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ABSTRACT. As it is known, the so-called Dirac K -operator
commutes with the Dirac Hamiltonian for arbitrary central
potential V(r). Therefore the spectrum is degenerate with respect

to two signs of its eigenvalues. This degeneracy may be described
by some operator, which anticommutes with K. If this operator
commutes with the Dirac Hamiltonian at the same time, then it
establishes new symmetry, which is Witten’s supersymmetry. We
construct the general anticommuting with K -operator, which
under the requirement of this symmetry unambiguously select the
Coulomb potential. In this particular case our operator coincides
with that, introduced by Johnson and Lippmann many years ago.

Supersymmetry (SUSY) of the hydrogen atom is rather old and
well-studied problem. We have in mind the usual cases: SUSY in hon-
relativistic quantum mechanics and inclusion of spin degrees of
freedom by Pauli method as well. In the last case the projection of
well-known Laplace-Runge-Lenz vector onto the electron spin
direction playstherole of supercharge[1].

Relatively less is known about the Dirac electron, although the so-
caled radia SUSY was demonstrated a long-time ago [2]. As for 3-
dimensional case, it was shown [3-6], that the supercharge operator is
the one, introduced by Johnson and Lippmann in 1950 in the form of a
brief abstract [7]. As regards to the more detailed derivation, to the
best our knowledge, is not published in scientific literature. Moreover
as far as commuitativity of the Johnson-Lippmann operator with the
Dirac Hamiltonian is concerned, it is usually mentioned that it can be
proved by “rather tedious calculations’ [5].

The main aim of our paper is a derivation of the Johnson-
Lippmann operator in a simple and transparent manner and
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simultaneous demonstration of its commutativity with the Dirac
Hamiltonian.

Below we show that among all central potentials the Coulomb
potential is a distinguished one. The additional symmetry takes place
only for this potential. Then we show that the operator responsible for
that symmetry reduces to the Johnson-Lippmann one in case of
Coulomb potential.

So, let us consider the Dirac Hamiltonian for arbitrary centra
potentia, V (r) :

H=a -p+pm+V(r). @

In this form V (r) is a fourth component of a Lorentz 4-vector. We

mention this fact here because the pure Lorentz-scalar potential is also
often considered [8].
Let usintroduce the so-called Dirac operator [9]

K=p(-T+1), )

where 1 is the angular momentum vector, @ and £ are the usual
Dirac matricesand 2 is the electron spin matrix

i—&o 3
o &) 3

[K.H]=0 )

Itis easy to show that

for arbitrary central potential, V (r) .

Therefore the spectrum of Dirac equation is degenerate with respect
to eigenvalues x of the K -operator. As arule, this is a degeneracy

with regard to the signs of «, (+x)[10].

We can find an operator A, which could connect these two signs.
Naturally, such an operator should anticommute with K ,
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{AK}=AK+KA=0. (5)

If at the same time this operator commutes with Hamiltonian H, it
will generate the symmetry of the Dirac equation.

Therefore, we are looking for an operator A with the following
properties
[AH]=0, {K,A}=0. (6)

After that we will be able to construct supercharges as follows [3-6]

Q =A Q2=iw- (7)

Then it is obvious that
{Q.Q,}=0 (8)

and we can construct Witten's superalgebra, where Q2 =Q3 =h isa

Witten’s Hamiltonian.

Now our goal is a construction of the A operator. For this purpose
at first we generaize one theorem [1,11], known from Pauli equation
to the case of Dirac equation. For the Dirac case this theorem may be
formulated as follows:

Theorem:

Suppose V be a vector with respect to the angular momentum

I i.e.
[V | =iV

or, equivalently, in the vector product form one has
I xV +V xI =2iV.
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Suppose also that this vector is perpendicular to I
(T-v)=(v-T)=o0.
Then K anticommutes with operator (2\7) which is scalar with

= .. I
respect to the total J momentum, i.e. it commutes with J =1 +§Z.

The proof of this theorem is amost trivial - it is sufficient to
consider the product (ir)(iV) in this and in reversed orders and

make use of definition of K . Then it follows that
KEV}=KEV)+E-V)K =0. €)

It is evident that the class of operators anticommuting with K (so-
called, K-odd operators) is not restricted by these operators only. Any

operator of the form é(i-\7), where O commutes with K , but
otherwise arbitrary, alsoisa K -odd.

Let us remark for the further application, that the following useful
relation holds in the framework of conditions of the above theorem

K(i-V):-iﬂ[i%Nxf—FxV]j. (10)

Now one can proceed to the second stage of our problem - we
wish to construct the K-odd operator A, that commutes with H . It is
clear that there remains large freedom according to the above

mentioned remark about O -operator — one can take O into account
or ignoreit.

We have the following physicaly interesting vectors at hand
which obey the reguirements of our theorem. They are:

r - unit radius vector and p - linear momentum vector.
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Both of them are perpendicular to I . Constraints of this theorem are
i

2ma
x[pxr—rxp}, but this vector is associated to the Coulomb

dso saisfied by LaplaceRungelenz vector A=F-—

X

potential. Hence, we abstain from its consideration for now. We can
remark that - A is not an independent structure. It is expressible by

two other structures, eg. -A=3% -?+mLa,BK(i- rJ) . Therefore, we
choose the following K -odd terms:

3.

=b

and K(Z-p). (11)

As it turns out inclusion of K into the second term in (11) is
necessary for obtaining our final result.

Let us remark that both operators in (11) are diagona matrices,
while the Hamiltonian (1) is non-diagonal. Therefore, in commuting
of (11) with H non-diagonal terms appear as well. For instance,

[i-?,H :éﬂKys. (12)
r
Therefore, we probe the following operator
A= (Z-T)+ixK (2 p)+ixgKy®f (r). (13)

Here the coefficients x; (i =1,2,3) are chosen in such a way, that

A is Hermitian operator for arbitrary real numbers x; and f (r) isan

arbitrary scalar function to be determined later.
The commutator of A with H is calculated straightforwardly and
theresult is

[AH]= xlzTiﬂKyE’ + XK (ST (r)-
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XK (Z-7) /(1) ~ixg2mBKy°f (r).

Equating the above expression to zero, i.e. requiring commutativity of
our operator with the Dirac Hamiltonian, we find

K(Z-7) V' (r) - xsf '(r)]+2iﬁK;/5{%—mx3f (r)}zo. (14)

Here terms are grouped in away that we have a diagonal matrix in the
first row, while the anti-diagonal matrix is in the second row.
Therefore, the two equations follow:

xV'(r)=x3f'(r), (15)
Xgmf (1) = % . (16)

Integrating Eq.(15) with the requirement, that functions f (r) and
V(r) tend to zerowhen r — oo, yields

while the equation (16) gives

()= (19

Substituting Eq.(18) into Eq.(17) results in the following potential
V(=L (19)

Xo Mr
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Hence, in the very general framework we have shown that the only
central potential for which the Dirac Hamiltonian would have an
additional symmetry (in the above mentioned sense) is a Coulomb
potential.

Meanwhile, the relative signs of coefficients x; and x, may be
arbitrary. Therefore we have a symmetry both for attraction and
repulsion.

If we take the Coulomb potential in the usual form

a
Ve(r)=-2, (20)
where a=2Ze? =Za , it follows
1
X, = ——X,. (21)
2 ma 1

In this case our symmetry operator (13) becomes

A= xl{(i . %)—mLa K(E- p)+# K;/S}. 22)

Number x;, as an unessential common factor may be omitted.

Moreover, if we make transition to the usual Dirac & matrices

according to the relation ¥ = y°a , then operator A can be reduced to
the form

A= 75{& Pl k(M —ﬁm)}, (29)
ma

which coincides precisely with the Johnson-Lippmann operator [7].
We mention here that if the potential in the Dirac Hamiltonian was
a Lorentz-scalar (which means the change V — V) then, while K
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still commutes with H , operator A does hot commute anymore with
H even for Coulomb potential.

Thus, we are convinced that in this problem of supersymmetry, the
Coulomb potential (as a fourth component of 4-vector, i.e. minimal
gauge invariant switching) takes exceptional role - the supercharges
and Witten algebra can be constructed only for this potential.

What real physical picture is standing behind this?

Remark that taking into account the Eq.(10) for V = p, one can recast
our operator for the Coulomb potential in the following form

A=%. (r——ﬂ[pxl—lxp]j+—K7/ (24)

One can see that in the non-relativistic limit, i.e. #—1 and y° -0,
our operator reduces to

ANR:&-(?—ﬁ[pr—Txﬁ]j. (25)

Note the Laplace-Runge-Lenz vector in the parenthesis of Eq.(25).
Therefore, relativistic supercharge reduces to the projection of the
Laplace-Runge-Lenz vector on the electron spin direction. Precisely
this operator, EQ.(25) was used in the case of Pauli electron [1].

Therefore, we see that there is a deep relation between
supersymmetry of the Dirac Hamiltonian and the symmetry related to
the Laplace-Runge-Lenz vector, which appeared already in classical
mechanics and provides the closeness of celestial orbits.

We can conclude that the hidden symmetry associated to the
Laplace-Runge-Lenz vector governs very wide range of physica
phenomena from planetary motion to fine and hyperfine structure of
atomic spectra. As for the Lamb shift, which is pure quantum field
theory effect, its Hamiltonian, derived by radiative corrections of a
photon propagator and photon-electron vertex function, does not
commute with A operator and therefore spoils the above mentioned
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symmetry (supersymmetry). In other words, symmetry of the A
operator controls the absence of the Lamb shift in the Dirac theory.
In conclusion, one must also remember that the form of obtained

symmetry operator is not unique. One can always replace A—» OA,

where

~

[OA,H}zo and [O,K]zo. One can take, for example,

O = f(K) - arbitrary regular matrix function of K . Moreover, SUSY

in specific and mostly exotic models of Dirac equation (suchas2 + 1
dimensions [12], non-minima or anomalous magnetic moment
coupling [13], squared equation [14,15], etc.) are not excluded by our
above consideration.
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