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ABSTRACT. The method of calculation of the substance 

constituent atoms zero-point vibration energy within the initial 
quasiclassical approximation is elaborated. By this way the 
ground state vibration energy values for boron nitride molecule, 
isolated sheet, hexagonal, cubic and wurtzite-like crystals are 
found as 0.178, 0.242, 0.266, 0.330 and 0.323 eV/mole, respectively. 
 

1. INTRODUCTION 
 

Boron nitride phases form the class of materials of special 
scientific and technological interest for their superior bonding, 
electronic and optical properties. Boron nitride with the general 
chemical formula BN can exist as one- (diatomic molecule), two- 
(tubular and fullerene-like surfaces) and three-dimensional (layered 
hexagonal h-BN and rhombohedral r-BN, relatively dense cubic c-BN 
and wurtzite-like w-BN crystals, turbostratic and amorphous films) 
structures. The development of theoretical approaches that do not 
require considerable computational effort but provide a reasonable 
accuracy in the prediction of main physical characteristics is 
particularly important for the study of such kind of substance with 
wide variation of the structure types. A number of structural and 
electron energy spectrum parameters of boron nitrides were obtained 
[1-9] by the new effective computing method based on the quasi-
classical approximation (summarization of the physical theory is given 
in [10], the key mathematical aspects see in [11-12]). In the present 
work the same approach is applied to estimate the energies of zero-
point vibrations in boron nitride modifications. In next section we 
justify method for this task. Then results of calculations are given in 
comparison with available data. 
 

 130



2. STANCE OF ZERO-POINT VIBRATION ENERGY WITHIN 
THE INITIAL QUASICLASSICAL APPROXIMATION 

 
Under the term of ‘substance’ it is implied atoms and polyatomic 

structures at the ground state, i.e. molecules and crystals, which can be 
considered as an interacting electron system affected by the stationary 
external electrical field of nuclei fixed at the sites in given structure. 
And so, its physical properties are mainly determined by the electron 
energy spectrum. The quasi-classical expression for bounded state 
energies obtained by Maslov [13] yields [14] that for substance inner 
(self-consistent field) potential the precise and quasiclassical 
electronic spectra are close to one another. On this basis the scheme of 
quasi-classical representation of charge density and potential 
distributions in substance has been elaborated [10] which is useful to 
estimate energy of atoms vibrating near the equilibrium sites in 
structure. 

The quasi-classical limit means the truncation of electron states 
wave functions exponentially decaying tails in the classically 
forbidden regions. In such approximation partial charge densities of 
the space-averaged atomic orbitals equal zero outside the classical 
turning points and a nonzero constants within the range between them. 
Consequently, full charge densities in constituent atoms are expressed 
by the step-like radial functions. Using the Poisson equation the radial 
dependencies of the atomic potentials also can be represented as step-
like functions if substituted by the space-averaged values inside each 
of the uniform charge density regions. 

Let us assume that ( )id
r

 are the basis vectors of the unit cell of a 

crystal with  atoms, N ( ) 1,...,i N= . In this case, the point ( )id t+
r r

 
corresponds to the equilibrium position of the center of -type atom 
belonging to the unit cell with translational vector 

( )i
t
r

. Therefore, the 
total density of the nuclear and electronic charges in the atom and the 
potential of the field induced by these charges at the point rr  can be 
represented by the functions ( ) ( )( )i ir d tρ − −

r rr  and ( ) ( )( )i ir d tϕ − −
r rr . If 

the affecting atoms are fixed at their sites (this is equivalent to the 
time averaging of their vibrations), the potential energy of the th ( )i
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atom of the central unit cell (i.e. with 0t =
r

) displaced by the vector rr  
from the equilibrium position is defined as 

 
/ ( )

( ) ( ) ( ) ( ) ( )( ) 1( ) ( ( ) ( )k N
i i i kt kU r dr r d r r d tρ ϕ=

= ′ ′ ′= − − −∑ ∑ ∫r k − +
r r rr r r r r              

                                 ( ) ( ) ( ) ( )( ) (k k i ir d t r d rρ ϕ′ ′+ − − − −
r r

)) / 2
rr r r . 

 
The prime on the summation sign indicates that the term with 0t =

r
 

and  corresponding to the self-action is omitted (besides, the 
formula is symmetrized with respect to the contributions of interacting 
charges, because the approximations not related by the Poisson 
equation were used upon quasi-classical parameterization of the 
charge density and potential). 

( ) ( )k i=

The central-field approximation for the constituent atoms permits 
us to represent this potential energy as the sum of the contributions 
that depend only on the squares of the distances from the point 

 to the point ( )ir d+
rr

( )kd t+
r r

: 
 

/ ( ) 2 2
( ) ( ) ( ) ( )( ) 1( ) ( 2( ) )k N
i ik t ik t ik tt kU r U r r r r=

== −∑ ∑ r r rr
r r

+
r

i

, 

 
where ( ) ( )( ) kik tr d t d= + −r

r rrr  denotes the radius vector of the th 
atom with respect to the th atom. In order to estimate the energy of 
small-amplitude lattice vibrations, we expand each contribution into a 
power series of the variable parts of the arguments and retain only 
constant and linear terms. The terms responsible for the vibrations are 
as follows: 

( )k
( )i

 
/ 2

( ) ( ) ( ) ( )( ) 1( ) ( ) / 2k N
i Vibration ik t ik t ik tt kU r r dU r dr=

== ∑ ∑ r r rr . 

 
In quasi-classical scheme, the pair potential energies ( ) ( )(ik t ik tU r )r r  are 
linear combinations of the functions ( ) ( ) ( )( , ,i j k l ik tV r r r )r , which 
determine the volumes of the intersection of the layers with uniform 
charge density and potential in the interacting atoms: 
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( ) ( ) ( ) ( ) 1 ( ) 1( ) ( ) ( )( ) ( , , ) ( , , )ik jl i j k l i j k lik t ik t ik tV r V r r r V r r r− −= +r r −r

)
  

                   ( ) ( ) 1 ( ) 1 ( )( ) ( )( , , ) ( , ,i j k l i j k lik t ik tV r r r V r r r− −− −r r . 

 
Here  are the outer radii of the atomic layers, ( )i jr ( )1,..., ij q=  (  is 
the total number of uniform layers in th atom), and  
is the continuously differentiable piecewise analytical algebraic 
function determining the volume of the intersection of two spheres 
with radii 

( )iq
( )i 1 2 12( , , )V R R D

1R  and 2R  whose centers are spaced at 12D  (this universal 
geometrical function was derived in an explicit form in [15] when 
formulating the problem regarding the quasi-classical calculation of 
the band structure of a crystal). Consequently, by introducing the 
charge density ( )i jρ  and the potential ( )i jϕ  values in the atomic 
layers the molar energy of zero-point vibrations in the crystal can be 
written in the form 
 

VibrationE =  

( ) ( )( ) / ( ) ( )( ) ( ) ( ) ( ) ( )

( ) 1 ( ) 1 1 1 ( ) ( ) ( )

( )3
2 2

i kj q l qi N k N ik jli j k l k l i j ik t

i t k j l i ik t ik t

V r
M r r

ρ ϕ ρ ϕ= == =

= = = =

∂+
=

∂
∑ ∑ ∑ ∑ ∑

r

r r r

r

r , 

( ) ( ) ( )( ) /ik jl ik t ik tV r r∂ ∂r r =
r   

 
( ) ( ) ( ) 1 ( ) 1( ) ( ) ( ) ( )( , , ) / ( , , ) /i j k l i j k lik t ik t ik t ik tV r r r r V r r r r− −= ∂ ∂ + ∂ ∂ −r r r r  

                   
( ) ( ) 1 ( ) 1 ( )( ) ( ) ( ) ( )( , , ) / ( , , ) /i j k l i j k lik t ik t ik t ik tV r r r r V r r r r− −−∂ ∂ − ∂ ∂r r r r . 

 
( )iM denotes the mass of the th atom, and the frequencies of lattice 

vibrations are expressed through the partial derivative 
 which is the continuous piecewise analytical 

algebraic function: 

( )i

1 2 12 12( , , ) /V R R D D∂ ∂
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1 2 12 12( , , ) / 0V R R D D∂ ∂ =                         12 2 1D R R≤ −  
                                0=                          12 1 2D R R≤ −  
                                2 2 2 2

1 2 12 12 1 2 12(( ) )( ( ) ) / 4R R D D R R Dπ= − + − − −          
                                                                1 2 12 1| | 2R R D R R− ≤ ≤ +  
                                 0=                          1 2 12R R D+ ≤ . 
                                     . 

These relations obtained for infinite crystalline structure can be 
reduced for case of molecule fixing translational vector at 0t ≡

r
. 

 
3. QUASI-CLASSICAL ZERO-POINT VIBRATION 

ENERGIES IN BORON NITRIDES 
 

The quasi-classical parameters of charge density and potential 
distributions in constituent atoms B and N (necessary for calculations) 
were determined within the scheme of Coulomb-like potentials by 
fitting quasi-classical electron energy levels to the ab initio, namely, 
Hartree–Fock [16]) ones for isolated atoms (as it is known, need for 
the large programming resources makes such kind of calculations 
unrealizable in case of crystals). The obtained values are listed in 
Table 1. Then using these parameters the molar ground state vibration 
energies have been calculated for following boron nitride structures 
(see Table 2): 
– diatomic molecule, i.e. isolated B–N bond, what is important 
object being the building ‘block’ for any boron nitride solid phase; 
– hypothetic two-dimensional hexagonal crystal which also is of 
special interest because the three-dimensional layered modifications 
are formed by similar boron nitride sheets and, moreover, fullerene 
and nano-tube aggregates are bounded by flat or curved fragments of 
such a sheet; 
– hexagonal crystal with two-layer stacking sequence (value found 

for rhombohedral one with three-layer stacking sequence is 
almost the same due to substantially weakness of the inter-layer 
bonding in comparison with intra-layer interactions); 

 
 
 

 134



Table 1. Quasi-classical parameters of the charge density and 
potential distributions in B and N atoms (in atomic units) 

  
( )B jϕ  ( )B jρ  ( )B jr  j

 
( )N jr  ( )N jρ  ( )N jϕ  

210.546
8 

8.88232
9 

3.65292
0 

0.20607
2 

0.00061
4 

56865.1
4 
–

3.61095 
–

0.00734 
–

0.01028 
–

0.00294 

0.02758
5 

0.50980
2 

0.74412
2 

4.02134
6 

4.33706
0 

1 
2 
3 
4 
5 

0.00944
6 

0.35772
4 

0.54980
3 

2.90907
4 

3.20448
9 

198258
9 
–

10.4497 
–

0.01939 
–

0.04127 
–

0.02188 

878.458
1 

20.2252
3 

8.46469
8 

0.50966
8 

0.00399
3 

 
Table 2. Quasi-classically calculated zero-point vibration energies 

of boron nitride structural modifications (in eV/mole) 
 

Modification 
VibrationE  

molecule BN 
sheet BN 
h-BN 
c-BN 
w-BN 

0.178 
0.242 
0.266 
0.330 
0.323 

 
– cubic crystal;  
– wurtzite-like crystal for which the ratio of lattice constants  and 

 and internal parameter u  were fixed at the ‘ideal’ values: 
. 

a
c

2( / ) 3/8a c u= =
The quasi-classically calculated B–N inter-atomic vibration energy, 

0.178 eV/mole, is in good agreement (with a deviations ~5%.) with the 
values experimentally found for neutral BN molecule 0.187 eV/mole 
[17] and 0.188 eV/mole [18]. According to the original (self-
consistent-field-type) theoretical method of [19] ground state vibration 
energy in molecular boron nitride estimated as 0.179 eV/mole which is 
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almost our quasi-classical result. In [20] it was suggested higher 
theoretical value 0.217 eV/mole what is close with 0.216 eV/mole 
measured in ionized molecule BN + [21]. 

The present calculations of vibration energy are the first for boron 
nitride crystalline modifications. Earlier these values were only 
estimated according to the semi-empirical models and/or theoretical 
phonon spectra. 

It is natural that the molar vibration energies quasi-classically 
found for sheet and hexagonal boron nitrides, 0.242 eV/mole and 0.266 
eV/mole, are close one to another. When comparing these energies, it 
should be taken into account that inter-layer bonds in layered boron 
nitride structure are substantially weaker than intra-layer bonds and, 
consequently, inter-layer interaction may be ignored. On the other 
hand, the atoms of the isolated layer which is a two-dimensional 
system, nevertheless, can execute vibrations in three independent 
directions in the physical space. Thus, it is expedient to analyze these 
predictions jointly (especially because there is no experimental studies 
for boron nitride sheet being the hypothetic structure). Both of them 
agree well with semi-empirical value of 0.225 eV/mole for the energy 
of zero-point vibrations in real h-BN crystal found within the model of 
a classical force field potential [22] and coincide in order of magnitude 
with the estimate 0.350 eV/mole made from the theoretical phonon 
spectrum [23]. 

It is also natural that determined vibration energies of c-BN and w-
BN crystals, 0.330 eV/mole and 0.323 eV/mole, are almost the same. 
Boron and nitrogen atoms are tetrahedrally surrounded in both of 
densely packed forms of boron nitride and in considered ‘ideal’ case, 
that mimics the real stable wurtzite-like lattices, the w-BN structure 
differs from the c-BN structure only in the stacking sequence of the B 
and N atoms. Correspondingly, the nearest-neighbor atomic 
environments and bonding types in both crystals are sufficiently close 
and it may be taken for guarantee that their ground state parameters 
are also similar (the lower symmetry and small deviations of bond 
lengths in the w-BN structure can result only in some unique features 
of its properties). It urges on analysis of c-BN and w-BN vibration 
energies together (especially as w-BN bonding parameters have not 
been measured). Aforementioned quasi-classical values coincide 
only in order of magnitude with the semi-empirical estimates based 
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on the model of a classical force field potential: 0.130 eV/mole and 
0.210 eV/mole, respectively [22]. However, there is excellent 
agreement with equal values of 0.320 eV/mole found from the 
theoretical phonon spectrum [23] and early semi-empirical Debye 
model [24] for c-BN. 

Summarizing the obtained results we can conclude that quasi-
classical calculation would be useful for determination of lattice zero-
point vibration energy which is important ground state parameter 
hardly lended  itself to measurement in crystals. 
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l. CxartiSvili 

 

nulovani rxevebis energia kvaziklasikur 

miaxloebaSi: boris nitridebi 

 

daskvna 

 

damuSavebulia sawyis kvaziklasikur miaxloebaSi 

nivTierebis Semadgeneli atomebis nulovani rxevebis 

energiis gamoTvlis meTodi. am gziT boris nitridis 

diatomuri molekulis, ganmxoloebuli fenis, heqsa-

gonaluri, kuburi da viurcitisebri kristalebis 

rxeviTi energiebi ZiriTad mdgomareobaSi Sefasebu-

lia, rogorc 0.178, 0.242, 0.266, 0.330 da 0.323 eV/mole, 
Sesabamisad.  
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