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ABSTRACT. In accordance with the solution of Schrédinger
equation for three-particle system with inverse square distance
dependent pair potential the bound state is not realized at all i.e.
the ground state energy equals to -oo, which is physicaly
meaningless. The reason of this fact is that the potential is
critically singular.

The article studies how to solve Schrddinger equation for three
particle system of inverse square distance dependent pair
potential by modified hyphersperical function method (MHFM)
that gives Hamiltonian corresponding to Schrddinger equation
and at the same time includes the similar to the Coulomb potential
and critically singular potential. The solution of the Schrédinger
equation, which includes this kind potential with corresponding
boundary conditions is given in any quantum mechanical book.
This solution has been given exact physical results and shown
that, in the first approximation binding energy of the system
changes monotonically by global quantum number.

However, as we remarked above, in this case similar to the
Coulomb potential appeared in Schrodinger equation. So the
result does not correspond to the initially studied system (only to
the inverse square distance dependent pair potential for three
particle system).

1 INTRODUCTION
A number of physical phenomena can be described by singular

potentials [1-9], and especially interesting among them is the inverse
square distance dependent pair potential (critical singular potential),
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because it can be used as independently as with the other power
singular potentials [10-14] in different areas of physics.

Schrédinger equation for two particle system with such potential
has been studied in ref. [15,16].

Solution of Schrédinger equation with critically singular potential
can be achieved by renumbering method, which initially had been
formed by Wilson [17], when he carried out calculation by the
quantum field theory and the renumbering the inverse square potential
has become the parameter cutoff. This parameter cutoff used to
inverse square potential has got not only physical result [16,18] but
also possibility to explain the break of quantum anomaly and its
experimental results [19] (where was observed interaction between
dipole and electron.). In spite of that the inverse square potential
system was limited: 1) by two particle systems in ND space, when N >
1; 2) by three and multi-particle systems in 1D space.

So the investigation of three particle-system as independent
critical singular potential and with its other power singular potentials
in 2D and 3D spaces will extend knowledge and it will be more
precise definition about this potential and also will extend the sphere
of use of this potential.

2 FORMULATION OF THE PROBLEM

We considered the potential of inverse square distance dependence
(critical singular potential):

V(r)=a-r_2. (1)

The radial parts of Schrodinger equation with two-particle system
(1) is as following:

R"+ER'+%R+I¢2R=O, )
r r

where R is a radial part of a wave function:
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and if V(r) ~1/r* was in whole space, then bound state was not
realized in case of - A<1/4 at all. And when A>1/4, a particle “falls
into the center” (ground state energy equals to -o0) and so it is
physically meaningless [15,16].

In ref. [20,21] three particle system has been studied with pair of
interaction of the same expression (1) between particles.
Hypersperical function method has been used [22]. However, after
using this method we obtained system of the coupled differential
equations. Let us consider one equation from this system for the
hyperradial wave function in 2D [20] and it is expressed as follows:

ot 370 K(K +2) 2u

pp

where K — is the particles hypermoment.

if define 4 as follows:

/1=—K(K+2)—il—’;JK

(3) and (2) are analogous. If V(r) ~1/r* is in the whole space then
bound state is not realized in case of A<l at all. And when A>1 then
a particle “falls into the center” (ground state energy equals -o0) and so
it is physically meaningless.

From [21] paper it is clear that after using this method only in the
first approximation from infinitely continued equation system for the
hyperradial wave function in 3D is as follows:
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if we define A as follows:

A:—K(K+4)—;—’UJK,

(4) and (2) are analogous. But if V(r) ~ 1/r* was in the whole space
then bound state was not realized in case of A<4 at all. And when A >
4 then a particle “falls into the center” (ground state energy equal to -
o) and so it is physically meaningless.

So despite existence of solutions of (3) and (4) equations
characterized the solution of Schrédinger equation corresponding to
two-particle systems we have got for them an unbound system or
physically meaningless results.

So the problem solution by Schrodinger equation for three-particle
system which contains (1) potential where the non-model approach
can be used must be very interesting.

It has been investigated three particle system with the same
potential using of modified hypersperical function method [4-6] (see
chapter 3) that gives Schrodinger equation with corresponding
Hamiltonian including the same Coulomb potential. So as a result of
using MHFM on three-particle system in 2D space with first
approximation the following equation was obtained:

2 r+ '
82+ E_I/I/z' i+3VVZ—VV3+
o \p op p

N 2uK(K+2)+J
+(x2+%)-h—/j—( pz) ”]w(p)=0 )

(all quantity is given in chapter 3).
From (5) it is clearly seen that it includes the same Coulomb
potential (the third component in the bracket).
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Analogyically MHFM on three particle system in 3D space was
used and as a result we have got:

2 ’ '
§_2+[£_W£JK+M+
- \p p p

_2uK(K+D+Jy

+(K2 +W6') h2 pz

}//(p)=0 (6)

(all quantities in equation have been explained in chapter 3).

Also from (6), it is clearly seen that it includes the same Coulomb
potential (the third component in the bracket).

Corresponding to boundary conditions solution of Schrodinger
equation with Coulomb potential is given in any quantum mechanical
book. Solutions of (5) and (6) equations are given in [20,21].

The solution had taken into account asymptote behavior of
solution. In particular, when p — 0 the solution has been found with

Y~ p%:

q1/2
o=-2+ {(K + 2)2 —il—él]() in 3D space; (7)

1/2

(52—1+{(K+1)2 _il_tlJO in 2D space. (8)

Here and later on (for (18) and (19) the same expressions are being
obtained) it should be taken into account that interaction constants in
three particle system is negative when a; < 0, (calculation of Jo in 2D
and 3D spaces given in [20,21]). As seen from appendix, Jo was
negative for any negative value of a;. Though in (7) and (8) equations
the expression under root will be positive for any negative values of
a;. The expressions of bound state energy of system was as following:
in 2D space
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and in 3D space

2
j —W22+4W6’], )

n2 {(12%’ AW W20 +5-3N)
EN =

2
— —-WE+4w|. (10
8u 20+5-N j 2 6] (10)

The solution obtained from (9) and (10) by Schrodinger equation,
in first approximation, has shown that binding energy of the system
changes monotonically according to global quantum number.

Although bound state energies of three-particle system obtained
using MHFM are finite and not meaningless, the question is how real
they are.

3 PROBLEM SOLUTION

The main idea of the modified hypersperical function method
(MHFM) [4-6] is that the wave function is ¥ presented as the product
of two functions, where the first is the main hyperspherical function
and the second is the “correlation function” - { =exp(f) that defined
by singularity and clustering properties of the wave function and it is
equal to:

3
f=—§m-, (11)

where 7 is a distance between the particles and y; is determined

according to physical considerations. Considering relation between the
three different sets of the given in [22] Jacob’s coordinates, (11) could
be rewriten as following:

3
> v:z; =p(G, cosa+ G, sinay), (12)
i=1

where
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Gy =71 +72c08(¢n3 + §31) — V3 €08 035
Gy =y, sin(dy3 +¢31) —y3sindy; . (13)

$,3, ¢3;— angles were defined by [22]. Taking into account the
above and simple transformations we obtained Schrédinger equation

in 2D space (5), where
216

Wé:(Gl_Gz)'Ts Ws =G12+G225

w; =W;+21J6(0,25G, +G,) (14)

and in 3D space (6), where
: 4 '
W2=(G1—G2)'E; Ws =G +G3;

4 3n) 42
W =G| ——=|-22a,. 15
3 1(15 8) 105 2 (13)

As we already have denoted, application of hyperspherical
function modified method for three particle-system carried out with
(1) type pair interaction (as it is given in previous chapter for 2D and
3D spaces) gives Schrodinger equations that are similar with effective
Hamilton potentials including the potential similar to Coulomb’s
potential.

[23] was regards in 3D space with pair interaction:

a b
(r—2+7j (16)

This equation can be exactly solved by Schrodinger equation without
MHFM.

Without MHFM, bound energy in 2D and 3D space is obtained
analytically:
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where

x:%+ (K+1)2 +W,;  (in 2D space);

1
7»=5+ (K+2)2+W1, (in 3D space);

N = (+W/(2y); V. and W, are the values of the calculating results the
similar of the Coulomb potential and the square inverse potential
related with an angular (arc) integral.

Using MHFM for (16) potential the Schrodinger equation of three
particles system with pair interaction between particles has been
obtained in 2D space

2 ’ r
%+(§_W5Ji+w+
op” \p op P

+(XZ+W6')—?;; K(K;22)+JOJ‘P(p) (18)

and in 3D space [23]

2 ' "
%+(§_W£Ji+w+
op” \p op p
N 2L K(K+1)+J,
+(X2+W6)_h_5<p—2><)jw(p):o, (19

where the marks explained in (14) and (15) and V, = i—l;Jl; Behavior

of (18) and (19) were still defined by (7) and (8), where the expression
under root was did not depend on b, because b depends only on J,.

Ji — 1is the value of the calculation result of an angular (arc) integral
related to the second component of expression (16):
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in the first approximation.

In solution of (18) and (19) account has been taken of an
asymptote behavior of the solution, in particular when p — 0. Then
solution has been found with ¥ ~ p° where ¢ in 2D and 3D spaces
expressed by (7) and (8) relationships. From (7) and (8) it is clearly
seen that the expression under root does not depend on constant (b;).

Solution of (18) and (19) equations gives same of the bound
expressions in 2D space:

21120y + AW, — 4V — W5 (3+26-2N

Ey =T |[ 1WA = =W (3420 22N) ) | )
8u 3+20-2N

in 3D space:
2 3y + Wy — Wy(2c+5-3N

ENz—h— I+ V) Wi Y — W+ 4w | (21)
8u 26+5-N

Bound energy calculated from (17), (20) and (18), (21) [21] related on
global quantum number is shown in Table (see Table).

In result it was assumed that all particles’ masses equal to the
mass of electron. Parameter of correlation - y;= 0.01 (i = 1,2,3), the
constants of interaction are the same, so a; < 0 and b1, =b13<0, by3>

0, and various from 1 to 0.001 does not give qualitatively new results.
The results entered in table are true for g, in (-1, -0.001)

interval. Pair potential of the inverse square of the distance with
repulsion interaction constants between particles (when a; > 0) was

not considered in this paper and needs research in future. As regards to
bi; calculation had been made in case when they change according
with modules in (1; 0.001) interval and satisfy the conditions: b;, = b3
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< 0, by; > 0. For other values are not studied and needs research in
future too.

Dependence of the bound state energy of three particle system
on N - global quantum number for (14) pair potential

2D space 3D space
-E(compar.unit) | -E (compar.unit) -E(compar.unit) -E(compar.unit)
N formula (17) formula (20) formula (17) formula (21)
0 4.866238 4.7093248 0.3156439 0.304168
1 2415242 2.3599785 0.1264723 0.123532
2 1.439093 1.413575 0.067679 0.066523
3 0.954168 0.9403576 0.042062 0.041494
4 0.678661 0.6703626 0.0286507 0.028331
5 0.507292 0.5019224 0.0207633 0.020566
6 0.393497 0.3898247 0.0157354 0.015605
7 0.314101 0.3114802 0.0123351 0.012244
8 0.256518 0.2545822 0.0099287 0.009863

Results obtained by calculation let us think that Schrédinger
equation with (16) potential does not change its character by using
MFHM. However, it can be used for the Schrédinger equation of thee
particle system for (16) pair interaction and not for (1) interaction. So
we can give the answer to the equation in chapter two: 1) yes, only for
(16) potential when a;; is changing in (-1; -0.001) interval and satisfied
b12=b13<0, by3> 0 condition; 2) no, for (1) potential. So the values of
bound state energy of three particle system when we used MFHM is
real and has physical meaning only for (16) potentials.

4 CONCLUSIONS

The solution of three particles system of Schrodinger equation has
given the following results:

1) Similar to (16) expression the pair interaction between the
particles with MHFM and without MHFM (in first approximation)
show that the binding energy of system dependence on the global
quantum number in both cases are equal with grant precision
(therefore MHFM does not change quality of Schrodinger equation)
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when a;; coefficients change interval is (-1; -0.001) and b; coefficients
change interval is (1; 0.001) with condition b,=b;3< 0, by;>0;

2) In order to obtain physically meaningful solution MFHM is
applied for only two types of pair potentials: I. Critically singular
potential; II. The sum of critically singular and Coulomb like
potentials.

We have obtained that the calculated binding energy
monotonously depends on the global quantum number.

3) By similar to (16) pair interaction between particles studied
using MFHM in 2D and 3D spaces it was shown that with application
of MFHM the solution of Schrodinger equation containing
corresponding Hamiltonian to obtain the solution with physical
meaning is possible.

4) By similar to (1) pair interaction between particles studied by
MFHM in 2D and 3D spaces it was shown that solution of
Schrédinger equation containing Hamiltonian is possible, but during
solution there appears a component similar to Coulomb potential.
Hence, we should not think that the obtained results correspond to the
initially given investigated system (only to inverse square distance
dependent pair potential three-particle system).

5. APPENDIX

Jo included in conditions (7) and (8) (similar to those obtained for
(18) and (19)) represents the following expression:

3
Jo ZT(anJu +ay3Jp3 +aydy). (d1)

As for Jj,, (the analogous form have the others) it equals to:

J1p = [ @ (D (Q)(cosa) 7 dQ, (d2)

where

Dy (Q)=

= N?{’lz cos’ asin o P,111+1/2’12+1/2(cos 2a) Y (Y ()0 (d3)
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Pi*L (605 2a1) —Jacob polynomial; Y, ,,, (x) -spherical function;

1/2
N 2n/(K +2)(n+1 +1, +1)! . K-L -1
K T(n+l +3/2)T(n+l,+3/2)) 2

putting (d3) in (d2), and taking into account that the work considers
only the first approximation (K = K’'=0, [;=1",=101=1",=0), some
transformations give:

(2001 ra/2) 132 T
"\ TE/2)r3/2) )| TOrG/2) THrG/2)

1Tr@3/2)r/2
2 ')
(d4) shows that, J;, >0(J;3and J,, are analogous). It follows from

the (d1) J, sign depends on the sign of constants of interaction
between panicles. In the paper only the case, when constant of
interaction a;; < 0 is considered, which notes that the work consideres
the case J,<0.
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