,4] of other parameters of 
some organic molecules having the property of internal rotation. Thus 
for the molecule of ethane  we have 2 6C H 1 2I I= ≈  

, , and for the molecule of 

dimethylacetylene  we have 

47 25.3 10 kg m−≈ ⋅ ⋅ 20
0 2 6( ) 2.1 10V C H J−≈ ⋅

4 6C H 47 2
1 2 10.6 10I I kg m−= ≈ ⋅ ⋅ , 

.                                     20
0 4 6( ) 0.34 10V C H J−≈ ⋅

The Schrodinger equation corresponding to Hamiltonian (7) has 
the form    

2

02 2
2 1 (1 cos )  0

2k
d I V n
d
ψ ε ϕ
ϕ

⎡ ψ⎤+ − − =⎢⎣ ⎦h
⎥ ,                  (8) 

 
where kε  the eigenenergy of the k-th state. Note that 0( )k k Vε ε≡ is 
the function of barrier height . The condition of motion near the 
separatrix (near a potential maximum) is written in the form 

0V

0k Vε ≈ . 

If we introduce the new variable 
2

nϕα = , then equation (8) can be 

rewritten as 

[ ]
2

02
( ) 2 cos 2  ( ) 0d E l

d
ψ α α ψ α
α

+ − =                   (9) 

where 
 

02 2
8 ( /IE V

n
ε= −

h
2)                                 (10) 

 
plays the role of energy in dimensionless units, and the parameter  
 

 0 2 2
2Il

n
=

h
0V                                          (11) 
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is the half-height of the barrier in dimensionless units and plays the 
same role as the length of the thread does in the classical pendulum 
problem. Equations (8) and (9) are called the Mathieu-Schrodinger 
equations. It describes the dynamics of the ”quantum pendulum”. 

The Mathieu-Schrodinger equation (9) is a linear equation, which 
gives us the grounds to believe that for the quantum pendulum no 
instability, which leads to chaos and the instability of trajectories, 
might develop as this happens in the classical case. Another property 
of dynamic stochasticity is a jump-like change of the form of phase 
trajectories when they pass across the separatrix. In the case of 
quantum consideration, a smooth transition from the discrete energy 
spectrum to the continuous one takes place near the maxima of the 
periodic potential (Fig.1), which is connected with a possible 
tunneling through the barrier. Thus this fact does not work in favor of 
chaos either. However, as is shown in [5-7], the basic properties of 
dynamic stochasticity (in particular the irreversibility of the process) 
manifest themselves in the case of quantum consideration too. It can 
be assumed that a mixed state is a quantum analogue of classical 
stochastic motion. In our problem the transition from the pure state to 
the mixed one occurs due to special properties of the Mathieu-
Schrodinger odinger equation to be discussed below. A peculiar 
feature of the Mathieu-Schrodinger odinger equation consists in the 
specific dependence of eigenvalues ( )nE l and eigenfunctions 

( , )n lψ ϕ on the parameter l (see Fig.5). On the plane ( , )E l , on which 
the spectral characteristics (so-called Mathieu characteristics [6]) are 
drawn, this peculiarity manifests itself in the alternation of areas of 
twice degenerate G±  and nondegenerate states . The boundaries 
between these areas pass across the branch points of energy terms 

G

( )nE l . 
The presence of degenerate and nondegenerate states of the 

quantum mathematical pendulum was established by studying the 
symmetry properties of the Mathieu-Schrodinger equation. In [5] the 
eigenfunctions were defined for each one of the areas of degenerate 
states and nondegenerate states : G± G
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2 1 2 1 2 1
1( ) ( ( ) ( ))
2n nce ise nψ ϕ ϕ±

+ += ± ϕ+ , 

 

 
 

Fig.5. A fragment of a parametrically dependent energy spectrum  
          of the quantum mathematical pendulum. The straight line         
          E  = l corresponds to the separatrix of classical motion. By  
           are denoted the points of branching of energy terms to  ( )ml±
          the left and to the right of the separatrix 

 

2 2 2
1( ) ( ( ) ( ))
2n nce ise nψ ϕ ϕ± = ± ϕ ,                 ( )G−                 

2 2 1 2 2 1( ); ( ); ( ); ( )n n n nce ce se seϕ ϕ ϕ+ ϕ+ ,               ( )G

2 2 2
1( ) ( ( ) ( )),
2n n nce ise 1ξ ϕ ϕ += ± ϕ               ( )G+  

2 1 2 1 2 2
1( ) ( ( ) ( )).
2n n nce iseζ ϕ ϕ+ += ± ϕ+  

 43



  
Here ( )nce ϕ and ( )nse ϕ denote the periodic Mathieu functions [8]. 

Let us consider two limiting cases of a low and a high energy barrier. 
In the limit of a low barrier , the Mathieu-Schrodinger 
equation (8) implies the equation for free rotation 

0 0V →

 
2

2 2
2 0r

d I
d
ψ ε ψ
ϕ

+ =
h

. 

 
From which for the energy spectrum we obtain , 

where are integer numbers. Using the above-given 
numerical estimates for the molecule of ethane , we obtain 

, which corresponds to the cyclic frequency of 

rotation . Comparing the expression for energy 
with the value of the ethane molecule barrier we see that only levels 
with a sufficiently large quantum number (r > 10) are located high 
above the barrier and it is only for such levels that the considered limit 
is valid. 

2 2( / 2 )r I rε = h

0,  1,  2...r =
2 6C H

21 20.21 10r r Jε −≈ ⋅
12 22.0 10 /r rad s≈ ⋅

In another limiting case of a high barrier  the rotator is most of 
the time inside one of the potential wells where it performs torsional 
motions. In that case 

0V

α can be treated as a small angle. After 
expanding the potential energy in the Schrodinger equation (9) into 
small angles 2cos2 1 2α α≈ − , we obtain a quantum equation for the 
oscillator, whose energy spectrum has the form ( 1/ 2)r rε ω= + h , 

where 13
0 / 2 6.0 10 /n V I rad sω = ≈ ⋅ . For the energy spectrum of 

small torsional oscillations we obtain . If 
we compare the obtained expression for the spectrun with the 
corresponding numerical value of the barrier, then we can see that 
only the first three levels 

20( 1/ 2) 0.63 10r r Jε −≈ + ⋅ ⋅

20
0 0.32 10 Jε −≈ ⋅ , 20

1 0.95 10 Jε −≈ ⋅  and 
are located in the well but not at a sufficiently large 

depth that would allow us to assume that passages between them 
correspond to small oscillations. Thus we can conclude that for 

20
2 1.58 10 Jε −≈ ⋅
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internal rotation of the molecule of ethane  the approximation 
of small oscillations is not carried out sufficiently well, while the 
approximation of free rotation is carried out for large quantum 
numbers. 

2 6C H

A real quantitative picture of the internal rotation spectrum can be 
obtained by means of the Mathieu-characteristics when the points of 
intersection of the line 0l l=  with the Mathieu- characteristics is 
projected on to the energy axis (see Fig.6). 

 

 
 
Fig.6. The graphic method of finding energy terms of internal  

           rotation. For the ethane molecule 0 02
2 12.4

9
Il V= ≈
h

 

 
These conclusions are in good agreement with experimental data. 

In particular, in the experiment we observed the infrared absorption by 
molecules of at a frequency [9]. For an energy 
difference between the levels participating in the absorption process 
we have the estimate 

2 6C H 12~ 8.7 10 Hz⋅

20
exp ~ 0.54 10er Jε −∆ ⋅ . Comparing the 
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experimental result with the energy difference between two 
neighboring levels in the case of approximation of small oscillations, 
we obtain 

0 02ε πν∆ = h , 

where 0 0
3 2

2
V Iν

π
=  is the frequency of small oscillations. 

Inserting the parameters values for molecules of , we obtain 

the estimate 
2 6C H

20
0 0.63 10 Jε −∆ = ⋅ . After comparing the obtained 

estimates with the energy difference between the states described by 
the wave functions 3 0 3 0( , ), ( , )ce l se lϕ ϕ and applying formula (10), 

we obtain . 20
3 0 3 0( ( , ) ( , )) ~ 0.54 10ce l se l Jε ϕ ϕ −∆ ↔ ⋅

Comparative analysis of the obtained estimates gives us the 
grounds to conclude that the energy levels corresponding to the states  

3 0 3 0( , ), ( , )ce l se lϕ ϕ participate in the infrared absorption revealed in 
the experiment. 
 

4. FORMATION OF A QUANTUM CHAOS 
 

Let us assume that the considered quantum system is subjected to 
a radiofrequency (RF) monochromatic pumping whose frequency Ω  
satisfies the condition 0 /VΩ << h . This causes a slow modulation of 
quick electrone motions in a molecule. The formation of an energy 
barrier  is a result of the averaging over quick electrone motions 
and thus it is obvious that due to the pumping effect the barrier value 
is time-dependent, 

0V

 
                                    (12) 0 0 cosV V V→ + ∆ Ωt

 
The depth of modulation V∆ depends on a pumping power. By 
replacing (12) we obtain the time-dependent Hamiltonian 
 

0
ˆ ˆ ˆ( ) ( , ),H H H tϕ ϕ′= +  
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2

0 02
ˆ ( ) cos2H lϕ ϕ

ϕ
∂

= − +
∂

,                         (13) 

ˆ ( , ) cos 2 cosH t lϕ ϕ′ t= ∆ Ω , 

2 2
2Il

n
V∆ = ∆

h
                                  (14) 

 
Simple calculations show that the matrix elements of perturbation 

with respect to the wave functions of the nondegenerate area 
G are equal to zero 

ˆ ( , )H ϕ′ t

 
2

0

ˆ ( , ) ~ ( ) cos2 ( ) 0n n n nce H t se l ce se d
π

ϕ ϕ ϕ ϕ′< > ∆ ∫ ϕ =

t

        (15) 

 
where n is any integer number. Therefore perturbation (14) cannot 
bring about passages between nondegenerate levels. 

The interaction , not producing passages between levels, 
should be inserted in the unperturbed part of the Hamiltonian. The 
Hamiltonian obtained in this manner can be considered as slowly 
depending on time. 

ˆ ( , )H ϕ′

Thus, in the nondegenerate area the Hamiltonian can be written in 
the form 

 
2

2
ˆ ( ) cos2H l t ϕ

ϕ
∂

= − +
∂

.                             (16) 

 
Because of the modulation of the parameter the system passes 

from one area to another, getting over the branch points. 
( )l t

As different from the nondegenerate state area G, in the areas of 
degenerate states G−  and G+ , the nondiagonal matrix elements of 
perturbation (14) are not equal to zero. For example, if we 

take the matrix elements with respect to the wave functions 

ˆ ( , )H ϕ′ t

2 1( )nψ ϕ±
+ , 

then for the left degenerate area G−  it can be shown that 
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2 1 2 1
ˆ ( , ) ~n nH H H tψ ϕ ψ+ −

+− −+ + +′ ′ ′= =< >  

 
2

2 1 2 1
0

~ cos 2n nl
π

ψ ψ ϕ ϕ+ − ∗
+ + 0d∆ ≠∫                         (17) 

 
Note that the value H+ −′  has order equal to the pumping modulation 
(14) depth . l∆

Analogously to (17), we can write an expression for even 2n states 
as well. 

An explicit dependence of on time given by the factor 
, is assumed to be slow as compared with the period of 

passages between degenerate states that are produced by the 
nondiagonal matrix elements 

ˆ ( , )H ϕ′ t
cos tΩ

H+ −′ . Therefore below the perturbation 
 will be assumed to be the time-independent perturbation 

that can bring about passages between degenerate states. 
 

ˆ ( , )H ϕ+ −′ t

2n

In a degenerate area the system may be in the time-dependent 
superpositional state 

 
2 2( ) ( ) ( )n n n nt C t C tψ ψ ψ+ + −= + −                      (18) 

 
The probability amplitudes  are defined by means of the 
fundamental quantummechanical equation, expressing the casuality 
principle. We write such equations for a pair of doubly degenerate 
states: 

( )nC t±

 

0   

 0  

( )

( )

n
n n

n
n n n

dCi E H C H C
dt

dCi H C E H C
dt

+
+ −

+ + + −

−
+ −

+ − − −

⎧
′ ′− = + +⎪⎪

⎨
⎪ ′ ′− = + +⎪⎩

h

h

,

,

n
                 (19) 
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where the matrix elements are taken with respect to degenerate wave 
functions (see (17)) and 0nE  is the energy of the n-th degenerate level 
near a branch point. 

Let us assume that at the initial moment of time the system was in 
the degenerate state 2nψ − . Then as initial conditions we should take 
 

(0) 1nC− =  ,                                    (20) (0) 0nC+ =
 
Having substituted (18) into (17), for the amplitudes we obtain 
 

( ) exp sinn
iC t i Et tω+ ⎛ ⎞= ⎜ ⎟

⎝ ⎠h
, 

( ) exp cosn
iC t Et tω− ⎛ ⎞= ⎜ ⎟

⎝ ⎠h
,                          (21) 

0  nE E H± ±′= + , 
 

where 2 Hπω
τ

+ −′= =
h

 is the frequency of passages between 

degenerate states, τ is the passage time. 
Note that the parameter ω  has (like any other parameter) a certain 

small error δω , which during the time of one passage ~ 2 /t π ω , 
leads to an insignificant correction in the phase 2 ( / )π δω ω . However, 
if during the time ~t T∆ , when the system is the degenerate area 
( , 2 /T T T π∆ < = Ω ) there occurs a great number of passages 
( T τ∆ >> ), then for 2Tδω π∆ ≈ , a small error δω  leads to the phase 
uncertainty. Then we say that the phase is self-chaotized. The self-
chaotization formed in this manner can be regarded as the embryo of a 
quantum chaos which, as we will see in the sequel, further spreads to 
other states. 
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5. SPREAD OF THE QUANTUM CHAOS TO ENERGY 
TERMS 

 
The spread of the quantum chaos, formed as a result of self-

chaotization, can be described in the energy space by means of the 
density matrix. 

Let us introduce the density matrix averaged over a small 
dispersion δω : 

                              (22) 
( ) ( )

( )
( ) ( )

n n
n

n n

W t iF t
t

iF t W t
ρ

+
+ −

∗ −

⎛ ⎞
⎜=
⎜ −⎝ ⎠

⎟
⎟

 

where 
2

( ) ( )n nW t C t± ±= ,  ( ) ( ) ( )n n nF t C t C t+ − ∗= . The overline denotes 

the averaging over a small dispersion δω      
 

 1( , ) ( , )
2

A t A
ω δω

ω δω
ω

δω

+

−
= ∫ x t dx .                              (23) 

 
To solve (21) we can write that 
 

2( ) sinnW t tω+ = , 2( ) cosnW t tω− = , 1( ) sin 2
2nF t tω= .       (24) 

 
After a simple integration of the averaging (23), for the matrix 

element (24) we obtain 
 

( )1( ) 1 (2 )cos2
2nW t f t tδω ω± = m , 

1( ) ( ) (2 )
2n nF t F t f tδω∗= = ,                     (25) 

sin 2(2 )
2

tf t
t

δωδω
δω

= . 
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At small values of time ( 2 /t )τ τ π δω<< = , insufficient for self-
chaotization ( (2 ) 1f tδω ≈ ), we obtain 
 

2( ) sinnW t tτ ω+ << = ,        2( ) cosnW t tτ ω− << = ,  
 

1( ) sin 2
2nF t tτ ω<< = . 

 
Comparing these values with the initial values (24) of the density 
matrix elements, we see that the averaging procedure (23), as 
expected, does not affect them. Thus, for small times we have  
 

2

2

sin sin 2
2( )

sin 2 cos
2

n

it t
t

i t t

ω ω
ρ τ

ω ω

+ −

⎛ ⎞
⎜ ⎟

<< = ⎜
⎜ ⎟−⎜ ⎟
⎝ ⎠

⎟ .                   (26) 

 
One can easily verify that matrix (26) satisfies the condition 

2 ( ) (t t )ρ τ ρ τ<< = << , which is a necessary and sufficient condition 
for the density matrix of the pure state. 

On relatively large time intervals t τ≥ , in which the self-
chaotization of phases takes place, for the matrix elements we should 
use general expressions (25). The substitution of these expressions for 
the matrix elements (25) into the density matrix (22) gives 
 

1 (2 )cos 2 (2 )sin 21( )
2 (2 )sin 2 1 (2 )cos 2

f t t if t t
t

if t t f t t
δω ω δω ω

ρ
δω ω δω ω

−⎛ ⎞
= ⎜ ⎟− +⎝ ⎠

.    (27) 

 
Hence, for times t τ≥ during which the phases get completely 
chaotized after passing to the limit 1tδω >>  in (27), we obtain 
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 1 ( ) ( )1( )
2 ( ) 1 ( )n

O iO
t

iO O
ε ε

ρ
ε ε

+ − −⎛ ⎞
= ⎜ ⎟− +⎝ ⎠

,                 (28) 

 
where ( )O ε is an infinitesimal value of order 1 2 tε δω= . 

The state described by the density matrix (28) is a mixture of two 
quantum states 2nψ + and 2nψ − with equal weights. The comparison of 
the corresponding matrix elements of matrices (28) and (26) shows 
that they differ in the terms that play the role of quickly changing 
fluctuations. When the limit is t τ≥ , fluctuations decrease as 
~ 1 2 tδω . 

Thus the system, which at the time moment 0t =  was in the pure 
state with the wave function 2nψ − , gets self-chaotized with a lapse of 
time t τ>> and passes to the mixed state (28). In other words, at the 
initial moment the system had a certain definite ”order” expressed in 

the form of the density matrix . With a lapse of time 

the system got self-chaotized and the fluctuation terms (27) appeared 
in the density matrix. For large times 

0 0
(0)

0 1
ρ+ − ⎛

= ⎜
⎝ ⎠

⎞
⎟

t τ>> , a new ”order” looking 
like a macroscopic order, is formed, which is defined by matrix (28). 

After a halfperiod, the system passes to the area of nondegenerate 
states G. In passing through the branch point, there arise nonzero 
probabilities for passages both to the state 2 ( )nce ϕ and to the state 

2 ( )nse ϕ . Thus, in the nondegenerate area the mixed state is formed, 
which is defined by the density matrix 

2
1 01~
0 12 2

ik
n

Ttρ τ
⎛⎛ ⎞>> = ⎜⎜ ⎟

⎝ ⎠ ⎝ ⎠

⎞
⎟ ,                     (29) 

where i and k number two levels that correspond to the states  
2 ( )nce ϕ and 2 ( )nse ϕ . 

As follows from (29), at this evolution stage of the system, the 
populations of two nondegenerate levels get equalized. It should be 
noted that though the direct passage (15) between the nondegenerate 
levels is prohibited, perturbation (14) essentially influences ”indirect” 
passages. Under ”indirect” passages we undestand a sequence of 
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events consisting a passage G G−→  through the branch point, a set of 
passages between degenerate states in the area G− , and the reverse 
passage through the branch point . The ”indirect” passages 
ocurring during the modulation halfperiod  result in the 
equalization (saturation) of two nondegenerate levels. 

G− → G
/ 2T

Thus ”indirect” passages are directly connected with a quantum 
chaos. Hence, by fixing ”indirect” passages we thereby fix the 
presence of a quantum chaos. 

Let us assume that the investigated molecule is a component of  
gaseous or liquid state. Then the molecular thermal motion, which 
tries to establish an equilibrium distribution of populations according 
to Boltzman’s law, will be a competing process for the quantum chaos 
described above. Using thermodynamic terminology, we can say that 
the considered quantum system is located between two thermostats. 
One of them with medium temperature  tries to retain thermal 
equlibrium in the system, while the other, having an infinite 
temperature, tries to equalize the populations. 

0T

An equation describing the change of populations according to the 
scheme shown in Fig.7 has the form 

(0)

1
2 ii

i
n ndn W n

dt T
−

= − − i

t

,                        (30) 

                                                              
                                                          3 
 
 
                   1                                                                      2                 
 
 

Fig.7. A thermodynamic scheme of the process. Subsystem 1 is a  
          usual thermostat with temperature , subsystem 2 is a  0T
          thermostat having an infinite temperature and consisting of  
          the interaction  (14); the subsystem 3 is the  ˆ ( , )H ϕ′
          quantum system corresponding to internal rotations of  
          molecules and being able to receive energy from subsystem  
         2 and to transfer it to subsystem 1. 
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where  is probability of indirect passages and  is the time of 
thermal chaotization. Bloembergen, Parcell and Pound used equation 
(30) to describe the process of saturation of nuclear magnetic 
resonance in solid bodies [11]. For a stationary distribution of 
populations from (30) we obtain 

2W 1T

(0) 1
1i in n

s
=

+
 ,                                     (31) 

where 12s WT=  is called the saturation parameter. For  indirect 
passages have a stronger effect on the system than thermal processes. 

1s >>

Thus, along with the conditions 0 /VΩ << h , T τ∆ >> , 
2Tδω π∆ ≈ , δω ω<< , T T∆ <  the condition  is a necessary 

condition for the formation of a quantum chaos. 
1s >>

In the opposite limiting case (0)1, i is n n<< ≈ , the quantum chaos 
will be completely suppressed by thermal motion. 

In the case of gases the thermal chaotization time is estimated by 

the formula 1
dT
v

≈ , where d is the molecule size, 2v v= =  

1/ 2
03/ 2 (2 / )kT m= ⋅  is a mean motion velocity of molecules. After 

substituting the numerical values for , we obtain 2 6C H
11

1 0.3 10 1/T −≈ ⋅ 0T s. Hence it follows that thermal chaotization in 
gaseous ethane occurs so quickly that the quantum chaos is 
completely veiled by a usual thermal chaos ( 1s << ). 

In the case of liquid under  we should understand the mean time 

of the settled life of a molecule, which is about 
1T

810 s− . Relatively 
large times of relaxation in liquids ensure the fulfilment of the 
saturation condition ( 1s ≥ ). As mentined above, infrared absorption 
by the molecules of was observed at frequencies 2 6C H 1~ 289cm−  
[9], which corresponds to passages 3 3se ce→  between the ground 
level and the first excited level. 

Let us assume that the RF pumping gets involved into the process 
simultaneously with infrared passages absorption. If the pumping is so 
strong that indirect induced by it saturate the working levels 1s ≥ , 
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then infrared absorption will stop. This is regarded as a manifestation 
of the quantum process. 

The authors express their gratitude to Professors A. Khelashvili, 
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a. ugulava, l. WotorliSvili, T. gvarjalaZe,  

s. CxaiZe 

 

qaosi mravalatomian molekulebSi 

 

daskvna 

 

 Seswavlilia Sinagani brunviTi moZraoba eTanis 

molekulebSi radiosixSiruli monoqromatuli datu-

mbvis zemoqmedebisas. naCvenebia, rom datumbvam Sei-

Zleba gamoiwvios grexiTi rxevebisa da molekulis 

nawilebis erTmaneTis mimarT rxevis gammijnavi 

potenciuri barieris modulacia. amocana daiyvaneba 

maTie-Sredingeris arastacionarul gantolebaze. 

naCvenebia, rom barieris sididis modulaciis gamo 

SesaZlebeli xdeba arapirdapiri gadasvlebi Sinagani 

brunviTi moZraobis energetikul doneebs Soris, ro-

melTa Soris pirdapiri gadasvlebi akrZalulia. ase-

Ti gadasvlis sixSireebi Sedarebulia eqsperimentze 

damzeril infrawiTel STanTqmasTan. eqsperimentuli 

monacemebi Sedarebulia agreTve mcire rxevebis Sesa-

bamis sixSireebTan. damtkicebulia, rom infrawiTeli 

STanTqma eTanis molekulebis mier ganpirobebulia 

arapirdapiri gadasvlebiT Sesabamis energetikul do-

neebs Soris.  

 

 

 56


	A. Ugulava, L. Chotorlishvili, T. Gvarjaladze and S.Chkhaidz
	4. FORMATION OF A QUANTUM CHAOS
	REFERENCES

	Tbilisi State University

