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ABSTRACT. As it is known, the so-called Dirac -operator 

commutes with the Dirac Hamiltonian for arbitrary central 
potential . Therefore the spectrum is degenerate with respect 
to two signs of its eigenvalues. This degeneracy may be described 
by some operator, which anticommutes with . If this operator 
commutes with the Dirac Hamiltonian at the same time, then it 
establishes new symmetry, which is Witten’s supersymmetry. We 
construct the general anticommuting with -operator, which 
under the requirement of this symmetry unambiguously select the 
Coulomb potential. In this particular case our operator coincides 
with that, introduced by Johnson and Lippmann  many years ago.  
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Supersymmetry  (SUSY) of the hydrogen atom is rather old and 

well-studied problem. We have in mind the usual cases: SUSY in non-
relativistic quantum mechanics and inclusion of spin degrees of 
freedom by Pauli method as well. In the last case the projection of 
well-known Laplace-Runge-Lenz vector onto the electron spin 
direction plays the role of supercharge [1].  

Relatively less is known about the Dirac electron, although the so-
called radial SUSY was demonstrated a long-time ago [2]. As for 3-
dimensional case, it was shown [3-6], that the supercharge operator is 
the one, introduced by Johnson and Lippmann in 1950 in the form of a 
brief abstract [7]. As regards to the more detailed derivation, to the 
best our knowledge, is not published in scientific literature. Moreover 
as far as commutativity of the Johnson-Lippmann operator with the 
Dirac Hamiltonian is concerned, it is usually mentioned that it can be 
proved by  “rather tedious calculations” [5]. 

The main aim of our paper is a derivation of the Johnson-
Lippmann operator in a simple and transparent manner and 
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simultaneous demonstration of its commutativity with the Dirac 
Hamiltonian.  

Below we show that among all central potentials the Coulomb 
potential is a distinguished one. The additional symmetry takes place 
only for this potential. Then we show that the operator responsible for 
that symmetry reduces to the Johnson-Lippmann one in case of 
Coulomb potential.  

So, let us consider the Dirac Hamiltonian for arbitrary central 
potential, : ( )V r
 

( )H p m V rα β= ⋅ + +
r r .                                  (1) 

 
In this form  is a fourth component of a Lorentz 4-vector. We 
mention this fact here because the pure Lorentz-scalar potential is also 
often considered [8]. 

( )V r

Let us introduce the so-called Dirac operator [9] 
  

       ( )1K lβ= Σ ⋅ +
rr

,                                     (2) 

 
where is the angular momentum vector, l

r
αr  and β  are the usual 

Dirac matrices and Σ
r

 is the electron spin matrix  
 

                                 ⎟⎟
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⎞
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⎝

⎛
=Σ

σ
σ

r

r
r

0
0

.                                      (3) 

It is easy to show that  
 

                                       [ ] 0, =HK                                          (4)  
 
for arbitrary central potential, . )(rV
    Therefore the spectrum of Dirac equation is degenerate with respect 
to eigenvalues κ  of the -operator. As a rule, this is a degeneracy 
with regard to the signs of 

K
( ),κ κ± [10].  

    We can find an operator A, which could connect these two signs. 
Naturally, such an operator should anticommute with ,  K
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                    { } 0, =+= KAAKKA .                                   (5) 
 

    If at the same time this operator commutes with Hamiltonian it 
will generate the symmetry of the Dirac equation. 

,H

Therefore, we are looking for an operator  with the following 
properties 

A

 
            [ ] { }, 0, ,A H K A 0= = .                                (6) 

 
    After that we will be able to construct supercharges as follows [3-6]  
                           

                     1 2, AKQ A Q i
κ

= = .                                (7)  

Then it is obvious that  
 

                                         { }1 2,Q Q 0=                                           (8) 
 

and we can construct Witten’s superalgebra, where  2 2
1 2Q Q h= ≡  is a 

Witten’s Hamiltonian.  
      Now our goal is a construction of the  operator. For this purpose 
at first we generalize one theorem [1,11], known from Pauli equation 
to the case of Dirac equation. For the Dirac case this theorem may be 
formulated as follows:  

A

      
Theorem: 
 
     Suppose  be a vector with respect to the angular momentum  

,i.e. 
V
r

l
r

,i j ijk kl V i Vε⎡ ⎤ =⎣ ⎦  

                                                                          
or, equivalently, in the vector product form one has 
 
                                   2 .l V V l iV× + × =

r rr r r
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Suppose also that this vector is perpendicular to l
r

 
                                          
                                         ( ) ( ) 0l V V l⋅ = ⋅ =

r rr r
. 

 
Then  anticommutes with operator (K )VΣ ⋅

rr
, which is scalar with 

respect to the total J
r

 momentum, i.e. it commutes with 1
2

J l= + Σ
rr r

. 

The proof of this theorem is almost trivial - it is sufficient to 
consider the product ( )( )l VΣ ⋅ Σ ⋅

r rr r
 in this and in reversed orders and 

make use of definition of . Then it follows that  K
 

      { } ( ) ( ) 0, =⋅Σ+⋅Σ=⋅Σ KVVKVK
rrrrrr

.                    (9) 
 

It is evident that the class of operators anticommuting with  (so-
called, K-odd operators) is not restricted by these operators only. Any 
operator of the form 

K

( )Ô VΣ ⋅
rr

, where  commutes with , but 

otherwise arbitrary, also is a -odd.  

Ô K

K
    Let us remark for the further application, that the following useful 
relation holds in the framework of conditions of the above theorem 
 

                 ( ) [ ]⎟
⎠
⎞

⎜
⎝
⎛ ×−×⋅Σ−=⋅Σ VllViVK

rrrrrrr

2
1β .                   (10) 

 
Now one can proceed to the second stage of our problem  - we 

wish to construct the K-odd operator A, that commutes with .  It is 
clear that there remains large freedom according to the above 
mentioned remark about -operator – one can take  into account 
or ignore it.  

H

Ô Ô

We have the following physically interesting vectors at hand 
which obey the requirements of our theorem. They are:  
      - unit radius vector and r̂r pr  - linear momentum vector. 
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Both of them are perpendicular to l
r

. Constraints of this theorem are 

also satisfied by Laplace-Runge-Lenz vector ˆ
2

iA r
ma

= − ×
r r  

, but this vector is associated to the Coulomb 

potential. Hence, we abstain from its consideration for now. We can 
remark that 

p l l p⎡× × − ×⎣
r rr ⎤⎦

r

AΣ ⋅
rr

 is not an independent structure. It is expressible by 

two other structures, e.g. (ˆ i )A r K
ma

β pΣ ⋅ = Σ ⋅ + Σ ⋅
rr r rr r .  Therefore, we 

choose the following  -odd terms: K
 

r̂Σ ⋅
r r              and             ( )K pΣ ⋅

r r .                       (11) 

 
As it turns out inclusion of  into the second term in (11) is 

necessary for obtaining our final result.  
K

Let us remark that both operators in (11) are diagonal matrices, 
while the Hamiltonian (1) is non-diagonal. Therefore, in commuting 
of (11) with  non-diagonal terms appear as well. For instance, H

  

                                  [ ] 52,ˆ γβK
r
iHr =⋅Σ

rr
.                                (12) 

 
Therefore, we probe the following operator 
 

   ( ) ( ) ( )5
1 2 3

ˆA x r ix K p ix K f rγ= Σ ⋅ + Σ ⋅ +
r rr r .                 (13) 

 
Here the coefficients ( )1,2,3ix i =  are chosen in such a way, that 

 is Hermitian operator for arbitrary real numbers A ix  and ( )f r  is an 
arbitrary scalar function to be determined later.  
    The commutator of  with  is calculated straightforwardly and 
the result is 

A H

 

[ ] ( ) ( )5
1 2

2 ˆ, iA H x K x K r V r
r
β γ ′= + Σ ⋅

r r
−  
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( ) ( ) ( )5
3 3

ˆ 2x K r f r ix m K f rβ γ′− Σ ⋅ −
r r . 

 
Equating the above expression to zero, i.e. requiring commutativity of 
our operator with the Dirac Hamiltonian, we find  
 

( ) ( ) ( ) ( )5 1
2 3 3

ˆ 2 0xK r x V r x f r i K mx f r
r

β γ ⎡ ⎤′ ′⎡ ⎤Σ ⋅ − + − =⎣ ⎦ ⎢ ⎥⎣ ⎦

r r .    (14) 

 
Here terms are grouped in a way that we have a diagonal matrix in the 
first row, while the anti-diagonal matrix is in the second row. 
Therefore, the two equations follow: 
 

                                    ( ) ( )2 3x V r x f r′ ′= ,                                    (15) 
 

                                    ( ) 1
3

xx mf r
r

= .                                       (16) 

 
Integrating Eq.(15) with the requirement, that  functions ( )f r  and 

( )V r  tend to zero when , yields  r →∞
 
                                    ( ) ( )3 3x V r x f r= ,                                    (17) 

 
while the equation (16) gives  
 

                                          ( ) 1

2

1xf r
x mr

= .                                       (18) 

 
Substituting Eq.(18) into Eq.(17) results in the following potential  
 

                                         ( ) 1

2

1xV r
x mr

= .                                    (19) 
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    Hence, in the very general framework we have shown that the only 
central potential for which the Dirac Hamiltonian would have an 
additional symmetry  (in the above mentioned sense) is a Coulomb 
potential. 
     Meanwhile, the relative signs of coefficients 1x  and 2x  may be 
arbitrary. Therefore we have a symmetry both for attraction and 
repulsion. 
    If we take the Coulomb potential in the usual form  
 

                                         ( )c
aV r
r

= − ,                                          (20) 

 
where 2a Ze Zα= = , it follows 
 

                                         12
1 x

ma
x −= .                                         (21) 

 
In this case our symmetry operator (13) becomes 
 

                    ( ) ( )
⎭
⎬
⎫

⎩
⎨
⎧ +⋅Σ−⋅Σ= 5

1
ˆ γK

mr
ipK

ma
irxA rrrr

.                (22) 

 
Number 1x , as an unessential common factor may be omitted. 
Moreover, if we make transition to the usual Dirac αr  matrices 
according to the relation 5γ αΣ =

r r , then operator  can be reduced to 
the form  

A

 

                     (
⎭
⎬
⎫

⎩
⎨
⎧ −−⋅= mHK

ma
irA βγαγ 55 r̂r )

V

,                       (23) 

 
which coincides precisely with the Johnson-Lippmann operator [7]. 

We mention here that if the potential in the Dirac Hamiltonian was 
a Lorentz-scalar (which means the change V β→ ) then, while  K
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still commutes with , operator  does not commute anymore with 
 even for Coulomb potential.  

H A
H

Thus, we are convinced that in this problem of supersymmetry, the 
Coulomb potential  (as a fourth component of 4-vector, i.e. minimal 
gauge invariant switching) takes exceptional role - the supercharges 
and Witten algebra can be constructed only for this potential. 

What real physical picture is standing behind this? 
Remark that taking into account the Eq.(10) for V p=

r r , one can recast 
our operator for the Coulomb potential in the following form 
 

            [ ] 5

2
ˆ γβ K

mr
ipllp

ma
irA +⎟

⎠
⎞

⎜
⎝
⎛ ×−×−⋅Σ=

rrrrrr
.              (24) 

 
One can see that in the non-relativistic limit, i.e. 1β →  and , 
our operator reduces to 

5 0γ →

 

                 [ ]⎟
⎠
⎞

⎜
⎝
⎛ ×−×−⋅= pllp

ma
irANR

rrrrrr

2
ˆσ .                 (25) 

 
Note the Laplace-Runge-Lenz vector in the parenthesis of Eq.(25). 
Therefore, relativistic supercharge reduces to the projection of the 
Laplace-Runge-Lenz vector on the electron spin direction. Precisely 
this operator, Eq.(25) was used in the case of Pauli electron [1]. 

Therefore, we see that there is a deep relation between 
supersymmetry of the Dirac Hamiltonian and the symmetry related to 
the Laplace-Runge-Lenz vector, which appeared already in classical 
mechanics and provides the closeness of celestial orbits.  

We can conclude that the hidden symmetry associated to the 
Laplace-Runge-Lenz vector governs very wide range of physical 
phenomena from planetary motion to fine and hyperfine structure of 
atomic spectra. As for the Lamb shift, which is pure quantum field 
theory effect, its Hamiltonian, derived by radiative corrections of a 
photon propagator and photon-electron vertex function, does not 
commute with A  operator and therefore spoils the above mentioned 
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symmetry (supersymmetry). In other words, symmetry of the  
operator controls the absence of the Lamb shift in the Dirac theory.  

A

In conclusion, one must also remember that the form of obtained 
symmetry operator is not unique. One can always replace ˆA OA→ , 
where ˆ ,O H⎡ ⎤ 0=⎣ ⎦  and ˆ ,O K⎡ ⎤ 0=⎣ ⎦ . One can take, for example, 

 - arbitrary regular matrix function of . Moreover, SUSY 
in specific and mostly exotic models of Dirac equation (such as 2 + 1 
dimensions [12], non-minimal or anomalous magnetic moment 
coupling [13], squared equation [14,15], etc.) are not excluded by our 
above consideration. 

( )Ô f K= K
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T. xaCiZe, a. xelaSvili 

 
supersimetriuli operatori dirakis gantolebis 

faruli simetriisaTvis 

 
daskvna 

 

cnobilia, rom e.w. dirakis K operatori komuti-

rebs dirakis hamiltonianTan nebismieri centraluri 

potencialisaTvis V(r). amitom speqtri gadagvarebu-

lia misi sakuTari mniSvnelobebis ori niSnis mimarT. 

es gadagvareba SeiZleba aRiweros raime operatoriT, 

romelic antikomutirebs K operatorTan. Tuki es 

operatori amave dros ikomutirebs dirakis hamil-

tonianTan, maSin gveqneba simetria, romelic aRiwere-

ba e.w. vitenis superalgebriT.  

Cven avageT uzogadesi K-sTan antikomutirebadi 

operatori, romelmac zemoaRniSnuli simetriis moT-

xovniT calsaxad gamoyo kulonuri potenciali. 

mxolod kulonuri potencialisaTvis aqvs dirakis 

gantolebas N = 2 supersimetria. am kerZo SemTxvevaSi 

Cvens mier miRebuli simetriis operatori daemTxva 

samecniero literaturaSi cnobil operators, rome-

lic Semotanili iyo lipmanisa da jonsonis mier 

didi xnis win mokle anotaciis saxiT. 
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